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This paper investigates the use of positive real conditions in the analysis of
high-gain adaptive control rules for linear systems subjected to nonlinear
perturbations of the state and input.

1. Introduction

THE problem of adaptive stabilization of an m-input m-output linear time-
invariant system S(A, B, C) in R™™, of the form

x(t) = Ax(¢) + Bu(t), x(0) = xo,}
y() = Cx(0),

has recently been considered in the case of /=1 (Brynes & Willems, 1984;

Mértenssen, 1986) and /=1 (Ilchmann, Owens, & Pritzel-Wolters, 1986). More

precisely, the problem of feedback stabilization of (1.1) in the situation of

unknown A, B, C and state dimension n has been considered using the
time-varying feedback

(1.1)

u(t) = —k(t)y(®) (1.2)

where k(r) is a time-varying gain, generated from measurement data. We impose
the structural constraints that

(i) S(A, B, C) is minimum-phase, and
(ii) the spectrum O(CB) lies in the open right half complex plane C*.

The original result of Byrnes & Willems proved that, with / = 1, the adaptive gain
law

k() =y"(Oy(),  kO0)=k (1.3)

will generate a stable closed-loop response y(*) € LZ[0, %) for any initial state
Y€ R" and initial gain k,€R, while ensuring that the gain variation k(*) is
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bounded and convergent in the sense that

lim k(2) = k.. <o, (1.4)
P
The work of Martenssen (1986) provided some generalizations of this result,
while the recent work of Ilchmann, Owens, & Pritzel-Wolters (1986) generated a
large class of gain adaptation laws that (a) enable the designer to guarantee
solutions in any choice of finite intersections of L,[0, ) spaces (p =1) and (b)
are tolerant to ‘small’ finite-gain memoryless nonlinearities in the state x(*).

In this paper, we provide an alternative proof of previous results, by relating
the possibility of ‘gain divergence’ to the system—theoretic criterion for positive-
real matrices (Anderson, 1967). This proof not only provides a ‘physical’
mechanism for explaining the convergence of the adaptive scheme, but also
extends previous norm-based approaches by permitting, under well-defined
circumstances, the inclusion of stability in the presence of unbounded nonlinear
elements.

In Section 2, the problem to be considered is defined. In Section 3, the
fundamental theorems describing the behaviour of trajectories in situations of
gain divergence are derived. In Section 4, the results are combined with those of
Iichmann et al. (1986), to demonstrate convergence of a wide class of adaptive
gain mechanisms. In Section 5, the notion of (gain-dependent) switching
functions introduced by Willems & Byrnes (1984) and Nussbaum (1983) is
generalized to allow switching as a function of both current and past gain and
input data. The generalization permits a wide range of previously unknown gain
adaptation mechanisms to be introduced. Finally, in Section 6, the switching-
mechanisms proof is discussed as a device for further extensions to the material of
Section 4.

2. Problem definition and notation

Throughout the paper, we will denote C* to be the region of the complex plane
defined by

C*={s:Res<a}, C*={s:Res >0}, C™ = {s:Res <0}.

The basic problem to be considered is the stabilization of the linear system
S(A, B, C) defined by (1.1) subject to the structural constraints:

(i) S(A, B, C) is controllable, observable, and minimum-phase with all zeros
lying in the region C™ for some A, > 0;

(i) CB has spectrum

o(CB) = C*. (2.1

If S(A, B, C) possesses these properties, it will be termed of class > {Ag). Clearly,

if S(A, B, C) is of class 2(0), it is of class X(Ao) for some A, >0, and vice versa.
The stabilization is required to be adaptive in the sense that k(¢) is generated

from a causal map y : z(*)—> k(*) of data records of a measurement vector

z(t) = F(x(T)) e R (2.2)
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where F is a linear or nonlinear piecewise continuous function of finite
incremental gain 7 i.e. |[F(x)|| <F |lx|| VxeR"™. Here vy is assumed to be
independent of A, B, C, A,, and state dimension n, and hence stabilizes all
systems of class Z(0) despite ignorance of the details of plant dynamics. An
example of a solution to this problem is the map v defined by (1.3) with /=1 and
z(t) =y(t). For design purposes, however, it is of interest to have available a
wider class of adaptive mechanisms. The first problem considered in the following
sections is the use of positive-real conditions, and their consequences (Anderson,
1967) for the existence of a particular solution of a Liapunov equation, in the
characterization of such a class of adaptive mechanisms. Despite the wide choice
of mechanism available, it is also important to be able to assess the robustness of
the feedback schemes. As will be seen, the use of positive-real analysis is well
suited to this task, since it permits the demonstration that the closed-loop system
is robust with respect to a wide class of nonlinear time-varying perturbations
which can include unbounded gain elements.

To define the problem of robustness with respect to nonlinear time-varying
perturbations more precisely, we will consider the linear system (1.1) of class
X(0) perturbed to produce the nonlinear time-varying system S(A, B, C, g, h, f)
in R described by

i(0) = Ax(t) + g(x(), t) + Blu(r) + h(x(1), u(r), y(2), 1) = f(y(1), 1)},
y()=Cx(t), x(0)=x,eR™. (2.3a,b,c)

Such a system will be termed of class C(go, hy, A2, h3) iff, for all t=0, x € R
and u,y € R™*, the following inequalities hold for g, k, and f:

llg(x, DIl < go llxll, (2.4a)
tr [y "CBh(x, u, y, )] < ||yll> (hy llx|| + hy |[ull2 + A3 |y ll2), (2.4b)
tr [y'CBf(y, )] =0, (2.4¢)

where R"*! is assumed to be endowed with the norm ||¢||, and ||*||, denotes the
usual Euclidean norm ||x||, = [tr (x"x)]®. Note that any linear system of class X(0)
is also of class C(0,0,0,0). To complete this section, we make the following
comments on the form of nonlinearity assumed:

(a) The term g(x,¢) represents time-varying, linear or nonlinear, state-
dependent perturbations to the term Ax of uniformly bounded finite gain.

(b) The terms h and f represent state, input and output, time-varying linear or
nonlinear perturbations to the plant input & due to, for example, feedback loops
within the process dynamics or nonlinear effects in the plant sensors or actuators.
Equations (2.4b,c) bound the growth of these nonlinearities and, it should be
noted, permit ‘unbounded’ effects of the correct sign.

3. Theorems on gain divergence: a positive-real approach

In this section, we consider the system (2.3) of class C(go, #,, h», h3) subjected
to the control (1.2) where k(f) is an arbitrary monotonically nondecreasing
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piecewise continuous function satisfying the divergence condition.

lim k(t) = +oo. 3.1

A crucial structural property underlying the proof of our results is that of
positive-realness. An m X m transfer-function matrix H(s) is called positive-real
iff (Anderson, 1967)

(a) its elements are analytic for s e C™;

(b) H(s)= H(5) for s e C*;

(c) H(s)+ H'(5) is nonnegative definite for s € C*.
The results of Anderson (1967) can now be stated in the form of the following
lemma.

LEMMA 1 Let H(*) be an m X m transfer function matrix generated from an
asymptotically stable, controllable and observable linear time-invariant state-space
model S(A, B, C) in R"™'. Then H(*) is positive-real iff there exists a symmetric
positive definite matrix P and a matrix L such that the following Liapunov-like
equation is satisfied:

A'"P+PA=-LL",
with PB = C".
Remark. Anderson’s original result is stated for systems in R". The ‘extension’ to
systems in R"*/ is trivial.

Lemma 1 is not quite in the form required for this paper. It is therefore
rephrased in the following form.

LeEmMMA 2 Let H be as defined in Lemma 1 with all poles and zeros in the region
C™* (with Ay>0) in the complex plane. If the m X m transfer-function matrix
Hy(s) is given by the shift operation

Hy(s)y=H(s — Ag), 3.2)

then H, is asymptotically stable with minimal realization S(A + Aq¢l, B, C).
Moreover, if Hy(*) is positive-real, then there exists symmetric positive definite
matrices P and Q such that

ATP+PA=-Q, PB=C". (3.3)

Proof. The proof of stability and the form of the minimal realization is trivial and
hence omitted for brevity. We can now use Lemma 1 to guarantee the existence
of a symmetric positive definite matrix P and a matrix L such that PB = C" and

(A + AD)TP + P(A + Agl) = —LLT;
this is just (3.3), as required, with Q = LLT+2A,P=Q">0. O

The relationship of the positive-real condition to high-gain studies is expressed by
the following lemma.

LemMma 3 Let the system (1.1) be controllable, observable, and minimum-phase,
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with all zeros in the region C™* (for some i,>0) in the complex plane, and
suppose that CB is positive definite in the sense that

N:=CB +(CB)">0. (3.4)

Then S(A, B, C) is of class (i) and, under unity negative feedback control
u(t) = r(t) — ky(t), with k a scalar constant gain, there exists k* € R™* such that the
closed-loop system S(A — kBC, B, C) is asymptotically stable, for all k = k*, with
all poles and zeros in the region C™* of the complex plane. Further, if the
closed-loop transfer-function matrix is factorized into the form H(s)CB, and Hy(s)
is defined by (3.2), then H, is asymptotically stable, and we can choose k* to
ensure that Hy is positive-real for all k = k*.

Proof. Condition (3.4) implies condition (2.1) which, together with the
minimum-phase assumption, implies the first part of the result using basic
properties of multivariable root loci (Owens, 1978: p. 287). To prove the second
part of the result, we observe that H, is clearly minimum-phase and asymptoti-
cally stable while

H(s)=[I+kG(s)]"'G(s)(CB) !,

where G(s)=C(s[ —A)"'B is the transfer-function matrix of system (1.1).
Noting that

Hy(s) + H{(5) = Hi($)[Hg'(s) + (H3(5)) ™" 1Ha(s),
and setting G = G(CB) ™', it is sufficient to show that
R(s):=Hy'(s)+ (HJBE)) '=kN+ G (s —Ag) + GG — Ag)

is nonnegative definite for s € C*. Condition (3.4) guarantees the nonsingularity
of CB in the above.
Next, write

G (s — Ao) = (s — A) + Hy(s — A),

where the transfer-function matrix H,(*) has poles equal to the zeros of (1.1) and
is proper. H,(s — Ay) is hence uniformly bounded on C*, with

T(s):=Hy(s — Ao) + HIG =)= —yI (seC")

for some y € R. Setting s = o +iw, with o >0, yields, after a little manipulation
and denoting the smallest eigenvalue of N by 4,,

R(s)=kN +2(0 — Al + T(s) = [kA; — QAo+ A)]I=0
for all k = k* := (2A, + y)/A,, which proves the result. O
Using the above, we now state the first main theorem of the paper.
THEOREM 1 Let the linear system (1.1) be of class X(0) with CB satisfying the
positivity condition (3.4), and denote the largest eigenvalue of N by t(N). If

t— k(t) is a monotonically nondecreasing piecewise continuous function satisfying
the divergence conditions (3.1), then there exist real, strictly positive numbers A,
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a, a, (independent of k(t) and initial condition x,) and a real, strictly positive
number m such that, for any system (2.3) in the class C(gq, hy, h», h3), where

2h2<r(N), 1>a1g0+a2h1, (3'5)
the solution x(t) from any initial condition x, satisfies
()| < me™ flxoll  (¢=0).

Proof. 1f (1.1) has class Z(0), it is of class X(A,) for some A,>0. Using the
notation of the previous lemmas, choose k* (Lemma 3) such that
S(A —kBC, B, C) has all poles and zeros in the region C™* for all k = k*. The
matrix H has minimal realization S(A—kBC, B(CB)™!, C) and H, can be
supposed to be positive-real for all k = k*. Lemma 2 now implies that there exist
positive definite symmetric matrices P and Q such that

(A—k*BC)'P+P(A—k*BC)=~-0Q, PB(CB)'=C". (3.6)

Consider the system (2.3) subjected to the control law (1.2), where k(¢) is a
monotonically increasing piecewise continuous function satisfying (3.1). Clearly
there exists £* = 0 such that k(t) = k* for all ¢ = t*. Writing (2.3) in the form

x=(A—-k*BC)x +g(x, t) + B[(k* —k)y + h(x, —ky, y, t) — f(y, t)]
and defining the ‘Liapunov’ function
vp(x) =tr (x"Px)
yields, after a little manipulation,
Vp(x) = —tr (x7Qx) + 2tr (x"Pg) + 2tr (x"PB[(k* — k)y + h —f]) (3.7)

(here, and in the sequel, we selectively suppress the arguments of f, g, k, and k).
From (3.7), using (3.6), (2.4), (1.2), and (3.4), and the fact that vp(*), V%Q(-),
li*ll, and ]|*]|, are topologically equivalent norms in R"*/, we have for ¢ = r*:

Vp(x) < —pvp(x) + 2tr (x"Pg) + 2 tr (y"CB[(k* — k)y + h — f])
< —uvp(x) + gom,Vp(x) + 2(k* — k) tr (yTCBy) + 2m,h,vp(x)
+2hok |Iyll3+ 2k ||y lI2

< —(1 — gomy = 2myh1)ve(x) + 2 ||y |13 [Gr(N)(k* — k) + hak + hs,

for some p >0 and positive constants m, and m,. It follows that
Vp(xX) < —Avp(x) (£=1*%),
where ¢** =t* is a solution of the equation
I(N)[k* — k(t**)] + hok (t**) + by = 0,

provided that goM; +2M,h, <pu —A. Choosing 0<A<pu provides a natural
definition of a, and a, and demonstrates that x(*) is asymptotically exponentially
bounded and hence uniformly exponentially bounded as required. This com-
pletes the proof of the theorem. O
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The important point of the result is that, subject to the specified structural
constraints and the specified tolerance to time-varying nonlinearities, monotonic
divergence of k(t) (t— =) leads to exponential convergence of the state trajec-
tory. The explanation for this fact is that sufficiently high gains are achieved to
take the system into a configuration where a stabilizing positive-real structural
property holds. This interpretation alone makes the above proof more satisfying
than those of Byrnes & Willems (1984), Martensson (1986), and Ilchmann,
Owens, & Priitzel-Wolters (1986). Note that the positive-real approach, as
compared with the previous norm-based methods, also permits the inclusion of
unbounded nonlinearities (see equations (2.4b,c)). The controllability and
observability requirement on S(A, B, C) can be relaxed to stabilizability and
detectability, but this is excluded for brevity.

To complete this section, we consider the constraint (3.4) on the validity of
Theorem 1 and its apparent limitations on the applicability. To demonstrate that
this is not a real problem, we will take the view that the theorem is really about
the exponential stability of the linear system (1.1) and its tolerance to nonlinear
effects. For the linear system (1.1) in the presence of the control (1.2), the
closed-loop dynamics can be represented by

x(t)=[A — k(t)BC]x(1), x(0) = x.

Noting that BC = (BT ") (TC) for any m X m nonsingular real matrix T, it is
easily seen that the stability analysis is unchanged if v =Tu is regarded as
controlling w = Ty via the feedback law v = —kw. This change of input/output
variables is equivalent to the map CB— TCBT . This is important, because we
then have the following simple lemma.

Lemma 4 If CB has spectrum 0(CB) < C*, then there exists a nonsingular real
transformation T such that, with D := TCBT ™', we have D + D" >0.

Proof. In the case when CB has real eigenvalues Ay ... Ay, it is real-similar to
the matrix D =diag(A,, ..., A,) + E, where the elements of E can be made
arbitrarily small. The natural transformation to use is the Jordan canonical-form
transformation with upper off-diagonal elements all set equal to &, where ¢ is
small. The condition 0(CB) <= C" ensures that 4,>0 (i=1,...,m), and the
result is trivially verified. In the case of complex eigenvalues, the analysis is
straightforward but lengthy. The details are hence omitted for brevity. [

The implications of the lemma for the linear case are that, by using the
transformation (&, y)— (v, w) defined earlier, with T obtained from Lemma 4,
the proof of Theorem 1 carries through with no change (except for the deletion of
the nonlinearities) to provide the following known result.

TueoreM 2 Let the linear system (1.1) be of class Z(0). Then there exist constants
M >0 and A >0 such that, if t — k(t) is any monotonically nondecreasing piecewise
continuous function satisfying the divergence condition (3.1), then the resultant
state trajectory x(t) (t=0), from any initial condition x,, satisfies

()] < me™ llxoll  (¢=0).
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Given this result, the methods of proof of Theorem 1 can be used to demonstrate
the tolerance of the result to nonlinear time-dependent perturbations. The class
of perturbations is again of the form of (2.4), but expressed in terms of new data
and coordinates defined by the map

(u, x, y, CB)— (v, x, w, D)= (Tu, x, Ty, TCBT ™).

The details are omitted for brevity.

4. A general class of adaptive controllers

In this section, we follow the development of Ilchmann et al. (1986) to define a
wide class of adaptation mechanisms for nonlinear systems of the form described
in Section 2. For simplicity of presentation, we concentrate on the use of
Theorem 1, but it is a simple problem to extend the ideas to include the results of
Theorem 2 and its following remarks.

Let S(A, B, C)e 2(0) and consider the class C(go, k1, b2, h3) of systems
satisfying the conditions of Section 2 together with conditions (3.4)-(3.5). To
construct a wide class of time-varying gain adaptation rules, consider the
following linear spaces:

C70, ) := {z(*):[0,%)—>R7* : z(*) is continuous on R*},
E?* = {z(*) e CT[0, ) : ||z(¢)|| <me™* (¢>0) for some a,m >0}.
The required performance of the adaptive scheme is taken to be specified by the
requirement z(*) € P/, where P?*' is a linear space with the property that
E?* < P! < C7*[0 , »). This choice is open to the designer. The set K(P7*) of

adaptive gains y:z(*)—k(e) is defined to be the set of causal maps
Y : C70, ©)— C[0, =) that satisfy the conditions:

(@) p(P7)cL.f0,%), () Y()elf0,=) > zeP?™, (41

and (c) y(z)(¢) is piecewise continuous and monotonically nondecreasing for all
t=0 and every z € C7/[0, ). Examples of such maps include the maps ¥
defined by
k)= 2(lz@N), k() = ko;

here, ®:R—R is any map satisfying 6q(1) = @(4)=q(A) (A=0), for some
8=1 and some nontrivial polynomial q(4)= Y7, gA', with ¢;=0 (i=1) and
with g; >0 only for those indices in a finite nonempty set Q. In such a situation,
y e K (P!, where

P7'= ) L#[0, ).
ieQ

The adaptation (1.3) is hence just one element of the class K(L7™'[0,»)). A
slightly more general set of maps is

B0 =2z, 1O =m0, kO=n@)+e max 2],
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with € > 0; then y € K (P7*/) with
paxi= qu’[O ,©)N (M) L;’X’[O , ).
ieQ

It is clear from the above that it is possible to construct an infinite number of gain
adaptation rules. The following result generalizes that of Ilchmann et al. (1986),
and shows that every one is capable of stabilization in a well-defined sense.

THEOREM 3 Let the linear system (1.1) be of class 2(0) with CB satisfying (3.4)
and measurements z given by (2.4). Let S(A, B, C, g, h, f) be any system of the
form of (2.3)-(2.4) in the class C(go, h\, h,, h3), where gy, hy, h,, hs satisfy the
conditions (3.5) of Theorem 1. Then, if vy is any element of K (P?*'), the control
(1.2) with gain adaptation k = y(z) generates a closed-loop system whose response
from any initial condition x, has the property z(*) € P! and whose gain k(t)
satisfies the convergence requirement (1.4).

Remark (1) The resuit demonstrates, by the arbitrariness of € K (P9*'), that
there is great freedom in choice of adaptation mechanism once the ‘target space’
P7! of required measurement responses is specified. (2) A similar result can be
based on Theorem 2 but is omitted for brevity.

Proof. If lim,_,. k(t) = k. <o, then y(z)eL. [0,>) and hence, using (4.1b),
7€ P7 as required. The only other possibility is that k(r)— (t— ); then
Theorem 1 states that x(¢)e E?*' and hence z(¢)eE?*'c P9*!. But then
Y(z) € L.[0,>) (by (4.1a)) so that k. exists and is finite. This contradiction
completes the proof of the result. [

To complete this section, we note that, if stabilization of all systems in X(0) is
required, the above result represents a general design strategy that fits nicely into
the requirement that z(*) lies in the intersection of a finite family of L, spaces. If
specific exponential decay of z(t) is required, it does not appear to be possible to
use this result. If, however, we concentrate on stabilization of a specific system,
the following result illustrates the possibility of using adaptive mechanisms that
guarantee exponential stability. Again, the theorem is based on Theorem 2 for the
nonlinear case, assuming condition (3.4) on CB. A similar result for the linear
case and arbitrary CB satisfying 0(CB) = C™ is easily derived.

THEOREM 4  Under the conditions of Theorem 3, there exists €* >0 such that the
control (1.2) with gain adaptation

k(t) = ko+ max e® ||z(¢')]|, (4.2)

O=t'=<y
where 0 <& < g*, generates a closed-loop system whose response from any initial
condition x, has the property |\ z(t)|| <M(g, xo)e™* (¢t =0), for some m(g, x,) =0,

and the gain k(t) satisfies the convergence requirement (1.4).

Proof. Note that k() defined by (4.2) is piecewise continuous and monotonically
nondecreasing. Using the notation of Theorem 1, set £*=A>0 and put
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0<e<e* If k., is finite, then
lz(t)| < e~ (k. — ko) (¢=0),

and the result is trivial. The only other possibility is that k., = %; then Theorem 1
indicates that

k(t)<ko+ MR, max e“ V' <ko+mr, (t=0),
O=r'=<¢
whence k.. is finite (by monotonicity). This contradiction completes the proof of
the result. 0O

The result shows the existence of adaptive mechanisms that produce exponen-
tially bounded responses. Note, however, that we require some knowledge of &*,
and hence more knowledge of the system’s dynamics, to guarantee success.

S. Adaptive high-gain stabilization with gain switching

An underlying requirement of the previous sections is that condition (2.1)
holds, which represents the assumption that some knowledge of the ‘sign’ of the
high-frequency gain is available to the designer. If this knowledge is not available,
then the control problem becomes more complex. This problem has been
examined by Byrnes & Willems (1984) and others in the case of n =/=1 with
(2.1) relaxed to the assumption that it is only known that CB #0. In such a
situation, they have shown that the feedback law

u(t) = =No(k (1)) k(1)y (1), (5.1)
with gain adaptation described by
k(@0 =y0),  k(0) =k, (5.2)

is capable of producing L, response characteristics from the closed-loop system.
The important new ingredient in this control strategy is the switching function
No(*), dependent upon the current gain k(¢) which ensures stability if it is a
(so-called) Nussbaum gain e.g. a scalar map n, : R*— R satisfying the conditions

k—c

k k
lim sup k‘lf No(p)u dp = oo, liminf k™' | No(u)p du = —co.
k—>ou 0 0

It is the purpose of this section to consider the application of the positive-real
analysis as a mechanism for:

(i) extending the results of Willems & Byrnes (1984) to include the time-
varying nonlinear elements described in Section 2;

(ii) enabling the switching strategy to depend upon current and past data
records of gain and output behaviour (a strategy that, intuitively, should be
capable of improving the adaptive mechanism);

(ili) making possible the use of more-general gain adaptations than that
described by (5.2).
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Throughout the section, we will retain the nomenclature and notation of the
previous sections, but now with m =/=1 and assumption (2.1) replaced by the
assumption that CB # 0. The control law will be of a slightly more general form
than (5.1), namely,

u(t) = =n(s()k(t)y (1), (5.3)

where k() represents the gain adaptation, v : R™— R is a continuous map with
the property that, for some a =0,

l o . . g
lim sup 2 J N(u)du =, hglglf f N(u)du=—=, (5.4a,b)

g—®© o — g—a
and s(¢r) is a signal defined in the following lemma. It is easily seen that, if
conditions (5.4) are satisfied for some a =0, they are satisfied for all a = 0.

LeMma 5 Let the linear system (1.1) be of class X(0). Let k(t) be any strictly
positive, monotonically nondecreasing, piecewise continuous function on R*, and
let u(*) be generated from the feedback mechanism (5.3) with s(t) generated from
the differential equation

S =k@y*®),  s(0)=s0, (5.5)

with s¢=0. Then there exist real, strictly positive numbers a, and a, (independent
of k(¢), xo, and s,) such that any system (2.3) in the class C(gy, hy, h,, h3), with

h2=0, 12a1g0+a2h1, h3=0, (56)

has a closed-loop response x(*) € L3[0,®) (2<p <x) with

lim s(f) = s, <o, 5.7

1=
Proof. 1f x, =0, the proof is trivial, since x(#) =0 (¢ = 0). Suppose therefore that
x,# 0 and hence, by observability, y(¢) has only isolated zeros and so the map
t—>s(t) is strictly monotonically increasing and has a strictly monotonically
increasing, continuous inverse. Let § = sgn (CB) = CB/|CB| and choose 14> 0 so
that (1.1) is in 2(A,). The conditions of Lemma 3 now hold true for S(A, 6B, C),
so we can deduce the existence of k*=0 such that S(A — k*BéC, 8B, C) is
asymptotically stable for all k= k* with H, positive-real for k =k*. Lemma 2
then guarantees the existence of symmetric positive definite matrices P and Q
such that

(A—k*BOC)'P+P(A—k*BSC)=-0Q, PB(CB)'=C".

Using the Liapunov function v(x) =x"Px and applying the method of the proof
of Theorem 1 yields, for suitable choice of a, and a,,

v(x) < —Av(x) + y2CB[6k* — N(s)k] (¢=0),

where A > 0. Integration of this inequality over the interval [0, ¢] yields, after a
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little manipulation,
t
0= v(x(r)) + A f v(x(t)) de
0

<v(xo) + CB(ék*J:yz(t’) dr— Ltzv(s(t’))k(t’)yz(t’) dt')

6 * t t
< v(xg) + CB(k(l;) fo k(t)y*(t'y dt’ — J(; N(s()k(t)y(") dt). (5.8)
Writing
[ kwerar=s@ -5,

and using the properties of Riemann—Stieltjes integrals, we have

t t t s(t
[ Wk @) ar = | Wiy ar= [ #an ase)= [ vy aus

0

then equation (5.8) becomes

0<v(x(t)) + Aft v(x(t)) dt’

* s(t)
< () + CBIs(0) — ol ,f(';) - s(t)% [ vwyau).

Application of properties (5.4) of ~(¢) then, in a similar manner to Willems &
Byrnes (1984), proves that (5.7) holds true. It follows that there exists » > 0 such
that for all t =0

v(x(®) + Aft v(x(t))dt' < m.

Hence, since v(x) is a norm on R”, we obtain
x(2) eLi[0,2)NL30,®) cL20,x) (2=<p <o)
This completes the proof of the lemma. [

The above lemma should be regarded as a generalization of that of Byrnes &
Willems, which is just the special case obtained by setting

k()=1 (=0), g=h=f=0, N(A) = Ny(A)A,

with Ay a Nussbaum gain, and noting that y(¢) e L,[0, »). The main contributions
of the lemma therefore are:

(i) the inclusion of a well defined class of nonlinearities, hence supporting the
notion that the switching policy is robust with respect to plant dynamics;

(ii) the proof that x(*) e L7[0, ®) (2<p <o);

(iii) the demonstration that the switching mechanism ~(*) can depend upon
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past and current data records on output y and gain k, convergence of the
switching mechanism being independent of the gain adaptation mechanism for
generating k(t).

The results of Lemma 5 do not require the boundedness of k(t), nor do they
appear to imply the convergence of N(s(t))k(t) as t— 0. The natural practical
requirement is hence to ensure that condition (1.4) holds. Lemma 5 provides an
infinite number of possibilities in this direction. For example, the feedback
strategy makes it natural to regard k(+) as the image of a causal map operating
on data records for s(¢), y(*), z(¢). In this circumstance, the set K, of adaptive
gains

¥ (5(2), y(*), 2(*)) = k()
can be defined to be the set of causal maps

{y:X—L.[0,): X is a finite or infinite intersection of product spaces of the
form L.[0,)xL,[0,%)xLI[0,%*), with 2sr=x (i=
1,2), and v is such that (s, y, z)(t) is strictly positive,
piecewise continuous, and monotonically nondecreasing on
[0,%)}.

In these circumstances, we obtain the following result.

TuEOREM 5 Let the linear system (1.1) be of class 2(0). Choose ¢ e K, and
consider the application of the feedback mechanism (5.3) with s(t) generated by
(5.5) and k(t) = (s, y, z)(t). Then, there exist strictly positive real numbers a, and
a, (independent of ¢, x,, and so) such that any system (2.3) in the class
C(go, k1, o, h3), with (5.6) satisfied, has a closed-loop response

x()eLj[0,°) (2sp=wx),
with

lim s(¢) = 5., <, lim k(1) = k., <ce. (5.9a,b)
Proof. The properties of x(¢) and s(¢) follow from Lemma 5, and it is
consequently clear that s()eL.[0,®), y(*)eL,[0,x) 2=sp=w), and
z(*) e L0, ) (2<p =<o). Hence y(s, y, z) € L(0, «), and (5.9b) follows from
the monotonicity assumption. O

The theorem contains all the necessary ingredients of convergence and stability.
That is, stability of the state response and convergence of the switching and gain
adaptation mechanisms. The important point to note is that this result is true for
a very large class of control laws and hence represents a major extension of
previous work.

To conclude this section, the wide scope of gain adaptation mechanisms is
illustrated by the following example of ¥ € K,

1(t) = y2()p1(s(1), y () + 1z s (@), NIz, k() = ko +1(2),
with 7(0) + ko >0, and ¢, (i =1, 2) finite polynomials with positive coefficients.
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The precise use of such a large number of possibilities will be the subject of future
studies.

6. The case of CB > 0 revisited

The analysis of Section 5 indicates that the theory of high-gain stabilization of
Sections 3 and 4 can be further extended. The basic ideas of this extension are
outlined in this section, but the degrees of freedom made available and their
possible use in design are left for further study and will be reported in a future
paper. One of the underlying assumptions in the switching-free case is that the
gain is monotonically nondecreasing. To indicate that this requirement can be
relaxed, it is only necessary to point out that, in the case of n =/ =1, the proof of
Lemma 5 requires that ~(+) must satisfy both conditions (5.4), since the sign of
CB is assumed not to be known. If, however, it is known that CB >0, then
condition (5.4b) is not required for the results of Lemma 5, and hence Theorem
5, to be valid. Since as ~(*) is not necessarily monotonic, the control law

u(r) = =n(s(t))k(6)y (1)

need not have a monotonic gain ~(s)k variation. The potential practical benefits
of this result are that the possibility of gain reduction could reduce the value of
the converged stabilizing gain, and hence offset the tendency of high-gain
adaptation mechanisms to use higher gains than is absolutely necessary.

7. Conclusions

Recent results on high-gain adaptive stabilization fit naturally into the
system-theoretic structures of positive-realness. The consequences of positive-real
structure for the existence of solutions to augmented Liapunov equations make
possible (a) the inclusion of nonlinear time-varying perturbations (hence demons-
trating the robustness of the theory), (b) the construction of a wide class of
adaptation mechanisms, and (c) the extension of high-gain switching algorithms
to separate the switching mechanism from the gain adaptation.
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