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Positive Real Zeros 

in Flexible Beams 

Feedback control offtexible structures naturally involves actuators and sensors that 
often cannot be placed at the same point in the structure. It has been widely recognized 
that this noncollocation can lead to difficult control problems and, in particular, 
difficulty in achieving high robustness to variation in the dynamic properties of the 
structure. This problem has previously been traced to transmission zeros in the dynamic 
transfer function between sensor location and actuator location, especially those lying 
on the positive real axis in the complex plane. In this artie/e, the physical significance 
of these zeros is explored and the dynamic properties of beams that give rise to real 
positive zeros are contrasted to those of torsional and compressive systems that do 
not. © 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

In considering active control of flexible struc­
tures, interest has been focused on the elemental 
problems of vibration dissipation in uniform 
beams in tension, torsion, or lateral shear (Rosen­
thal, 1984; Spector and Flashner, 1989). These 
three problems are similar in that they all arise 
in the same physical structure (the slender beam 
or shaft); they are all conveniently studied as non­
dissipative; and they all present a difficult control 

problem when the sensor and actuator are not 
placed at the same point along the beam. How­
ever, despite the similarities, the last case of 
transverse motion (perpendicular to the beam 
axis) is fundamentally different from the two for­

mer cases. Perhaps the most important manifesta­
tion of this difference is that noncollocated actua­
tor/sensor transfer functions for transverse 
beams exhibit positive (and negative) real zeros 

(Spector and Flashner, 1989; Lefante, 1992) 
whereas the torsional and tensile transfer func­
tions do not (Rosenthal, 1984). These positive real 

zeros naturally attract root loci into the right half 
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of the complex plane, producing systems with 
very limited stability margins. In addition, Her­
zog and Bleuler (1992) demonstrate that right half 
plane zeros introduce fundamental limitations to 
the disturbance rejection that can be achieved. 

This fundamental difference can be identified 

in a number of different guises: the form of the 
governing differential equations is a clear point 
of contrast; but the present work attempts to pro­
vide a clear and simple physical interpretation. 
The underlying structural property that distin­

guishes the transverse beam from the torsional 
and tensile beam is the number of energy transfer 

mechanisms across sectional interfaces in the 
beam. In the torsional and tensile beams, only 

one mechanism is available for energy transfer 
from one section of the beam to another: torsional 
forces for the former and tensile forces for the 
latter. By contrast, transverse beams provide two 
distinct mechanisms for energy transfer: bending 

moment and shear force. 
The availability of multiple, independent en­

ergy transfer mechanisms at sectional interfaces 
allows energy to move across these interfaces 
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even when one of the degrees of freedom associ­

ated with the interface is identically zero. This 
capability is the underlying mechanism that 

makes it possible for transverse beams to exhibit . 

real (both positive and negative) transmission 

zeros. 

Transfer function zeros associated with this 

coupling between multiple energy transfer mech­

anisms is actually very much a part of everyday 

experience. The center of percussion is a special 

case of an input-output configuration with a zero 
at the origin of the complex plane (see Ginsberg 

and Genin, 1977). For players of ball sports like 

cricket or baseball, the center of percussion con­
cept makes it possible to hold the bat at a certain 

point so that the impact of hitting the ball does 

not shock the player's hands. Automobile manu­
facturers, who early placed the front wheels of the 

car directly under the radiator cap for aesthetic 

reasons, realized in the 1930s that it is much better 

to place the front and rear wheels at mutual cen­

ters of percussion to prevent the influence of road 
bumps at one axle from affecting traction at the 

other. Although the idea of the center of percus­

sion is normally developed for a rigid beam and 

represents a transmission zero at the origin of the 

complex plane, the concept is readily generalized 

in flexible beams leading to transmission zeros 

on the real axis. 

In outline, the remainder of the article demon­

strates why torsional and compressive beams, 

and other similar dynamic systems, have only 

imaginary zeros. It then shows that transverse 

beams do not share the characteristic that in these 

systems precludes real zeros. Having thus estab­
lished a necessary (but not sufficient) condition 

for real zeros, the existence of such zeros and 

the nature of the associated forced response are 

demonstrated by a simple example. 

CONNECTIVITY 

If a beam in torsion or tension is cut to inspect 

an interface as in Figure 1, it is seen that the 

geometric matching condition involves only one 

degree offreedom: rotation in the torsional prob­

lem or axial extension in the tensile problem. Fur­

ther, each interface transmits only a single force: 

torsion for the torsional problem and tension in 

the tensile problem. This force is continuous 

across the cut unless a concentrated external 

force is applied at the cut point. In studying the 

Torsional Beam 
1l, 8, Tr , -Or 

Tensile Beam 

T" -z, 

"----__ --'1--- <?-,---I __ ------'1--- --IL--__ ---' 

Lateral Beam 

FIGURE 1 Interface continuity in section cuts: tor­

sional, axial, and lateral beams. 

transfer function from a point of input to a mea­

surement point, this force discontinuity occurs 

only at the point of input: elsewhere in the beam 

the force must be the same on either side of a cut. 

Many dynamic systems display this kind of 

connectivity, referred to in the sequel as singly 

connected. Note that a singly connected system 

is necessarily linelike. Loops that would permit 

energy to flow from one point to another along 

more than one path render a system multiply con­

nected. Such loops, however need not be overtly 
manifested by the shape of the structure for it to 

be multiply connected. The lateral beam, also 

illustrated in Figure 1, has two types offorce and 

two degrees of freedom at the interface: moment 

and shear forcing mechanisms, rotation and trans­

lation degrees offreedom. Consequently, the lat­

eral beam is a multiply connected system al­

though it is linelike in appearance. 

TRANSFER FU NCTION ZEROS 

The input-output relationship of any linear dy­

namic system can be concisely represented in 

terms of a transfer function (D' Azzo and Houpis, 

1981). This transfer function defines the response 

of a given output point to forces applied at a given 

input point. Of course, any continuous system 

can have any number of input-output pairs (infi­

nitely many) and each pair has a distinct transfer 

function. Mathematically, the transfer function is 

a function of time that when convolved with the 



input function, produces the output function: 

w(t) = f g(t - 7)f(7) d7 
a 

where the initial conditions of the dynamic system 

have all been assumed zero. This relationship is 

usually most conveniently treated in the fre­

quency domain through the Laplace transform 

where time domain convolution becomes simple 

multiplication: 

W(s) = G(s)F(s) : W(s) == .:£(w(t)), 

G(s) == .:£(g(t)) , F(s) == .:£(f(t)). 

The Laplace transform of the transfer function 

is commonly characterized in terms of a set of 

zeros and poles. The poles, which can be shown 

to be common to all of the various transfer func­

tions of the dynamic system, are those complex 

frequencies s for which the magnitude of G(s) is 

unbounded. The poles are the same as the system 

eigenvalues. The zeros, which are not common 

to the various transfer functions but are, instead, 

characteristic of the specific input-output pair, 

are those frequencies at which the magnitude of 

the transfer function is zero. 

Of particular importance in understanding 

transfer function zeros is that, if So is a zero of 

the transfer function from a point Xjn to a point 

X out ' then the forced response at the point X out to 

an input e·'ot at Xjn is zero. To see this, compute 

the Laplace transform of the system response at 

the output: 

1 
W(s) = G(s)--. 

s - So 

Assuming that So is a zero of G(s) and is not a 

pole of G(s), factor the zero dependency out: 

A 1 
W(s) = G(s)(s - so)-­

s - So 

= G(s) : G(so) is finite. 

Because the response w(t) = .:£-IG(S) contains 

no terms in e Sot , the response is only due to initial 

conditions: the forced response is zero. If So is 

complex, then it is easily demonstrated that the 

complex conjugate So is also a zero so inputs that 

are a linear combination of e-sot and e-sot also 

produce zero forced response. This permits real 
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valued functions of time when the zeros are 

complex. 

This zero forced response to an input e Sot is 

the key to understanding the transfer function 

zeros of the systems under consideration in the 

present work. Of particular importance is the fact 

that the overall response of the system to an input 

e Sot may not be zero even if the initial conditions 

are zero and So is a zero of the transfer function. 

However, there does exist a set of initial condi­

tions that are compatible with the input e Sot such 

that the output w(t) is zero for all time t > o. 
Thus, in seeking to measure the transfer function 

zero, or experimentally detect it, one would have 

to not only apply the right input eSot, but also 

provide the appropriate initial conditions to see 

that the response wet) is identically zero. Note 

that such initial conditions only exist for nonzero 

inputs e Sot if So is a zero of the transfer function. 

SINGLY CONNECTED SYSTEMS 

A key property of conservative singly connected 

systems is that they can only have imaginary 

transfer function zeros between any given input 

point and any other output point. To prove this, 

we explore the response of such a system at a 

point X out to an input e Sot applied at a point Xjn 

where, for convenience of discussion, it is as­

sumed that Xjn < X out in the sense of some as­

signed coordinate system. The essence of the 

proof is that the transmission zero serves as an 

energy blocking mechanism in singly connected 

systems and that, as a result, either the forced 

response to exponentials with a nonzero real part 

is either everywhere zero or everywhere nonzero. 

In the latter case, such exponents cannot be trans­

fer function zeros; the former case is demon­

strated to be nonphysical. Hence, such systems 

can only have imaginary zeros, corresponding to 

standing sinusoidal waves with nodes at the out­

put points. 

THEOREM 1: In a singly connected, linear, conser­

vative system, if So is a transfer function zero, 

then the input e Sot applied at Xjn cannot supply 

energy to that section of the system that lies be­

yond the point of output X out ' when the initial 

conditions are chosen so that the only response 

of the system is the forced response. 

PROOF. Cut the structure at the point x out • Be­

cause the forced response w(xout) = 0, the energy 
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transferred from the input to the section beyond 

the cut must be zero: 

Note that this result is dependent upon the 

initial conditions. That is, if the initial conditions 

are not consistent with the forced response, then 

we cannot assume that w(xout) = 0 for all time. 

However, it is sufficient to assume that the initial 

conditions are chosen to be consistent with the 

forced response because the system is linear and 

the transfer function zeros are a characteristic of 

the forced response. 

THEOREM 2: If So is a transfer function zero of a 

singly connected linear conservative system be­

tween the input point Xin and the output point 

XOUI' then the motion of the section x > Xin must 
be either constant or sinusoidal. 

PROOF. If the response had a nonzero real expo­

nent then the energy in the section would be either 

increasing or decreasing. However, the section 

is conservative and has no energy exchange 

across the interface so its energy must be con­
stant. From this it is immediately concluded that 

the motion in the section beyond the output point 

must be either zero or sinusoidal: motions that 
conserve energy. 

THEOREM 3: If So is a transfer function zero of a 

singly connected linear conservative system be­

tween the input point Xin and the output point X out 
and !Jl,(s 0) #- 0, then So is also a zero of the transfer 

function between Xin and any other point x> Xout • 

PROOF. From Theorem 2, the motion w(x): 

x > x out is either sinusoidal or constant: it contains 
no exponentially increasing or decreasing func­

tions. Therefore, it contains no terms with the 

same time dependence as the input. A set of initial 

conditions can be found for which w(x) = 0 for 

anyx>xout • 

THEOREM 4: If So is a transfer function zero of a 

singly connected continuous linear conservative 

system between the input point xin and the output 

point X out and !Jl,(so) #- 0, then it is a zero of the 

transfer function between Xin and any other point 

X> Xin. 

PROOF. By Theorem 3, the forced response to 

the input corresponding to a zero at So must be 

zero everywhere that x > X out . Continuity of the 

system (in the sense that Wx = awlax is differenti­

able) at the point X out therefore implies that the 

forced response is also zero everywhere between 

Xin and Xout • Therefore, So is also a transfer func­

tion zero to every point intervening between Xin 

and X out . 

THEOREM 5: If So is a transfer function zero of a 

single connected linear conservative system be­

tween the input point Xin and the output point xout 
and !Jl,(so) #- 0, then it is a zero of the transfer 

function between Xin and any other point in the 

structure. 

PROOF. Again, appealing to only the weakest 

continuity of the system at the point Xin' w(x) is 
differentiable at Xin (where the only discontinuity 

is in the forcing function). The entire beam must 

have zero forced response to the input e Sot . 

THEOREM 6: A singly connected, continuous, lin­

ear, conservative dynamic system cannot have a 

transfer function zero, So from any point xin to 

any other point xoutfor which the real part of So 

is nonzero. 

PROOF. From Theorem 5, either So is a transfer 

function zero from a force applied at the point Xin 

to every point or it is not a zero to any point. The 

case where So is a zero for every system transfer 

function originating at Xin is the trivial case: the 

system must be clamped to ground at that point. 

Thus, we conclude that a conservative linear 

system that is only singly connected must not 
have any transfer functions that have real parts. A 

similar result is suggested by Knospe and Lefante 

(1993) who demonstrate that the zeros of such 

systems are poles of subsystems, all of which 

would have to lie on the imaginary axis in the 

absence of energy sources or sinks. 

COROLLARY 1: A necessary (but not sufficient) 

condition for a conservative linear continuous 

system to have transfer function zeros with a non­

zero real part is that the system must be multi­

ply connected. 

PROOF. By Theorem 6, singly connected linear 

conservative continuous systems cannot have 

transfer functions with a nonzero real part; there­

fore, multiple connectivity is a necessary but in­

sufficient condition. This is simply a statement of 

the contrapositive. 

UNIFORM TRANSVERSE BEAM 

In the case of a transverse beam, we can solve 

the differential equation to show that the forced 



response to an exponential input can be zero at 

one or more points along the beam. Therefore, 

the beam has a transmission zero from the input 

to these points of zero forced response. These 

zeros are, of course, possible because there is an 

alternate energy transfer mechanism at the node 

point that permits energy to be transferred to the 

remaining system (beam) beyond the node. 

Here, the differential equation for an Eu­

ler-Bernoulli beam of unit length with a lateral 

forcing input vet) at a point Xin is (Lalanne et 

al., 1983): 

Wxxxx + Wit = 0 (1) 

with boundary conditions 

Wxx = wxxx = 0 at x = 0, 1 (2) 

and forced shear boundary 

lim wxxxix- -e - wuxix- +e = vet). 
III ~ - - In 

e-->O 

(3) 

W(x, t) = 
+ e-WX(cLcos wx + dLsin wx» 
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To examine the forced response to a real zero, 

So = (T where (T is real, assume that 

Then (1) requires that 

That is, 

if3i = viol 

and 

2n + 1 
Y = -4- 7T n = 0,1,2,3. 

Thus, the forced response in each section [0, x in) 

and (x in , 1] is given by 

: 0 < x < xin ! e<Tl(eWX(aLcos WX + bLsin wx) 

e<Tl(ew(1-X)(a RCOS w(1 - x) + b Rsi~ w(1 - x» 

+ e-w(l-x)(cRCOs w(1 - x) + dRsm w(1 - x») 

(4) 

: xin < X < 1 

in which 

w=ft· 
For the left-hand section, the boundary condi­

tions are 

and for the right-hand section, the boundary con­

ditions are 

Applying these boundary conditions to (4) reveals 

that b = d and c = a - 2b. Consequently, the 

forced response solution on either side of the in­

put point is 

! e<Tl(aLcos wx(eWX + e-WX) + bLsinwx(eWX + e-WX) 

- 2 bL -wxcos wx) 

w(x, t) = e<Tl(aRcos w(1 - x) (ew(l-x) + e-w(l - x) 

+ bRsin w(1 - x)(ew(I-x) + e-w(l-x) 

- 2 bRe-w(l-x)cos w(1 - x» 

:0 < x < xin 

(5) 

: xin < X < 1. 

The continuity conditions at the point x = Xin are 

(6) 

(7) 

(8) 

(9) 

These last four equations permit solution for the 

four unknown coefficients (aL , bL , aR' and bR) 
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needed to represent the response in the two sec­

tions on either side of the input interface. A final 

equation determines where the actual zeros lie: 

wlx=x = o. 
- out 

This equation can be solved for X out in terms of 

IT and xin: 

for IT in terms of Xin and Xout : 

or for Xin in terms of IT and Xout : 

The first relationship determines all of the output 

points for which IT is a zero to forces applied at 

x· the second finds all of the zeros for the trans­

fe~ function from Xin to Xout , and the last finds all 

of the input points for which IT is a zero for output 

measured at xout ' 

In examining this solution, it is sufficient to 

note that Eq. (6) through (9) are linear equations 

in the unknowns with real coefficients. Therefore, 

unless the continuity conditions are indetermi­

nate, the forced response problem has a solution 

(5) composed of bounded real coefficients. 

The character of this solution and the condi­

tions under which transmission zeros arise can 

be understood by examining the left half of the 

solution domain of (5). Seeking those points 

where the force response is identically zero re­

quires that 

e<Tt(aLcos wx(eW.x + e-WX ) + bLsin wx(eWX + e-WX) 

- 2bLe-wxcos wx) = o. (10) 

o Response, 

After some rearrangement ofterms, the required 

identity is 

I aL 
tan wx = 2 0 < X < Xin • (II) 

I + e w.x bL 

A sufficient (but not necessary) condition for 

there to be solutions to (11) is that 

Thus, it should come as no great surprise that 

these solutions exist: the transfer function from 

x· to x will have zeros on the real axis. It is 
m ~ . 

important to recognize that these zeros are assocI-

ated with a rather natural and obvious physical 

response of lateral beams and are not due to an 

obscure mechanism like propagation delay as sug­

gested by Spector and Flashner (1989). 

As an example, assume that the input point 

lies at Xin = 0.75 and that the test zero is IT = 50 

so that w = 5. Clearly, this should produce a 

transfer function zero for some output point be­

tween 0 and 0.75 because 5 x 0.75 2: 7T. Figure 

2 is a plot of the beam's forced response to the 

input e50t applied at the point Xin = 0.75. It is 

clearly seen that the response passes through zero 

at the point x = 0.286. 

CONCLUSIONS 

The transverse response of beams subject to lat­

eral shear is clearly distinguished from the tensile 

or torsional response of the same structure: the 

former can exhibit transfer function zeros on the 

real axis of the complex plane while the latter 

cannot. The underlying characteristic that per­

mits such zeros in transverse beams is the exis­

tence of multiple energy transfer mechanisms act­

ing at any given sectional interface of the beam. 

w x 103 

-0.5 : Xin = 0.75 

: Xout = 0.286 D 
-1+---,---,-~1'---r---r---r--.~='---'---; 

1 0.5 
Position, x 

o 

FIGURE 2 Uniform beam forced response to e50t at Xin = 0.75. 



This is the same mechanism that gives rise to the 

very useful center of percusion in rigid beams and 

pendula. Because the tensile and torsional beams 

only have a single energy transfer mechanism, 

they are fundamentally incapable of exhibiting 

any but imaginary transfer function zeros. 
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