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Positive Real Control for Uncertain
Two-Dimensional Systems

Shengyuan Xu, James Lam, Zhiping Lin, and Krzysztof Galkowski

Abstract—This brief deals with the problem of positive real control for
uncertain two-dimensional (2-D) discrete systems described by the For-
nasini-Marchesini local state-space model. The parameter uncertainty is
time-invariant and norm-bounded. The problem we address is the design of
a state feedback controller that robustly stabilizes the uncertain system and
achieves the extended strictly positive realness of the resulting closed-loop
system for all admissible uncertainties. A version of positive realness for 2-D
discrete systems is established. Based on this, a condition for the solvability
of the positive real control problem is derived in terms of a linear matrix
inequality. Furthermore, the solution of a desired state feedback controller
is also given. Finally, we provide a numerical example to demonstrate the
applicability of the proposed approach.

Index Terms—Fornasini-Marchesini local state-space (FMLSS) model,
linear matrix inequality (LMI), positive realness, state feedback, two-di-
mensional (2-D) systems.

I. INTRODUCTION

In the past decades, there has been a growing interest in the system
theoretic problems of two-dimensional (2-D) discrete systems due to
the rapid increase of the applicability of 2-D discrete systems theory in
many areas such as image processing, seismographic data processing,
thermal processes, water stream heating, and so on [11]. A great
number of fundamental notions and results based on one-dimensional
(1-D) discrete systems have been extended to 2-D discrete systems
[5], [9], [11], [16].

On the other hand, the notion of positive realness has played an im-
portant role in control and system theory [2], [6], [18]. Applications of
positive realness have been found in many areas such as the analysis
of the properties of immittance or hybrid matrices of various classes
of networks, the inverse problem of linear optimal control, the stability
analysis for linear systems, and so on [2], [6], [8], [19]. In [1], it is
also reported that positive realness has played an important role in the
stability analysis for 2-D discrete systems. Recently, increasing atten-
tion has been devoted to the positive real control problem. The study
of this problem is motivated by robust and nonlinear control in which
a well-known fact is that the positive realness of a certain loop transfer
function will guarantee the overall stability of a feedback system if un-
certainty or nonlinearity can be characterized by a positive real system
[18]. Furthermore, it has been shown that if the system uncertainty can
be cast as a positive real transfer function and the system is strictly
positive real, then the positivity theorem implies robust stability [7].
The objective of positive real control is to design controllers such that
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the resulting closed-loop system is stable and the closed-loop transfer
function is positive real. Now, it is known that a solution to this problem
for a known linear time-invariant system involves solving a pair of Ric-
cati inequalities [17]. When parameter uncertainty appears, the results
in [17] were extended in [14], where observer-based controllers were
designed and an linear matrix inequality (LMI) design method was de-
veloped. The corresponding results for discrete time systems can be
found in [8] and [15]. It should be pointed out that all these results were
derived in the context of 1-D systems. Up to date, however, no results
on positive real control problem for 2-D discrete systems is available
in the literature, this problem is still open and remains challenging.

In this brief, we are concerned with the problem of positive real
control for uncertain 2-D discrete systems described by the Fornasini-
Marchesini local state-space (FMLSS) model. The parameter uncer-
tainty is assumed to be time-invariant and unknown but norm-bounded.
The problem to be addressed is the design of a state feedback controller
such that the resulting closed-loop system is asymptotically stable and
the closed-loop transfer function from the disturbance to the controlled
output isextended strictly positive real(ESPR) for all admissible un-
certainties. To solve this problem, we first establish a version of posi-
tive realness for 2-D discrete systems in terms of an LMI. It is shown
that this result is an extension of the existing results of positive realness
for 1-D discrete systems. Then, we obtain the results on positive real-
ness for uncertain 2-D systems via the notion of “strong robust stability
with ESPR”. Based on this, a condition for the solvability of the posi-
tive real control problem is derived and the explicit formula of a desired
state feedback controller is given. Finally, an example is presented to
demonstrate the validity and applicability of the proposed approach.

Notation.Throughout this brief, for Hermitian matricesX andY ,
the notationX � Y (respectively,X > Y ) means that the ma-
trix X � Y is positive semi-definite (respectively, positive definite).
I is the identity matrix with appropriate dimension. The superscripts
“T ,” “�T ,”and “�” represent the transpose, inverse transpose, and the
complex conjugate transpose.+ denotes the set of nonnegative inte-
gers. Matrices, if not explicitly stated, are assumed to have compatible
dimensions.

II. POSITIVE REALNESSANALYSIS

Consider an uncertain 2-D discrete-time system(��) described by
the following FMLSS model [5], [12]:

(��): x(i+ 1; j + 1) =A1�x(i+ 1; j) + A2�x(i; j + 1)

+B1�w(i+ 1; j)

+B2�w(i; j + 1)

z(i; j) =Cx(i; j) +Dw(i; j)

wherex(i; j) 2 n is the local state vector,w(i; j) 2 q is the exoge-
nous input,z(i; j) 2 q is the controlled output,i, j 2 +

A1� =A1 +�A1 A2� = A2 +�A2

B1� =B1 +�B1 B2� = B2 +�B2

whereA1,A2,B1,B2,C andD are known real constant matrices with
appropriate dimensions.�A1,�A2,�B1 and�B2 are time-invariant
matrices representing norm-bounded parameter uncertainties, and are
assumed to be of the form [20], [21]

[ �A1 �A2 �B1 �B2 ] =MF [NA1 NA2 NB1 NB2 ]

(1)

1057-7130/02$17.00 © 2002 IEEE



1660 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 11, NOVEMBER 2002

whereF 2 g�l is an unknown real matrix satisfying

F
T
F � I (2)

andM , NA1, NA2, NB1 andNB2 are known real constant matrices
with appropriate dimensions.

The nominal 2-D discrete-time system of(��) can be written as

(�): x(i+ 1; j + 1) =A1x(i+ 1; j) +A2x(i; j + 1)

+B1w(i+ 1; j) +B2w(i; j + 1)

z(i; j) =Cx(i; j) +Dw(i; j):

Then, the square transfer function of the 2-D discrete-time system(�)
can be written as

G(z1; z2) = C (z1z2I � z1A1 � z2A2)
�1 (z1B1+z2B2)+D: (3)

We first introduce the notion of asymptotic stability of 2-D dis-
crete-time systems.

Definition 1 [11]: The 2-D linear discrete-time system(�) is said
to be asymptotically stable if

lim
k!1

k�(k)kE = 0

under the zero inputw(i; j) � 0 andk�(0)kE <1, where

k�(k)kE = sup
x2�(k)

kxk; �(k) = fx(i; j): i+ j = kg

andkx(�; �)k is the Euclidean norm of the local state.
The following lemma gives a sufficient condition for the asymptotic

stability of 2-D linear discrete-time system(�) in terms of an LMI.
Lemma 1 [10]: The 2-D linear discrete-time system(�) is asymp-

totically stable if there exist matricesP > 0 andQ > 0 such that the
following LMI holds:

AT
1 PA1 +Q� P AT

1 PA2

AT
2 PA1 AT

2 PA2 �Q
< 0: (4)

Motivated by the notion of positive realness for 1-D discrete systems
[2], we define the concept of positive realness for 2-D systems in the
following.

Definition 2:

1) The 2-D discrete-time system(�) is said to be positive real (PR)
if its transfer functionG(z1; z2) is analytic injz1j > 1, jz2j > 1
and satisfiesG(z1; z2)+G

�(z1; z2) � 0 for jz1j > 1, jz2j > 1.
2) The 2-D discrete-time system(�) is said to be strictly positive

real (SPR) if its transfer functionG(z1; z2) is analytic injz1j �
1, jz2j � 1 and satisfiesG(ej� ; ej� ) + G�(ej� ; ej� ) > 0
for �1, �2 2 [0; 2�).

3) The 2-D discrete-time system(�) is said to be ESPR if it is SPR
andG(1;1) + G(1;1)T > 0.

We present a result on positive realness for 2-D discrete-time system
(�) in the following theorem.

Theorem 1: The 2-D discrete-time system(�) is asymptotically
stable with ESPR if there exist matricesP > 0, Q > 0 andW > 0
such that the LMI shown in (5), at the bottom of the page, holds.

Proof: From (5) it is easy to see that

AT
1 PA1 +Q� P AT

1 PA2

AT
2 PA1 AT

2 PA2 �Q
< 0: (6)

By Lemma 1, it follows from (6) that the 2-D discrete-time system(�)
is asymptotically stable. Therefore,G(z1; z2) is analytic injz1j � 1,
jz2j � 1. Next, we shall show

U(ej� ; ej�2) := G(ej� ; ej� ) +G
�(ej� ; ej� ) > 0

for all �1, �2 2 [0; 2�). To this end, we note that (5) implies that there
exist a sufficiently small scalar� > 0 and a matrixQ1 > 0 such that
(7), shown at the bottom of the page, holds. Denote

~A1 = [A1 A2 �B1 ]

H =

Q� P +Q1 + �I 0 CT

0 �Q+ �I 0

C 0 �(D+DT �W )

:

(8)

By Schur complements [4], it follows from (7) that

W �B
T
2 PB2 > 0 (9)

and

~AT
1 P ~A1 + ~AT

1 PB2 W �B
T
2 PB2

�1

B
T
2 P ~A1 +H < 0: (10)

Let

~BT
2 =

0

0

�BT
2

; ~W =

�I 0 0

0 �I 0

0 0 W

;

~H =

Q� P +Q1 0 CT

0 �Q 0

C 0 �(D+DT )

:

Then, (10) can be rewritten as

~AT
1 P ~A1 + ~AT

1 P ~B2
~W � ~BT

2 P ~B2

�1
~BT
2 P ~A1 + ~W + ~H < 0:

(11)

AT
1 PA1 +Q� P AT

1 PA2 CT � AT
1 PB1 �AT

1 PB2

AT
2 PA1 AT

2 PA2 �Q �AT
2 PB1 �AT

2 PB2

C �BT
1 PA1 �BT

1 PA2 � D +DT �BT
1 PB1 �W BT

1 PB2

�BT
2 PA1 �BT

2 PA2 BT
2 PB1 BT

2 PB2 �W

< 0 (5)

AT
1 PA1 +Q� P +Q1 + �I AT

1 PA2 CT �AT
1 PB1 �AT

1 PB2

AT
2 PA1 AT

2 PA2 �Q+ �I �AT
2 PB1 �AT

2 PB2

C �BT
1 PA1 �BT

1 PA2 � D +DT �BT
1 PB1 �W BT

1 PB2

�BT
2 PA1 �BT

2 PA2 BT
2 PB1 BT

2 PB2 �W

< 0 (7)
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Noting

~W �

~BT
2 P ~B2 > 0

and recalling that for any matricesX, Y andZ of appropriate dimen-
sions withX > 0,

Y
�

Z + Z
�

Y � Z
�

XZ + Y
�

X
�1
Y

we have that for all�1, �2 2 [0; 2�),

e
j(� �� ) ~AT

1 P ~B2 + e
�j(� �� ) ~BT

2 P ~A1 � ~AT
1 P ~B2

� ~W � ~BT
2 P ~B2

�1
~BT
2 P ~A1 + ~W � ~BT

2 P ~B2:

This together with (11) implies that for all�1, �2 2 [0; 2�)

~AT
1 + e

�j(� �� ) ~BT
2 P ~A1 + e

j(� �� ) ~B2 + ~H

� ~AT
1 P ~A1 + ~AT

1 P ~B2
~W � ~BT

2 P ~B2

�1
~BT
2 P ~A1

+ ~W + ~H < 0:

That is

AT
1

AT
2

�BT
1 � e�j(� �� )BT

2

P

� [A1 A2 �B1 � ej(� �� )B2 ]

+

Q� P +Q1 0 CT

0 �Q 0

C 0 �(D +DT )

< 0: (12)

Pre-multiplying and post-multiplying (12) by

I e�j(� �� )I 0

0 0 I
and

I 0

ej(� �� )I 0

0 I

respectively, we obtain that for all�1, �2 2 [0; 2�)

A(�j�1;�j�2)
T

�B(�j�1;�j�2)
T P [A(j�1; j�2) �B(j�1; j�2) ]

+
�P +Q1 CT

C �(D +DT )
< 0 (13)

where

A(j�1; j�2) =A1 + e
j(� �� )

A2

B(j�1; j�2) =B1 + e
j(� �� )

B2:

Using the Schur complement, it follows from (13) that for all�1, �2 2
[0; 2�)

Q1 � P +A(�j�1;�j�2)
T
PA(j�1; j�2)

+ C
T
� A(�j�1;�j�2)

T
PB(j�1; j�2) S(j�1; j�2)

�1

� C �B(�j�1;�j�2)
T
PA(j�1; j�2) < 0 (14)

and

S(j�1; j�2) = D +D
T
�B(�j�1;�j�2)

T
PB(j�1; j�2) > 0:

Setting

	(j�1; j�2) = e
j�
I �A(j�1; j�2)

it is easy to show that the asymptotic stability of the system
(�) implies that 	(j�1; j�2) is invertible for all �1, �2 2

[0; 2�). Now, pre-multiplying and post-multiplying (14) by

B(�j�1;�j�2)
T	(�j�1;�j�2)

�T and	(j�1; j�2)�1B(j�1; j�2)
respectively, we have that for all�1, �2 2 [0; 2�)

B(�j�1;�j�2)
T	(�j�1;�j�2)

�T

� A(�j�1;�j�2)
T
PA(j�1; j�2)� P 	(j�1; j�2)

�1

�B(j�1; j�2) +B(�j�1;�j�2)
T	(�j�1;�j�2)

�T

� �(j�1; j�2)	(j�1; j�2)
�1
B(j�1; j�2) � 0 (15)

where

�(j�1; j�2) = Q1 + C
T
� A(�j�1;�j�2)

T
PB(j�1; j�2)

�S(j�1; j�2)
�1

C �B(�j�1;�j�2)
T
PA(j�1; j�2) :

On the other hand, by some algebraic manipulations we can verify that
the following equality holds for all�1, �2 2 [0; 2�)

A(�j�1;�j�2)
T
PA(j�1; j�2) + 	(�j�1;�j�2)

T

� P	(j�1; j�2) + 	(�j�1;�j�2)
T
PA(j�1; j�2)

+A(�j�1;�j�2)
T
P	(j�1; j�2)� P = 0: (16)

Pre-multiplying and post-multiplying (16) by
B(�j�1;�j�2)

T	(�j�1;�j�2)
�T and	(j�1; j�2)�1B(j�1; j�2)

respectively, and re-arranging we obtain

�B(�j�1;�j�2)
T	(�j�1;�j�2)

�T

� A(�j�1;�j�2)
T
PA(j�1; j�2)� P

�	(j�1; j�2)
�1
B(j�1; j�2)

= B(�j�1;�j�2)
T
PB(j�1; j�2) +B(�j�1;�j�2)

T

� PA(j�1; j�2)	(j�1; j�2)
�1
B(j�1; j�2)

+B(�j�1;�j�2)
T	(�j�1;�j�2)

�T

� A(�j�1;�j�2)
T
PB(j�1; j�2)

for all �1, �2 2 [0; 2�). Considering this and (15), we have that for all
�1, �2 2 [0; 2�)

B(�j�1;�j�2)
T	(�j�1;�j�2)

�T�(j�1; j�2)

�	(j�1; j�2)
�1
B(j�1; j�2)�B(�j�1;�j�2)

T

� PB(j�1; j�2)�B(�j�1;�j�2)
T
PA(j�1; j�2)

�	(j�1; j�2)
�1
B(j�1; j�2)�B(�j�1;�j�2)

T

�	(�j�1;�j�2)
�T
A(�j�1;�j�2)

T

� PB(j�1; j�2) � 0: (17)

Therefore, it follows from (17) that for all�1, �2 2 [0; 2�)

U(ej� ; ej�2) =D +D
T + C	(j�1; j�2)

�1
B(j�1; j�2)

+B(�j�1;�j�2)
T	(j�1; j�2)

�T
C

T

=S(j�1; j�2) + C	(j�1; j�2)
�1
B(j�1; j�2)

+B(�j�1;�j�2)
T	(j�1; j�2)

�T
C

T

+B(�j�1;�j�2)
T
PB(j�1; j�2)

�S(j�1; j�2)

+ C �B(�j�1;�j�2)
T
PA(j�1; j�2)

�	(j�1; j�2)
�1
B(j�1; j�2)

+B(�j�1;�j�2)
T	(j�1; j�2)

�T

� C
T
�A(�j�1;�j�2)

T
PB(j�1; j�2)

+B(�j�1;�j�2)
T	(�j�1;�j�2)

�T

� �(j�1; j�2)	(j�1; j�2)
�1
B(j�1; j�2)

�� C �B(�j�1;�j�2)
T
PA(j�1; j�2)

� �(j�1; j�2)
�1

� C
T
�A(�j�1;�j�2)

T
PB(j�1; j�2)

+ S(j�1; j�2): (18)
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Note that

�(j�1; j�2)� C
T
� A(�j�1;�j�2)

T
PB(j�1; j�2)

� S(j�1; j�2)
�1

C �B(�j�1;�j�2)
T
PA(j�1; j�2)

= Q1 > 0:

Therefore, for all�1, �2 2 [0; 2�)

S(j�1; j�2)� C �B(�j�1;�j�2)
T
PA(j�1; j�2)

��(j�1; j�2)
�1

C
T
�A(�j�1;�j�2)

T
PB(j�1; j�2) > 0:

From this and (18), we have thatU(ej� ; ej�2) > 0 for all �1, �2 2
[0; 2�). Thus, the 2-D discrete-time system(�) is ESPR. This com-
pletes the proof.

Remark 1: Theorem 1 provides an LMI condition for the 2-D dis-
crete-time system(�) to be asymptotically stable and ESPR. In the
case when system(�) reduces to a 1-D discrete system, it is easy to
show that Theorem 1 coincides with Lemma 4.2 in [8]. Therefore, The-
orem 1 can be viewed as an extension of existing results on positive
realness to 2-D discrete-time systems.

The positive realness result for 1-D systems has played an important
role in robust positive realness analysis and synthesis for uncertain 1-D
systems in both discrete and continuous contexts [15], [22]. Taking into
account this and Theorem 1, we introduce the concept of strong robust
stability with ESPR for the uncertain 2-D discrete-time system(��),
which will be shown to be useful in establishing the property of robust
stability with ESPR for system(��).

Definition 3: The uncertain 2-D discrete-time system(��) is said
to be strongly robustly stable with ESPR if there exist matricesP > 0,
Q > 0 andW > 0 such that the LMI shown in (19), at the bottom of
the page, holds for all admissible uncertainties�A1, �A2, �B1 and
�B2 satisfying (1).

Remark 2: It is worth pointing out that Definition 3 extends the
notion of strong robust stability for uncertain 1-D discrete systems in
[15] to the case of uncertain 2-D discrete systems.

The following theorem presents a necessary and sufficient condition
for system(��) to be strongly robustly stable with ESPR.

Theorem 2: Consider the uncertain 2-D discrete-time system(��).
This system is strongly robustly stable with ESPR for all admissible
uncertainties if and only if there exist a scalar� > 0 and matrices
X > 0, Y > 0 andW > 0 such that the LMI shown in (20), at the
bottom of the page, holds.

Before proceeding to prove Theorem 2, we introduce the following
lemmas.

Lemma 2 [13]: Let A, L, E, F andP be real matrices of appro-
priate dimensions withP > 0 andF satisfyingF TF � I: Then, for
any scalar� > 0 such thatP � �LLT > 0, we have

(A+ LFE)TP�1(A+ LFE)

� A
T (P � �LL

T )�1A+ �
�1
E
T
E:

Lemma 3 [21]: LetL; E, F andQ be real matrices of appropriate
dimensions withQ satisfyingQ = QT , then

Q+ LFE + (LFE)T < 0

for all F satisfyingF TF � I; if and only if there exists a scalar� > 0
such that

Q+ �LL
T + �

�1
E
T
E < 0:

Proof of Theorem 2:(Sufficiency): Suppose that there exist a
scalar� > 0 and matricesX > 0, Y > 0 andW > 0 such that (20) is
satisfied. Then, from (20) it is easy to see that

X � �MM
T
> 0: (21)

By Lemma 2, it can be shown that

AT1

AT2

�BT
1

�BT
2

+

NT
A1

NT
A2

�NT
B1

�NT
B2

F
T
M

T
X
�1

�

AT1

AT2

�BT
1

�BT
2

+

NT
A1

NT
A2

�NT
B1

�NT
B2

F
T
M

T

T

�

AT1

AT2

�BT
1

�BT
2

(X � �MM
T )�1

AT1

AT2

�BT
1

�BT
2

T

+ �
�1

NT
A1

NT
A2

�NT
B1

�NT
B2

NT
A1

NT
A2

�NT
B1

�NT
B2

T

: (22)

Let

Ŷ = X
�1
YX

�1
; J = J

T = diag(X;X; I; I):

AT1�PA1� +Q� P AT1�PA2� CT
�AT1�PB1� �AT1�PB2�

AT2�PA1� AT2�PA2� �Q �AT2�PB1� �AT2�PB2�

C �BT
1�PA1� �BT

1�PA2� � D +DT
�BT

1�PB1� �W BT
1�PB2�

�BT
2�PA1� �BT

2�PA2� BT
2�PB1� BT

2�PB2� �W

< 0 (19)

Y �X 0 XCT 0 XAT1 XNT
A1

0 �Y 0 0 XAT2 XNT
A2

CX 0 �(D+DT
�W ) 0 �BT

1 �NT
B1

0 0 0 �W �BT
2 �NT

B2

A1X A2X �B1 �B2 �MMT
�X 0

NA1X NA2X �NB1 �NB2 0 ��I

< 0 (20)
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Then, by considering (20) and using Schur complements, we get
the equation at the bottom of the page. This together with (22)
implies that

AT1

AT2

�BT1

�BT2

+

NT

A1

NT

A2

�NT

B1

�NT

B2

F
T
M
T

X
�1

�

AT1

AT2

�BT1

�BT2

+

NT

A1

NT

A2

�NT

B1

�NT

B2

F
T
M
T

T

+

Ŷ �X�1 0 CT 0

0 �Ŷ 0 0

C 0 �(D +DT �W ) 0

0 0 0 �W

< 0:

This leads to the second equation at the bottom of the page. By Defini-
tion 3, it follows that the uncertain 2-D discrete-time system(��) is
strongly robustly stable with ESPR for all admissible uncertainties.

(Necessity): Suppose the uncertain 2-D discrete-time system(��) is
strongly robustly stable with ESPR, that is, there exist matricesP > 0,
Q > 0 andW > 0 such that the LMI (19) holds. By Schur comple-
ments, it follows from (19) that

Q� P 0 CT 0 AT1�

0 �Q 0 0 AT2�

C 0 �(D+DT �W ) 0 �BT1�

0 0 0 �W �BT2�

A1� A2� �B1� �B2� �P�1

< 0:

That is

Q� P 0 CT 0 AT1

0 �Q 0 0 AT2

C 0 �(D +DT �W ) 0 �BT1

0 0 0 �W �BT2

A1 A2 �B1 �B2 �P�1

+

NT

A1

NT

A2

�NT

B1

�NT

B2

0

F
T [ 0 0 0 0 MT ]

+

0

0

0

0

M

F [NA1 NA2 �NB1 �NB2 0 ] < 0

for all F satisfying (2). Therefore, using Lemma 3, we have that there
exists a scalar� > 0 such that

Q� P 0 CT 0 AT1

0 �Q 0 0 AT2

C 0 �(D+DT �W ) 0 �BT1

0 0 0 �W �BT2

A1 A2 �B1 �B2 �P�1

+�

0

0

0

0

M

0

0

0

0

M

T

+ ��1

NT

A1

NT

A2

�NT

B1

�NT

B2

0

NT

A1

NT

A2

�NT

B1

�NT

B2

0

T

< 0: (23)

J

AT1

AT2

�BT1

�BT2

(X � �MM
T )�1

AT1

AT2

�BT1

�BT2

T

+ ��1

NT

A1

NT

A2

�NT

B1

�NT

B2

NT

A1

NT

A2

�NT

B1

�NT

B2

T

J
T + J

Ŷ �X�1 0 CT 0

0 �Ŷ 0 0

C 0 �(D +DT �W ) 0

0 0 0 �W

J
T

=

XAT1

XAT2

�BT1

�BT2

(X � �MM
T )�1

XAT1

XAT2

�BT1

�BT2

T

+ ��1

XNT

A1

XNT

A2

�NT

B1

�NT

B2

XNT

A1

XNT

A2

�NT

B1

�NT

B2

T

+

Y �X 0 XCT 0

0 �Y 0 0

CX 0 �(D+DT �W ) 0

0 0 0 �W

< 0

AT1�X
�1A1� + Ŷ �X�1 AT1�X

�1A2� CT � AT1�X
�1B1� �AT1�X

�1B2�

AT2�X
�1A1� AT2�X

�1A2� � Ŷ �AT2�X
�1B1� �AT2�X

�1B2�

C �BT1�X
�1A1� �BT1�X

�1A2� � D +DT �BT1�X
�1B1� �W BT1�X

�1B2�

�BT2�X
�1A1� �BT2�X

�1A2� BT2�X
�1B1� BT2�X

�1B2� �W

< 0
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Pre-multiplying and post-multiplying (23) bydiag(P�1; P�1; I; I),
and settingX = P�1, Y = P�1QP�1, the desired result follows
immediately.

III. ROBUST POSITIVE REAL CONTROL

In this section, we consider the problem of positive real control for
uncertain 2-D discrete-time systems. An LMI design approach will be
developed. The uncertain 2-D discrete-time system(��u) to be con-
sidered in this section is described by the following 2-D LSS model:

(��u): x(i+ 1; j + 1) =A1�x(i+ 1; j)

+A2�x(i; j + 1)

+B1�w(i+ 1; j)

+B2�w(i; j + 1)

+B1�uu(i+ 1; j)

+B2�uu(i; j + 1)

z(i; j) =Cx(i; j) +Dw(i; j)

y(i; j) =x(i; j)

wherex(i; j) 2 n is the local state vector,u(i; j) 2 m is the control
input,w(i; j) 2 q is the exogenous input,y(i; j) is the measurement,
z(i; j) 2 q is the controlled output,i, j 2 +

B1�u = B1u +�B1u B2�u = B2u +�B2u

B1u andB2u are known real constant matrices with appropriate di-
mensions.�B1u and�B2u are assumed to be of the following form:

[ �B1u �B2u ] =MF [NB1u NB2u ] (24)
whereF 2

g�l is an unknown real matrix satisfying (2), andNB1u

andNB2u are known real constant matrices with appropriate dimen-
sions. The remaining matrices are the same as in system(��). It is
assumed that all the state variables are available for feedback.

The objective of the robust positive real control is the design
of feedback controllers for system(��u) such that the resulting
closed-loop system is strongly robustly stable with ESPR for all
admissible uncertainties.

The following lemma shows that if there exists a dynamic state
feedback controller that achieves strong robust stability with ESPR
for system(��u), then there exists a static feedback controller that
achieves the same property.

Lemma 4: Consider the uncertain 2-D discrete-time system(��u).
If there exists a proper dynamic state feedback controller for system
(��u) such that the resulting closed-loop system is strongly robustly
stable with ESPR for all admissible uncertainties, then there exists
a static state feedback controller that achieves the same property for
system(��u).

Proof: Suppose the following proper dynamic state feedback
controller for system(��u) achieves the property of strong robust
stability with ESPR

(�c): �x(i+ 1; j + 1) = �A1�x(i+ 1; j) + �A2�x(i; j + 1)

+ �B1x(i+ 1; j) + �B2x(i; j + 1)

u(i; j) = �C�x(i; j) + �Dx(i; j):

Let

~x(i; j) = [ x(i; j)T �x(i; j)T ]T :

Then, the resulting closed-loop system from the system(��u) and the
controller(�c) can be written as

(~�c): ~x(i+ 1; j + 1) = ~A1~x(i+ 1; j) + ~A2~x(i; j + 1)

+ ~B1w(i+ 1; j) + ~B2w(i; j + 1)

z(i; j) = ~C~x(i; j) + ~Dw(i; j)

where

~A1 =
A1� +B1�u �D B1�u �C

�B1 �A1

~A2 =
A2� +B2�u �D B2�u �C

�B2 �A2
(25)

~B1 =
B1�

0
; ~B2 =

B2�

0

~C = [C 0 ] ~D = D: (26)

From Definition 3, we have that the strong robust stability with ESPR
of the closed-loop system(~�c) implies that there exist matricesP > 0,
Q > 0 andW > 0 such that the LMI shown in (27), at the bottom of
the page, holds. By Schur complement, it is easy to show that (27) holds
if and only if there exist matrices~P > 0, ~Q > 0 and ~W > 0 such that

~Q� ~P 0 ~P ~CT 0 ~P ~AT
1

0 � ~Q 0 0 ~P ~AT
2

~C ~P 0 �( ~D + ~DT
� ~W ) 0 � ~BT

1

0 0 0 � ~W � ~BT
2

~A1 ~P ~A2 ~P � ~B1 � ~B2 � ~P

< 0: (28)

Set

~P =
~P11 ~P12
~P T
12

~P22
; ~Q =

~Q11 ~Q12
~QT
12

~Q22
(29)

where the partition of~P and ~Q is compatible with (25) and (26). Then,
by a lengthy but routine calculation, (30), shown at the bottom of the
next page, can be deduced from (28) where

~A1� =A1� +B1�u �D + �C ~P T
12

~P�111

~A2� =A2� +B2�u �D + �C ~P T
12

~P�111 :

Defining

K = �D + �C ~P T
12

~P�111 ; P̂ = ~P�111 ;

Q̂ = ~P�111
~Q11 ~P

�1
11 ; Ŵ = ~W

and applying Schur complement to (30), we have (31), shown at the
bottom of the next page where

A1�c = A1� +B1�uK; A2�c = A2� +B2�uK:

Now, applying the state feedback controller

u(i; j) = Kx(i; j)

to the system(��u), we obtain the closed-loop system as

(�̂c):x(i+ 1; j + 1) =A1�cx(i+ 1; j) + A2�cx(i; j + 1)

+B1�w(i+ 1; j) +B2�w(i; j + 1)

z(i; j) =Cx(i; j) +Dw(i; j):

~AT
1 P ~A1 +Q� P ~AT

1 P ~A2 ~CT
� ~AT

1 P ~B1 � ~AT
1 P ~B2

~AT
2 P ~A1 ~AT

2 P ~A2 �Q � ~AT
2 P ~B1 � ~AT

2 P ~B2
~C � ~BT

1 P ~A1 � ~BT
1 P ~A2 � ~D + ~DT

� ~BT
1 P ~B1 �W ~BT

1 P ~B2

� ~BT
2 P ~A1 � ~BT

2 P ~A2 ~BT
2 P ~B1 ~BT

2 P ~B2 �W

< 0 (27)
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By Definition 3, it follows from (31) that the system(�̂c) is strongly
robustly stable with ESPR. This completes the proof.

Remark 3: Lemma 4 shows that no advantage can be obtained from
the use of a proper dynamic state feedback compared with the use of
a static state feedback in the context of positive real control. Similar
results for 1-D continuous systems can be found in [22]. It is worth
pointing out here that some 2-D system can be stabilized by a dynamic
state feedback controller, but not by a static one [3]. However, in this
brief, we deal with not just the stabilization problem, but the related
problem of asymptotically robust stability with ESPR. Since this latter
problem is more difficult, more strict conditions are required. It is in
fact interesting to see from Lemma 4 that under such more strict condi-
tions, static and dynamic state feedback controllers play the same role
for the asymptotically robust stability with ESPR problem.

In view of Lemma 4, in what follows, attention will be focused on
the design of static state feedback controllers to solve the positive real
control problem for uncertain 2-D system(��u). The main result of
this section is given in the following theorem.

Theorem 3: Consider the uncertain 2-D discrete-time system
(��u). There exists a static state feedback controller for system
(��u) such that the resulting closed-loop system is strongly robustly
stable with ESPR for all admissible uncertainties if and only if there
exist a scalar� > 0 and matricesX > 0, Y > 0,W > 0 andZ, such
that the following LMI holds:

H HT

1 HT

2

H1 �MMT
�X 0

H2 0 ��I

< 0 (32)

whereH ,H1, andH2 are given at the bottom of the page. Furthermore,
in this case, a suitable state feedback controller can be chosen as

u(i; j) = ZX
�1
x(i; j): (33)

Proof: The proof can be carried out by using a similar argument
as in the proof of Theorem 2.

Remark 4: Theorem 3 provides an LMI condition for designing
a static state feedback controller which stabilizes the uncertain 2-D

discrete-time system and achieves the ESPRness property of the
closed-loop system. It is worth pointing out that the LMI (32) in
Theorem 3 can be solved efficiently, and no tuning of parameters is
required [4].

IV. NUMERICAL EXAMPLE

In this section, we give an example to illustrate the effectiveness of
the proposed method.

Consider the 2-D discrete-time system(��) with parameters given
by

A1 =

0:5 0:1 0:3

0:3 �0:5 0:1

0:2 0 0:3

A2 =

0:2 �0:1 0:5

�0:4 0:1 0:2

0 0:2 0:5

B1 =

0:5 0:3 0:1

0 0:2 0:5

�1 0:1 0:4

; B2 =

�0:2 0 0:1

0:3 0:1 �0:5

0:6 �0:1 0:3

B1u =

�1 0

1 �1

1 0:5

; B2u =

0:5 1

1 0

1 �0:6

C =

0:1 0:3 0:5

0:1 0 0:3

0:2 0:2 0

D =

1:5 0:5 0

0:1 0:8 0:2

0:3 0:1 1:6

M =

0:1

0:2

0:1

NA1 = [ 0:1 0:2 0:1 ]

NA2 = [ 0:1 0:1 0:2 ] NB1 = [ 0 0:1 0:2 ]

NB2 = [ 0:3 0:1 0 ] NB1u = [ 0:1 0:2 ]

NB2u = [ 0:1 0:3 ] :

It is required to construct a static state feedback controller that stabi-
lizes the given 2-D discrete system while ensuring that the resulting

~Q11 �
~P11 0 ~P11C

T 0 ~P11 ~A
T

1�

0 �

~Q11 0 0 ~P11 ~A
T

2�

C ~P11 0 �(D+DT
�

~W ) 0 �BT

1�

0 0 0 �

~W �BT

2�

~A1� ~P11 ~A2� ~P11 �B1� �B2� �

~P11

< 0 (30)

AT1�cP̂A1�c + Q̂� P̂ AT1�cP̂A2�c CT
� AT1�cP̂B1� �AT1�cP̂B2�

AT2�cP̂A1�c AT2�cP̂A2�c � Q̂ �AT2�cP̂B1� �AT2�cP̂B2�

C �BT

1�P̂A1�c �BT

1�P̂A2�c � D +DT
�BT

1�P̂B1� � Ŵ BT

1�P̂B2�

�BT

2�P̂A1�c �BT

2�P̂A2�c BT

2�P̂B1� BT

2�P̂B2� � Ŵ

< 0 (31)

H =

Y �X 0 XCT 0

0 �Y 0 0

CX 0 �(D+DT
�W ) 0

0 0 0 �W

H1 = [A1X +B1uZ A2X +B2uZ �B1 �B2 ]

H2 = [NA1X +NB1uZ NA2X +NB2uZ �NB1 �NB2 ] :
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closed-loop system is ESPR. Now using Matlab LMI Control Toolbox
and solving the LMI (32), we obtain

X =

4:6705 3:6760 �2:9312

3:6760 7:1592 �3:9770

�2:9312 �3:9770 5:6329

Y =

1:6713 �0:0105 �0:8890

�0:0105 0:4083 0:1350

�0:8890 0:1350 0:8602

W =

1:0065 0:0081 �0:1192

0:0081 0:0558 �0:1015

�0:1192 �0:1015 0:8039

Z =
0:5721 1:4912 �1:9891

�0:1030 0:9699 �1:9244
� = 3:4374:

Therefore, from Theorem 3, there exists a solution to the positive real
control problem. Furthermore, a desired state feedback controller can
be chosen as

u(i; j) =
�0:1940 0:0916 �0:3894

�0:3765 0:0497 �0:5025
x(i; j):

V. CONCLUSIONS

This brief has addressed the problem of positive real control for un-
certain 2-D discrete systems described by the FMLSS model. A ver-
sion of positive realness for 2-D discrete systems has been established,
which has been shown to be an extension of positive realness of 1-D
discrete systems. A condition of the solvability of the above problem
has been presented in terms of an LMI and the explicit formula of a
desired state feedback controller has been given. The proposed control
law guarantees both robust stability and extended positive realness of
the closed-loop system with admissible parameter uncertainties.
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Cyclostationary Noise in Radio-Frequency
Communication Systems

Manolis T. Terrovitis, Kenneth S. Kundert, and Robert G. Meyer

Abstract—Because of the periodically time-varying nature of some cir-
cuit blocks of a communication system, such as the mixers, the noise which
is generated and processed by the system has periodically time-varying sta-
tistics. An accurate evaluation of the system output noise is not straightfor-
ward as in the case where all the circuit blocks are linear-time-invariant
and the noise that they generate is time-independent. We qualitatively ex-
amine here, conditions under which we can treat the noise at the output
of every circuit block of a practical communication system as if it were
time-invariant, in order to simplify the noise analysis without introducing
significant inaccuracy in the noise characterization of the overall commu-
nication system.

Index Terms—Cyclostationary noise, mixers, noise, time varying circuits.
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