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Abstract

Dopamine is thought to provide reward prediction errors signals to temporal lobe memory 
systems, but their role in episodic memory has not been fully characterized. We developed an 
incidental memory paradigm to 1) estimate the influence of reward prediction errors on formation 
of episodic memories, 2) dissociate this influence from surprise and uncertainty, 3) characterize 
the role of temporal correspondence between prediction error and memoranda presentation, and 4) 
determine the extent to which this influence is consolidation-dependent. We found that people 
encoded incidental memoranda more strongly when they gambled for potential rewards. Moreover, 
this strengthened encoding scaled with the reward prediction error experienced when memoranda 
were presented (and not before or after). This encoding enhancement was detectable within 
minutes and did not differ substantially after twenty-four hours, indicating that it is not 
consolidation-dependent. These results suggest a computationally and temporally specific role for 
reward prediction error signaling in memory formation.
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Introduction

Behaviors are often informed by multiple kinds of memories. For example, a decision about 
what to eat for lunch might rely on average preferences that have been slowly learned over 
time and that aggregate over many previous experiences, but it might also be informed by 
specific, temporally precise memories (e.g., ingredients seen in the fridge on the previous 
day). These different kinds of memories prioritize distinct aspects of experience. 
Reinforcement learning typically accumulates information across relevant experiences to 
form general preferences that are used to guide behavior1, whereas episodic memories allow 
access to details about specific, previously experienced events with limited interference from 
other, similar ones. Work from neuroimaging and computational modeling suggests that 
these two kinds of memories have different representational requirements and are likely 
subserved by anatomically distinct brain systems2–4. In particular, a broad array of evidence 
suggests that reinforcement learning is implemented through cortico-striatal circuitry in the 
prefrontal cortex and basal ganglia5–8 whereas episodic memory appears to rely on synaptic 
changes in temporal lobe structures, especially the hippocampus9–15.

However, these two anatomical systems are not completely independent. Medial temporal 
areas provide direct inputs into striato-cortical regions16–18, and both sets of structures 
receive shared information through common intermediaries5–8,19. Furthermore, both systems 
receive neuromodulatory inputs that undergo context dependent fluctuations that can affect 
synaptic plasticity and alter information processing20,21. Recent work in computational 
neuroscience has highlighted potential roles for neuromodulators, particularly dopamine, in 
implementing reinforcement learning. In particular, dopamine is thought to supply a reward 
prediction error (RPE) signal that gates Hebbian plasticity in the striatum, facilitating 
repetition of rewarding actions5,6,22–24. In humans and untrained animals, dopamine RPE 
signals are observed in response to unexpected primary rewards17. But with experience, 
dopamine signals become associated with the the earliest cue predicting future reward5. 
Such cue-induced dopamine signals are thought to serve a motivational role25, biasing 
behavior toward effortful and risky actions undertaken to acquire rewards26–31.

While normative roles for dopamine have frequently been discussed in terms of their effects 
on reinforcement learning and motivational systems, such signals likely also affect 
processing in medial temporal lobe memory systems32–36. For example, dopamine can 
enhance long term potentiation (LTP)37 and replay38 in the hippocampus, providing a 
mechanism to prioritize behaviorally relevant information for longer term storage32. More 
recent work using optogenetics to perturb hippocampal dopamine inputs revealed a biphasic 
relationship, whereby low levels of dopamine suppress hippocampal information flow but 
higher levels of dopamine facilitate it35. Given that dopamine levels are typically highest 
during burst-firing of dopamine neurons39, for instance during large RPEs5, this result 
suggests that memory encoding in the hippocampus might be enhanced for unexpectedly 
positive events.

However, despite strong evidence that dopaminergic projections signal RPEs5,40,41 and that 
dopamine release in the hippocampus can facilitate memory encoding in non-human 
animals42, evidence for a positive effect of RPEs on memory formation in humans is scarce. 
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Monetary incentives and reward expectation can be manipulated to improve episodic 
encoding, but it is not clear that such effects are driven by RPEs rather than motivational 
signals or reward value per se21,33,43,44. The few studies that have closely examined the 
relationship between RPE signaling and episodic memory have yielded conflicting results 
about whether positive RPEs strengthen memory encoding45–47. However, a number of 
technical factors could mask a relationship between RPEs and memory formation in 
standard paradigms. In particular, tasks typically have not controlled for salience signals, 
such as surprise and uncertainty, that can be closely related to RPEs and that may exert 
independent effects on episodic encoding through a separate noradrenergic neuromodulatory 
system48–51. Thus, characterizing how RPEs, surprise, and uncertainty affect the strength of 
episodic encoding would be an important step toward understanding the potential functional 
consequences of dopaminergic signaling in the hippocampus.

Here, we combine a behavioral paradigm with computational modeling to clarify the impact 
of RPEs on episodic memory encoding, and to dissociate any RPE effects from those 
attributable to related computational variables such as surprise and uncertainty. Our goal was 
to better understand the relationship between reinforcement learning and episodic encoding 
at the computational level, which we hope will motivate future studies on the biological 
implementation of this link. Our paradigm required participants to view images during a 
learning and decision-making task before completing a surprise recognition memory test for 
the images. The task required participants to decide whether to accept or reject a risky 
gamble based on the value of potential payouts and the reward probabilities associated with 
two image categories, which they learned incrementally based on trial-by-trial feedback. Our 
design allowed us to measure and manipulate RPEs at multiple time points, and to dissociate 
those RPEs from other computational factors with which they are often correlated. In 
particular, our paradigm and computational models allowed us to manipulate and measure 
surprise and uncertainty, which have been shown to affect the rate of reinforcement 
learning52,53 and the strength of episodic encoding46. Again, surprise and uncertainty are 
closely related to RPEs in many tasks. However, they are thought to be conveyed through 
noradrenergic and cholinergic modulation49,50,54, while RPEs are carried primarily by 
dopamine neurons5. We also assessed the degree to which relationships between encoding 
and each of these factors are consolidation-dependent by testing recognition memory either 
immediately post-learning or after a 24 hour delay.

Our results reveal that participants were more likely to remember images presented on trials 
in which they accepted the risky gamble. Moreover, the extent of this memory benefit scaled 
positively with the RPEs induced by the images. Notably, memory was not affected by RPEs 
associated with the reward itself (on either the previous or current trial), or by surprise or 
uncertainty. These results replicated in an independent sample, which also demonstrated 
sensitivity to counterfactual information about choices the participants did not make. 
Collectively, these data demonstrate a key role for RPEs in episodic encoding, clarify the 
timescale and computational nature of interactions between reinforcement learning and 
memory, and make testable predictions about the neuromodulatory mechanisms underlying 
both processes.
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Results

The goal of this study was to understand how computational factors that govern trial-to-trial 
learning and decision-making impact episodic memory. To this end, we designed a two-part 
study that included a learning task (Fig. 1a–h) followed by a surprise recognition memory 
test (Fig. 1i).

On each trial of the task, participants decided whether to accept (“play”) or reject (“pass”) 
an opportunity to gamble based on the potential reward payout. The magnitude (value) of the 
potential reward was shown at the start of each trial (Fig. 1a, pink shading), whereas the 
probability that this reward would be obtained was signaled by a trial-unique image that 
belonged to one of two possible categories: animate or inanimate (Fig. 1a, yellow shading). 
Each image category was associated with a probability of reward delivery, which was yoked 
across categories such that p(rew|animate) = 1 – p(rew|inanimate) (these were decoupled in 
Experiment 2). Participants were not given explicit information about the reward 
probabilities and thus had to learn them through experience. They were instructed to make a 
play or pass decision during the three-second presentation of the trial-unique image and, 
after a brief delay, were shown feedback indicating the payout (Fig. 1a, blue shading). 
Informative feedback was provided on all trials, irrespective of play/pass decision, thereby 
allowing participants to learn the reward probabilities associated with each image category.

Thus, each trial involved three separate times at which expectations could be violated, 
yielding three distinct RPEs. At the beginning of each trial, participants were cued about the 
magnitude of reward at stake. On trials where larger rewards were at stake, participants 
stood to gain more than on most other trials, potentially leading to a positive RPE at this 
time (Fig. 1b, pink shading). This earliest PE is referred to as a “value RPE”, because it is 
elicited by the value of the potential payout of the trial relative to the average trial.

Next, when the image was presented, its category signaled the probability of reward 
delivery, yielding an “image RPE” relative to the reward probability of the average trial. On 
trials featuring images from the more frequently rewarded category, participants should raise 
their expectations about the likelihood of receiving a reward, leading to a positive image 
RPE (Fig. 1b, yellow shading). By contrast, on trials featuring images from the less 
frequently rewarded category, reward expectations should decrease below the mean, leading 
to a negative image RPE. For instance, if the reward probability was high for the animate 
category and low for the inanimate category, seeing an animate image should lead to a 
positive RPE, whereas seeing an inanimate image should lead to a negative image RPE.

Finally, feedback at the end of each trial indicated whether or not a reward was delivered 
and, if so, how large it was. This was expected to elicit another “feedback” RPE (Fig. 1b, 
blue shading). In summary, the paradigm elicits value, image, and feedback RPEs on each 
trial (Fig. 1c), allowing us to determine how each contributed to variation in incidental 
encoding of the images.

In addition to permitting dissociations among these three distinct RPEs, the paradigm can be 
used to distinguish RPEs from related computational factors. Specifically, although value 
RPEs were driven by the actual trial values, the other RPEs depended critically on task 
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dynamics, which were manipulated via change-points at which reward probabilities were 
resampled uniformly, forcing participants to update their expectations throughout the task 
(Fig. 1d). This allowed for the dissociation of RPEs from surprise (how unexpected an 
outcome is) and uncertainty (about the underlying probabilities). All three factors were 
computed using a Bayesian ideal observer model that learned from the binary task outcomes 
while taking into account the possibility of change-points (see Methods; Bayesian ideal 
observer model). Qualitatively, surprise spiked at improbable outcomes, including—but not 
limited to—those observed after change-points (Fig. 1e); uncertainty changed more 
gradually and was typically highest during periods following surprise (i.e., when outcomes 
are volatile, one becomes more uncertain about the underlying probabilities; Fig. 1f); and 
feedback RPEs were highly variable across trials and related more to the probabilistic trial 
outcomes than to transitions in reward structure (Fig. 1g). Each of these computations was 
distinct from the image RPEs, which depended on the image categories (i.e., category 
signaling high versus low reward probability) more than on task dynamics (Fig. 1h).

Analysis of data from 199 participants who completed the task online indicates that they (1) 
integrated reward probability and value information and (2) utilized RPEs, surprise, and 
uncertainty to gamble effectively. Participants increased the proportion of play (gamble) 
responses as a function of both trial value and the category-specific reward probability (Fig. 
2a). To capture trial-to-trial dynamics of subjective probability assessments, we fit the play/
pass behavior from each participant with a set of reinforcement learning models. The 
simplest such model fit betting behavior as a weighted function of reward value and 
probability, with probabilities updated on each trial with a fixed learning rate. More complex 
models (see Methods: RL model fitting) considered the possibility that this learning rate is 
adjusted according to other factors such as surprise, uncertainty, or choice. Consistent with 
previous work50,53,55,56, the best fitting model adjusted learning rate according to normative 
measures of both surprise and uncertainty (Fig. 2b,c). Coefficients describing the effects of 
surprise and uncertainty on learning rate were positive across participants (Fig. 2d; surprise: 
two tailed t(199) = 2.34, P = 0.020, d = 0.17, 95% CI: 0.041–0.48; uncertainty: t(199) = 
6.47, P < 0.001, d = 0.46, 95% CI: 0.74–1.39). In other words, in line with prior findings53, 
participants were more responsive to feedback that was surprising or provided during a 
period of uncertainty. Thus, surprise and uncertainty scaled the extent to which feedback 
RPEs were used to adjust subsequent behavior.

Participants completed a surprise memory test either five minutes (no delay, n = 109) or 
twenty-four hours (24 hour delay, n = 90) after the learning task. During the test, participants 
saw all of the “old” images from the learning task along with an equal number of 
semantically matched “new” foils that were not shown previously. Participants provided a 
binary response indicating whether each image was old or new, plus a 1–4 confidence rating 
(Fig. 1i).

Participants in both delay conditions reliably identified images from the learning task with 
above chance accuracy (Fig. 3a; mean(sem) d’ = 0.85(0.042), t(108) = 20.3, P < 0.001, d = 
1.94, 95% CI: 0.77–0.93 for no delay and 0.51(0.032), t(90) = 15.9, P < 0.001, d = 1.94, 
95% CI: 0.45–0.57 for 24 hour delay condition). Memory accuracy was better when 
participants expressed higher confidence (confidence of 3 or 4) versus lower confidence 
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(confidence of 1 or 2; t(93) = 13.8, P < 0.001, d = 1.30, 95% CI: 0.64–0.86 for no delay and 
t(83) = 9.95, P < 0.001, d = .06, 95% CI: 34–0.51 for 24 hour delay).

To aggregate information provided in the binary reports and confidence ratings, we 
transformed these into a single 1–8 memory score, such that 8 reflected a high confidence 
“old” response and 1 reflected a high confidence “new” response. As expected, the true 
proportion of “old” images increased with higher memory scores, in a monotonic and 
roughly linear fashion across both delays (Fig. 3b). Thus, participants formed lasting 
memories of the images, and the memory scores provided a reasonable measure of 
subjective memory strength.

Recognition memory depended critically on the context in which the images had been 
presented. Memory scores were higher for images shown on trials in which the participants 
gambled (play) versus passed (Fig. 3c and Supplementary Fig. 1). Furthermore, the 
difference between memory scores for old versus new items was larger for play versus pass 
trials (t(199) = 3.30, P = 0.001, d = 0.23, 95% CI: 0.049–0.20) and this did not differ across 
delay conditions (t(198) = 0.41, P = 0.69, d = 0.058, 95% CI: −0.12–0.18) (Fig. 3d). Higher 
memory scores were produced, at least in part, by increased memory sensitivity. Across all 
possible memory scores, hit rate was higher for play versus pass trials, and the area under 
the receiver operating characteristic (ROC) curves was greater for play versus pass trials 
(Fig. 3e; t(199) = 3.53, P < 0.001, d = 0.25, 95% CI: 0.0066–0.023). We found no evidence 
that this play versus pass effect differed across delay conditions (t(198) = 0.36, P = 0.72, d = 
0.051, 95% CI: −0.014–0.020).

Next, we tested whether this memory enhancement could be driven by positive image RPEs 
(Fig. 1h), which would motivate play decisions (Fig. 2a). Indeed, the degree of memory 
enhancement on play trials depended on the magnitude of the image RPE. Specifically, 
memory scores on play trials increased as a function of the image RPE (Fig. 4a,b; t(199) = 
4.33, P < 0.001, d = 0.31, 95% CI: 0.0032–0.0086), with no evidence of a difference 
between the delay conditions (t(198) = −0.11, P = 0.92, d = −0.015, 95% CI: −0.0057–
0.0051). Moreover, this effect was most prominent in participants whose gambling behaviors 
were sensitive to trial-to-trial fluctuations in probability and value (Spearman’s ρ = 0.17, 
95% CI: 0.033–0.30, P = 0.016, N = 200; see Methods; Descriptive analysis).

To better understand this image RPE effect, we explored the relationship between memory 
score and the constituent components of the image RPE signal. The image RPE depends 
directly on the probability of reward delivery cued by the image category relative to the 
average reward probability. By contrast, variations in trial value should not directly affect the 
image RPE, because the participant already knows the trial value when the image is 
displayed. In other words, the participant knows the potential payoff—the value—at the 
outset of the trial (“I could win 100 points!”), but the probability information carried by the 
image can elicit either a strong positive (“and I almost certainly will win”) or negative (“But 
I probably won’t win”) image RPE.

Consistent with this conceptualization, subsequent memories were stronger for play trials in 
which the image category was associated with a higher reward probability (Fig. 4c,d; t(199) 
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= 4.38, P < 0.001, d = 0.31, 95% CI: 0.25–0.67), but not for play trials with higher potential 
outcome value, which if anything were associated with slightly lower memory scores (Fig. 
4e,f; t(199) = −1.99, P = 0.048, d = −0.14, 95% CI: −0.0020–0.0000). Reward probability 
effects were stronger in participants who displayed more sensitivity to probability and value 
in the gambling task (Spearman’s ρ = 0.18, 95% CI: 0.044–0.31, P = 0.010, N = 200).

To rule out the possibility that the effect of image RPE on subsequent memory is driven by a 
change in response bias rather than an increase in stimulus-specific discriminability, we 
repeated the same analysis using corrected recognition scores (hit rate – false alarm rate), 
rather than our memory score, as the metric for recognition memory. We found a positive 
effect of image RPE on corrected recognition, consistent with the idea that positive image 
RPEs enhancement memory accuracy rather than causing a shift in the decision criterion 
(t(199) = 2.04, P = 0.045, d = 0.14, 95% CI: 0.0000–0.0015; Supplementary Fig. 2).

Lastly, we tested for an effect of reward uncertainty on memory, noting that uncertainty 
about the trial outcome is greater at probabilities near 0.5 than for probabilities near 0 or 1. 
We found no effect of reward uncertainty on memory (Supplementary Fig. 3).

We found no evidence for an effect of feedback RPE, uncertainty, or surprise on subsequent 
memory. There was no evidence that memory scores were systematically related to the 
feedback RPE experienced either on the trial preceding image presentation (Fig. 5a; t(199) = 
−0.93, P = 0.36, d = −0.065, 95% CI: −0.0043–0.0016) or immediately after image 
presentation (Fig. 5b; t(199) = −1.26, P = 0.21, d = −0.089, 95% CI: −0.0021–0.0005). 
Similarly, we found no evidence that the surprise and uncertainty associated with feedback 
preceding (surprise: Fig. 5c and Supplementary Fig. 4, t(199) = 0.99, P = 0.32, d = 0.070, 
95% CI: −0.97–2.94; uncertainty: Fig. 5e, t(199) = −0.82, P = 0.42, d = −0.058, 95% CI: 
−0.17–0.071) or following (surprise: Fig. 5d; t(199) = 1.53, P = 0.13, d = 0.11, 95% CI: 
−0.42–3.32, uncertainty: Fig. 5f; t(199) = −0.67, P = 0.51, d = −0.047, 95% CI: −0.18–
0.091) image presentation were systematically related to subsequent memory scores, despite 
the fact that participant betting behavior strongly depended on both factors (Fig. 2c).

To better estimate the contributions of learning-related computations to subsequent memory 
strength, we constructed a hierarchical regression model capable of 1) pooling information 
across participants and delay conditions in an appropriate manner, 2) estimating the 
independent contributions of each factor while simultaneously accounting for all others, and 
3) accounting for the differences in memory scores attributable to the images themselves. 
The hierarchical regression model attempted to predict memory scores by estimating 
coefficients at the level of images and participants, as well as estimating the mean parameter 
value over participants and the effect of delay condition for each parameter (Fig. 6a).

Consistent with the results presented thus far, the hierarchical regression results support the 
notion that encoding was strengthened by the decision to gamble (play vs. pass) and by 
image RPEs, but not by the computational factors that controlled learning rate (surprise and 
uncertainty). Play trials were estimated to contribute positively to encoding, as indexed by 
uniformly positive values for the posterior density on the play/pass parameter (Fig. 6b top 
row of column 2; mean [95% CI] play coefficient = 0.078 [0.05, 0.1]; Supplementary Table 
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1). The reward probability associated with the displayed category was positively related to 
subsequent memory on play trials (Fig. 6b column 3; mean [95% CI] probability coefficient 
= 0.047 [0.01, 0.08]; Supplementary Table 1), as was its interaction with value (Fig. 6b 
column 5; mean [95% CI] probability*value coefficient = 0.042 [0.01, 0.07]; Supplementary 
Table 1). However, there was no reliable effect of value itself and, if anything, there was a 
slight trend toward stronger memories for lower trial values (Fig. 6b column 4; mean [95% 
CI] value coefficient = −0.03 [−0.05, 0.0001]; Supplementary Table 1); this did not replicate 
in our second experiment (see Experiment 2 below). The direction of the interaction between 
value and probability suggests that participants were more sensitive to image probability on 
trials in which there were more points at stake, consistent with a memory effect that scales 
with the image RPE (Fig. 1b, yellow shading). All observed effects were selective for old 
images viewed in the learning task, as the same model fit to the new, foil images yielded 
coefficients near zero for every term (Supplementary Fig. 5). Consistent with our previous 
analysis, coefficients for the uncertainty and surprise terms were estimated to be near zero 
(Fig. 6b rightmost columns; mean [95% CI] surprise and uncertainty coefficients = 0.012 
[−0.01, 0.03] and −0.019 [−0.04, 0.01], respectively; Supplementary Table 1).

The model allowed us to examine the extent to which any subsequent memory effects 
required a consolidation period. In particular, any effects on subsequent memory that were 
stronger in the 24hr delay condition versus the immediate condition might reflect an effect 
of post-encoding processes. Despite evidence from animal literature that dopamine can 
robustly affect memory consolidation (e.g., Bethus et al., 2010), we did not find strong 
support for any of our effects being consolidation-dependent (note lack of positive 
coefficients in bottom row of Fig. 6b, which would indicate effects stronger in the 24 hour 
condition). As might be expected, participants in the no delay condition tended to have 
higher memory scores overall (Fig. 6b bottom of column 1; mean [95% credible interval] 
delay effect on memory score = −0.14 [−0.23, −0.05]; Supplementary Table 1), but their 
memory scores also tended to change more as a function of reward probability (Fig. 6b 
bottom of column 3; mean [95% credible interval] delay effect on probability modulation = 
−0.043 [−0.07, −0.01]; Supplementary Table 1) than did the memory scores of their 
counterparts in the 24hr delay condition. These results reveal the expected decay of memory 
over time, and suggest that the image RPEs were associated with an immediate boost in 
memory accuracy that decays over time.

It is possible that these memory effects may have been driven, at least in part, by 
anticipatory attention. Specifically, participants may have entered a heightened state of 
attention on play trials with large image RPEs, as they may have been eagerly anticipating 
feedback on such trials. While our paradigm did not include a direct measure of attention, 
we can address this question by determining which factors modulate the effect of feedback 
on trial-to-trial choice behavior. If a change in anticipatory attention affects the degree to 
which images are encoded in episodic memory, this increased attention should also lead to 
an increased effect of feedback on subsequent choice behavior. To test this account, we 
extended the best fitting behavioral model such that the learning rate could be adjusted on 
each trial according to the choice (play vs. pass) made on that trial as well as the image RPE 
received on play trials. Addition of these terms worsened the model fit (Supplementary Fig. 
6a; t(199) = −7.40, P < 0.001, d = −0.52, 95% CI: −2.28 to −1.32), providing no evidence 
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that choices or image RPEs influence the degree to which feedback influence subsequent 
choice. However, parameter fits within this model revealed a tendency for participants to 
learn more from feedback on play trials than on pass trials (Supplementary Fig. 6b; mean 
beta = 0.23, t(199) = 2.57, P = 0.011, d = 0.18, 95% CI: 0.054–0.41), whereas it revealed no 
consistent effect of image RPEs on feedback-driven learning (Supplementary Fig. 6b; mean 
beta = 0.16, t(199) = 1.29, P = 0.20, d = 0.091, 95% CI: −0.84–0.40). These analyses 
suggest that anticipatory attention likely mediated our play/pass effects at least to some 
degree, but they do not provide any evidence for a role of anticipatory attention in 
modulating the memory benefits conferred by large image RPEs.

In summary, behavioral data and computational modeling reveal important roles for surprise, 
uncertainty and feedback RPEs during learning. However, only decisions to gamble (play) 
and image RPEs influenced subsequent memory. The memory benefits conferred by 
gambling and high image RPEs were consolidation independent. To better understand the 
image RPE effect, and to ensure the reliability of our findings, we conducted a second 
experiment.

Experiment 2

Our previous findings suggested that variability in the strength of memory encoding was 
related to computationally-derived image RPEs and the gambling behavior that elicited 
them. However, the yoked reward probabilities in Experiment 1 ensured that the reward 
probabilities associated with the presented and not-presented image categories were 
perfectly anti-correlated on every trial. Thus, while an image from the high probability 
reward category would increase the expected value and hence elicit a positive image RPE, 
we could not determine if this was driven directly by the reward probability associated with 
the presented image category, the counterfactual reward probability associated with the 
alternate category, or—as might be predicted for a true prediction error—their difference. To 
address this issue, we conducted an experiment in which expectations about reward 
probability were manipulated independently on each trial, allowing us to distinguish 
between these alternatives.

In the new learning task, the reward probabilities for the two image categories were 
independently manipulated. Thus, during some trials both categories were associated with a 
high reward probability, on others both were associated with a low reward probability, and 
on yet others one was high and one was low (Fig. 7a,b). In this design, RPEs are relatively 
small when the reward probabilities are similar across image categories but deviate 
substantially when the reward probabilities differ across the image categories (Fig. 7c). 
Thus, if the factor boosting subsequent memory is truly an RPE, it should depend positively 
on the reward probability associated with the observed image category, but negatively with 
the reward probability associated with the other (unobserved) category.

A total of 174 participants completed Experiment 2 (no delay, n = 93; 24 hour delay, n = 81) 
online. Participants in both conditions reliably recognized images from the learning task 
with above chance accuracy (Fig. 7d; mean(sem) d’ = 0.90(0.058), t(90) = 15.5, P < 0.001, d 
= 1.62, 95% CI: 0.79–1.02 for no delay and d’ = 0.53(0.035), t(81) = 15.4, P < 0.001, d = 
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1.62, 95% CI: 0.46–0.60 for 24 hour delay condition). We also observed a robust replication 
of the effect of gambling behavior on memory, as recognition accuracy was significantly 
better for images from play versus pass trials (Fig. 7e; t(173) = 3.93, P < 0.001, d = 0.30, 
95% CI: 0.078–0.24). As in Experiment 1, we found no evidence that this effect differed by 
delay, t(172) = −0.31, P = 0.76, d = −0.047, 95% CI: −0.18–0.13).

The new experimental design permitted analysis of variability in memory scores for each old 
image as a function of its category’s reward probability (“image category”) versus the 
reward probability associated with the other, counterfactual category (“other category”). 
Based on the image RPE account, we expected to see positive and negative effects on 
memory for the image category and other category, respectively. Indeed, for both delays 
there was a cross-over effect whereby memory scores scaled positively with the reward 
probability associated with the image category (Fig. 7f,g t(173) = 2.38, P=0.019, d = 0.18, 
95% CI: 0.043–0.46), but negatively with the reward probability associated with the other 
category (t(173) = −2,45, P=0.015, d = −0.19, 95% CI: −0.43– −0.046). These effects did 
not differ by delay (image category, t(172) = 0.27, P = 0.79, d = 0.041, 95% CI: −0.36–0.48; 
other category, t(172) = 0.43, P = 0.67, d = 0.065, 95% CI: −0.30–0.47).

To better estimate the effects of image category, other category, and play/pass behavior on 
subsequent memory, we fit the memory score data with a modified version of the 
hierarchical regression model that included separate reward probability terms for the 
“image” and “other” categories. Posterior density estimates for the play/pass coefficient 
were greater than zero (Fig. 8a; Supplementary Table 1), replicating our previous finding. 
The posterior density for the “image category” and “other category” probabilities was 
concentrated in the region over which image category was greater than other category (mean 
[95% CI] image category coefficient minus other category coefficient: 0.052 [0.015,0.94]) 
and supported independent and opposite contributions of both category probabilities (Fig. 
8b; Supplementary Table 1). These results, in particular the negative effect of “other 
category” probability on the subsequent memory scores (mean [95% credible interval] other 
category coefficient = −0.03 [−0.06, −0.001]), are more consistent with an RPE effect than 
with a direct effect of reward prediction itself. More generally, these results support the 
hypothesis that image RPEs enhance the degree to which such images are encoded in 
episodic memory systems.

Despite the general agreement between the two experiments, there was one noteworthy 
discrepancy. While hierarchical models fit to both datasets indicated higher probability of 
positive coefficients for the interaction between value and probability (e.g., positive effects 
of reward probability on memory are greater for high value trials), the 95% credible intervals 
for these estimates in experiment 2 included zero as a possible coefficient value (mean [95% 
credible interval] probability*value coefficient = 0.007 [−0.019, 0.034]; Supplementary 
Table 1) indicating that the initial finding was not replicated in the strictest sense.

To better understand this discrepancy, and to make the best use of the data, we (1) extended 
the hierarchical regression approach to include additional coefficients capable of explaining 
differences across the two experiments and (2) fit this extended model to the combined data. 
As expected, this model provided evidence for a memory advantage on play trials, and an 
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amplification of this advantage for trials with a high image RPE (Supplementary Fig. 7; 
Supplementary Table 1). In the combined dataset there was also a positive effect of the 
interaction between value and probability (Supplementary Fig. 7; mean [95% credible 
interval] probability*value coefficient = 0.02 [0.004, 0.04]; Supplementary Table 1), such 
that the positive impact of reward probability on memory was largest on high value trials, 
supporting our initial observation in Experiment 1. This finding is predicted by the RPE 
account, as the high reward probability category elicits a larger RPE when the potential 
payout is greater (“I could win 100 points, and now I almost certainly will”) as opposed to 
when the potential payout is low (“I could win 1 point, and now I almost certainly will”). We 
also observed that the reward probability effect was greater in the no delay condition 
(Supplementary Fig. 7; mean [95% credible interval] probability delay difference coefficient 
= −0.03 [−0.05, −0.002]; Supplementary Table 1), with no evidence for any memory effects 
being stronger in the 24 hour delay condition (Supplementary Table 1; all other delay 
difference ps > 0.19).

Using a similar approach, we also tested whether there was a negative effect of trial value on 
memory, which was weakly suggested by the results in Experiment 1. Using the combined 
dataset, we found no effect of trial value on memory (Supplementary Table 1).

Discussion

An extensive prior literature has linked dopamine to RPEs elicited during reinforcement 
learning5,6,22,24,29,40,57–59, and a much smaller literature has suggested that dopamine can 
also influence the encoding and consolidation of episodic memories by modulating activity 
in the medial temporal lobes21,42,60. To date, however, there has been mixed evidence 
regarding the relationship between RPE signaling and memory encoding. Here, we used a 
two-stage learning and memory paradigm, along with computational modeling, to better 
characterize how RPE signals affect the strength of incidental memory formation.

We found that memory encoding was stronger for trials involving positive image RPEs (Fig. 
4a,b). This effect was only evident for trials in which participants accepted the risky offer, 
which is to say, trials in which the subjective prediction error could have plausibly been 
greater than zero. The effect was evident after controlling for other potential confounds (Fig. 
6b column 3) and it was amplified for trials in which higher reward values were on the line 
(Fig. 6b column 5). The data also suggest that the effect may depend on the timing of the 
RPE; memory was enhanced by positive image RPEs, but we found no evidence of an effect 
of positive value or feedback RPEs. These results are all consistent with a direct, positive 
effect of RPE at the time of stimulus presentation on memory encoding. This interpretation 
is bolstered by the fact that individuals who were more sensitive to value and probability in 
the learning task (that is to say, those participants who were most closely tracking 
probability and value through the learning task) showed larger positive effects of image 
RPEs on memory. Experiment 2 further supported the RPE interpretation by demonstrating 
that memory benefits were composed of equal and opposite contributions of the reward 
probability associated with the observed image category and that of the unobserved, 
counterfactual, one (Fig. 7f,g, Fig. 8b). Together, these results provide strong evidence that 
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RPEs enhance the incidental encoding of visual information, with positive consequences for 
subsequent memory.

We also found that participants encoded memoranda to a greater degree on trials in which 
they selected a risky bet (Fig. 3). This finding is consistent with a positive relationship 
between RPE signaling and memory strength, in that participant behavior provides a proxy 
for the subjective reward probability estimates (Fig. 2A). However, this effect was prominent 
in both experiments even after controlling for model-based estimates of RPE (Fig. 6b and 
Fig. 8a). Therefore, while we suspect that this result may at least partially reflect the direct 
impact of RPE, it may also reflect other factors associated with risky decisions. On play 
trials, participants view items while anticipating the uncertain gain or loss of points during 
the upcoming feedback presentation, whereas on pass trials participants know they will 
maintain their current score. A direct effect of perceived risk on memory encoding would be 
consistent with recent work that has highlighted enhanced memory encoding prior to 
uncertain feedback61, particularly when that feedback pertains to a self-initiated choice62.

One important question for interpreting these effects on memory encoding is to what degree 
they are mediated by shifts in anticipatory attention. Recent work by Stanek and colleagues 
demonstrated that images presented prior to feedback in a Pavlovian conditioning task 
showed a consolidation independent memory benefit when the feedback was uncertain. 
While we did not observe a memory benefit when feedback was most uncertain (note the 
lack of enhanced memory for intermediate reward probabilities in Fig 4c,d), it is possible 
that attention is modulated differently in our task, and that the memory benefits that we 
observed (on play trials and on trials including a large image RPE) might reflect these 
differential fluctuations in anticipatory attention. We attempted to minimize the influence of 
attention by 1) forcing participants to categorize the image on each trial, thus ensuring some 
baseline level of attention to the memoranda and 2) by presenting counterfactual information 
on pass trials that was nearly identical to the experienced outcome information. Indeed, we 
found that the best model of behavior relied equally on feedback information from play and 
pass trials and across all levels of image RPE (Fig. 2c), providing evidence that attention to 
feedback did not differ drastically across our task conditions.

A more nuanced analysis revealed that participants were slightly more influenced by 
outcome information provided on all play trials irrespective of image RPE. This suggests 
that anticipatory attention is elevated slightly on play versus pass conditions, but it does not 
imply a difference in attention on play trials with differing levels of image RPE 
(Supplementary Fig. 6b). Furthermore, there was no relationship between the degree to 
which participants modulated learning based on gambling behavior (play versus pass), and 
the degree to which they showed subsequent memory improvements on play trials 
(Supplementary Fig. 6c). Thus, while there do seem to be small attentional shifts that relate 
to gambling behavior, the size of such shifts is not a good predictor of which participants 
will experience a subsequent memory benefit. However, while our analyses suggest that the 
memory benefit conferred by positive image RPEs is not mediated by attention, we cannot 
completely rule out the possibility that attention may have fluctuated with RPEs in ways we 
could not measure. Future work with proxy measurements of attention (e.g., eye-tracking) 
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can further address whether attention can be dissociated from RPEs, and if so, whether it 
modulates the relationship between RPE and memory.

At first glance our results appear incompatible with those of Wimmer and colleagues45, who 
show that stronger RPE encoding in the ventral striatum is associated with weaker encoding 
of incidental information. We suspect that the discrepancy between these results is driven by 
differences in the degree to which memoranda are task relevant in the two paradigms. In our 
task, participants were required to encode the memoranda sufficiently to categorize them in 
order to perform the primary decision-making task, whereas in the Wimmer study, the 
memoranda were unrelated to the decision task and thus might not have been well-attended, 
particularly on trials in which the decision task elicited an RPE. Taken together, these results 
suggest that RPEs are most likely to enhance memory when they are elicited by the 
memoranda themselves, with the potential influence of secondary tasks eliminated or at least 
tightly controlled.

A relationship between RPEs and memory is consistent with a broad literature highlighting 
the effects of dopaminergic signaling on hippocampal plasticity32,35,37 and memory 
formation42, as well as with the larger literature suggesting that dopamine provides an RPE 
signal5,22 through projections from the midbrain to the striatum. It is thought that this 
dopaminergic RPE is also sent to the hippocampus through direct projections20, although to 
our knowledge this has never been verified directly and should be a target of future research. 
Our results support the behavioral consequences that might be predicted to result from such 
mechanisms, but they also refine them substantially. In particular, we show that the timing of 
RPE signaling relative to the memorandum is key; we saw no effect of RPEs elicited by 
prior or subsequent feedback on memory (Fig. 5a,b), despite strong evidence that this 
feedback was used to guide reinforcement learning and decision making (Fig. 2). RPE-
induced memory enhancement was selective to observed targets and did not generalize to 
semantically matched foils (Supplementary Fig. 5), as would be expected for a hippocampal 
mechanism12, consistent with previous literature on the hippocampal dependence of 
recognition memory63,64. However, other aspects of our results, such as the lack of 
consolidation dependence (Fig. 6b) deviate from previous literature on dopamine mediated 
memory enhancement in the hippocampus42, raising questions regarding whether our 
observed memory enhancement might be mediated through an alternative dopamine 
signaling pathway such as that targeting the striatum65 or the prefrontal cortex19,43,66. We 
hope that our behavioral study inspires future work to address these anatomical questions 
directly.

While our results are in line with some recent work relating positive RPEs to better 
incidental61 and intentional47 memory encoding, they differ from previous work in that 
image RPE effects emerged immediately and were not strengthened by a 24 hour delay 
(Figs.4 and 6, Supplementary Tables 1 and 2). Previous work from Stanek and colleagues 
showed that memory encoding benefits bestowed by positive RPEs required a substantial 
delay period for consolidation61, consistent with rodent work delineating the mechanisms 
through which dopamine can enhance hippocampal memory encoding in a consolidation 
dependent manner42. However, it is unclear to what extent we should expect generalization 
of these results to our study, given the differences in experimental paradigm, timescale, 
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memory demands, and species. The Stanek paradigm differed from ours in the timing and 
duration of image presentation, the relevance of the memoranda to task performance, and the 
nature of the task itself (our RPEs were elicited in a choice task, whereas theirs were elicited 
through a Pavlovian paradigm)61. Indeed, our results suggest that the timing of the RPE 
relative to image presentation is an important determinant of memory effects; in our study 
we demonstrate that the RPE elicited at the value time point 2.5 seconds prior to image 
presentation (pink shading on Fig. 1) had no appreciable effect on subsequent memory (Fig. 
4e,f). The RPE-inducing stimulus in the Stanek paradigm was presented 1.4 seconds prior to 
the memorandum, somewhat intermediate in timing between our image RPE (synchronous 
with memorandum) and our value RPE (preceding memorandum). At the psychological 
level, it is clear that these timing differences are important, and it is possible that the strength 
of the encoding benefit, and even the consolidation dependence, may be sensitive to these 
small differences in relative timing. It should also be noted that the RPEs elicited at different 
times in our task occurred through the presentation of different types of information (e.g., 
reward magnitude, reward probability, actual outcome) and thus our claims about timing 
assume that these distinct RPEs are conveyed in a common currency.

At the level of biological implementation, the consequence of differences in timing may be 
enhanced by differences in dopamine signaling in operant versus Pavlovian paradigms, with 
the former eliciting dopamine ramps that grow as an outcome becomes nearer in time67, and 
the latter eliciting the opposite trend in the firing of dopamine neurons68. Thus, it is possible 
that our positive prediction error conditions elicit both a phasic dopamine burst and a ramp 
of dopamine as the outcome approaches, whereas the Stanek paradigm elicits a short phasic 
burst followed by a decrease in baseline dopamine. This signaling difference could be 
magnified by the differences in our presentation times, with our image present over the 
duration of the dopamine ramp, with the Stanek paradigm more precisely sampling the 
period during which a phasic spike in dopamine would be expected. While it is clear that 
patterns of dopamine signaling differ across these task designs, it is not clear whether such 
differences are effectively communicated to the hippocampus or whether they could alter the 
consolidation dependence of dopamine-induced memory encoding benefits. Future work 
should carefully examine the effects of relative timing and task design on the magnitude and 
consolidation dependence of RPE benefits to human memory encoding. We hope that the 
emergence of these timing and task dependencies from human studies inspires parallel 
studies in rodents to characterize the precise temporal dynamics through which dopamine 
signals can and do facilitate memory formation, and the degree to which these dynamics 
affect underlying mechanisms, in particular the role of consolidation.

Our results also provide insight into apparent inconsistencies in previous studies that have 
attempted to link RPE signals to memory encoding. Consistent with previous work (e.g.65), 
our results emphasize the importance of choice in the degree to which image RPEs 
contributed to memorability. Indeed, for trials in which the participants passively observed 
outcomes, we saw no relationship between model derived RPE estimates and subsequent 
memory strength (Fig. 4a,b, dotted lines). This might help to explain the lack of a signed 
relationship between RPEs and subsequent memory strength in a recent study by Rouhani 
and colleagues that leveraged a Pavlovian design which did not require that explicit choices 
be made46. In contrast to our results, Rouhani and colleagues observed a positive effect of 
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absolute RPE, similar to our model-based surprise estimates, on subsequent memory. While 
we saw no effect of surprise on subsequent memory, other work has highlighted a role for 
such signals as enhancing hippocampal activation and memory encoding69,70. One potential 
explanation for this discrepancy is in the timing of image presentation. Our study presented 
images briefly during the choice phase of the decision task. By contrast, Rouhani and 
colleagues presented the memoranda for an extended period that encompassed the epoch 
containing trial feedback, potentially explaining why they observed effects related to 
outcome surprise. More generally, the temporally selective effects of RPE observed here 
suggest that RPE effects may differ considerably from other, longer timescale manipulations 
thought to enhance memory consolidation through dopaminergic mechanisms21,33,43,44.

In summary, our results demonstrate a role for image RPEs in enhancing memory encoding. 
We show that this role is temporally and computationally precise, independent of 
consolidation duration (at least in the current paradigm), and contingent on decision-making 
behavior. These data should help clarify inconsistencies in the literature regarding the 
relationship between reward learning and memory, and they make detailed predictions for 
future studies exploring the relationship between dopamine signaling and memory 
formation.

Methods

Experiment 1

Experimental procedure—The task consisted of two parts: the learning task and the 
memory task. The learning task was a reinforcement learning task with random change-
points in reward contingencies of the targets. The memory task was a surprise recognition 
memory task using image stimuli that were presented during the learning task and foils.

Participants completed either the no delay or 24-hour delay versions of the task via Amazon 
Mechanical Turk. In the no delay condition, the memory task followed the learning task only 
after a short break, during which a demographic survey was given. Therefore, the entire task 
was performed in one sitting. In the 24-hour delay condition, participants returned 20–30 
hours after completing the learning task to do the memory task.

A task of a specific condition (no delay or 24-hour delay) was administered at a time, and 
participants who agreed to complete the task online at the time of administration were 
recruited for that task condition. Data collection, but not the analysis was performed blind to 
the conditions of the experiments.

Participants—A total of 287 participants (142, no delay condition; 145, 24hr delay 
condition) completed the task via Amazon Mechanical Turk. Target sample sizes were 
chosen based on the results of an initial pilot study that used a similar design and was 
administered to a similar online target population. Randomization across conditions was 
determined by the day in which participants accepted to complete the human intelligence 
task posted on Amazon Mechanical Turk. Neither participants nor experimenters were blind 
to the delay condition. From the total participant pool, 88 participants (33, no delay; 55, 24hr 
delay) were excluded from analysis because they previously completed a prior version of the 
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task or didn’t meet our criteria of above-chance performance in the learning task. To 
determine whether a participant’s performance was above-chance, we simulated random 
choices using the same learning task structure, then computed the total score achieved by the 
random performance. We then repeated such simulations 5000 times, and assessed whether 
the participant’s score was greater than 5% of the score distribution from the simulations. 
The final sample had a total of 199 participants (109, no delay, 90, 24hr-delay; 101 males, 
98 females) with the age of 32.2 ± 8.5 (mean ± SD). Informed consent was obtained in a 
manner approved by the Brown University Institutional Review Board.

Learning task—The learning task consisted of 160 trials, where each trial consisted of 
three phases – value, image, and feedback (Fig. 1a). During the value phase, the amount of 
reward associated with the current trial was presented in the middle of the screen for 2 s. 
This value was equally sampled from [1, 5, 10, 20, 100]. After an interstimulus interval (ISI) 
of 0.5 s, an image appeared in the middle of the screen for 3 s (image phase). During the 
image phase, the participant made one of two possible responses using the keyboard: PLAY 
(press 1) or PASS (press 0). When a response is made, a colored box indicating the 
participant’s choice (e.g. black = play, white = pass) appeared around the image. The pairing 
of box color and participant choice was pseudorandomized across participants. After this 
image phase, an ISI of 0.5 s followed, after which the trial’s feedback was shown (feedback 
phase). The order of images was pseudorandomized.

Each trial had an assigned reward probability, such that if the participant chose PLAY, they 
would be rewarded according to that probability. If the participant chose PLAY and the trial 
was rewarding, they were rewarded by the amount shown during the value phase (Fig. 1a). If 
the participant chose PLAY but the trial was not rewarding, they lost 10 points regardless of 
the value of the trial. If the choice was PASS, the participant neither earned nor lost points 
(+0), and was shown the hypothetical result of choosing PLAY (Fig. 1a). During the 
feedback phase, the reward feedback (+value, −10, or hypothetical result) was shown for 
1.5s, followed by an ISI (0.5 s), and a 1 s presentation of the participant’s total accumulated 
score.

All image stimuli belonged to one of two categories: animate (e.g., whale, camel) or 
inanimate (e.g., desk, shoe). Each image belonged to a unique exemplar, such that there were 
no two images of the same animal or object. Images of the two categories had reward 
probabilities that were oppositely yoked. For example, if the animate category has a reward 
probability of 90%, the inanimate category had a reward probability of 10%. Therefore, 
participants only had to learn the probability for one category, and simply assume the 
opposite probability for the other category.

The reward probability for a given image category remained stable until a change-point 
occurred, after which it changed to a random value between 0 and 1 (Fig. 1d). Change-points 
occurred with a probability 0.16 on each trial. To facilitate learning, change-points did not 
occur in the first 20 trials of the task and the first 15 trials following a change-point. Each 
participant completed a unique task with pseudorandomized order of images that followed 
these constraints.
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The objective was to maximize the total number of points earned. Participants were advised 
to pay close attention to the value, probability, and category of each trial in order to decide 
whether it is better to play or pass. Participants were thoroughly informed about the 
possibility of change-points, and that the two categories were oppositely yoked. They 
underwent a practice learning task in which the reward probabilities for the two categories 
were 1 and 0 to clearly demonstrate these features of the task. Participants were awarded a 
bonus compensation proportional to the total points earned during the learning and memory 
tasks.

Computing the image reward prediction error (RPE)—The image RPE arises from 
the fact that the reward probabilities associated with the two image categories (animate/
inanimate) differ. For instance, consider a trial in which the trial value was 100, the animate 
category was associated with a reward probability of 0.9, and an animate image was 
presented. The expected reward for that trial could be computed as follows:

expected reward  =  value*p rew   animate   –  10* 1 − p rew   animate   =  100*0.9 − 10*0.1 = 89 .

In contrast, if the other (inanimate) category had been presented, the expected reward would 
be as follows:

expected reward  =  value*p rew   inanimate   –  10* 1 − p rew   inanimate   =  100*0.1 − 10*0.9 = 1 .

We assume that participant reward expectations prior to observing the image category 
simply average across these two categories. Thus, in this case, the expectation prior to 
observing the animate image would have been (89*0.5 + 1*0.5) = 45. The image RPE was 
computed by subtracting the expected reward after the image category was revealed from the 
expected reward before it was revealed, in this case 89–45= 44.

Memory task—During the memory task, participants viewed 160 “old” images from the 
learning task intermixed with 160 “new” images (Fig. 1i). Importantly, we ensured that the 
new images were semantically matched to the old images. All 160 images in the learning 
task were those of unique exemplars, and the 160 lure images were different images of the 
same exemplars. Therefore, accurate responding depended on the retrieval of detailed 
perceptual information from encoding (e.g. “I remember seeing THIS desk”, instead of “I 
remember seeing A desk”).

The order of old and new images was pseudorandomized. On each trial, a single image was 
presented, and the participant selected between OLD and NEW by pressing 1 or 0 on the 
keyboard, respectively (Fig. 1i). Afterwards, they were asked to rate their confidence in the 
choice from 1 (Guess) to 4 (Completely certain). Participants were not provided with 
correct/incorrect feedback on their choices.

Bayesian ideal observer model—The ideal observer model computed inferences over 
the probability of a binary outcome that evolves according to a change-point process. The 
model was given information about the true probability of a change-point occurring on each 
trial (H; hazard rate) by dividing the number of change-points by the total number of trials 
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for each participant. For each trial, a change-point was sampled according to a Bernoulli 
distribution using the true hazard rate (CP ~ B(H)). If a change-point did not occur (CP = 0), 
the predicted reward rate (μt) was updated from the previous trial (μt−1). When a change-
point did occur (CP = 1), μt was sampled from a uniform distribution between 0 and 1. The 
posterior probability of each trial’s reward rate given the previous outcomes can be 
formulated as follows:

p μt|X1: t   ∝  p(Xt | μt)∑
CPt

∑
μt−1

p μt|CPt, μt−1 p CPt p μt−1|X1: t p X1: t − 1 (1)

Where p(Xt|μt) is the likelihood of the outcomes given the predicted reward rate, p(μt|CPt, 
μt−1) represents the process of accounting for a possible change-point (when CP = 1, μt ~ 
U(0,1)), p(CPt) is the hazard rate, and p(μt−1|X1:t) is the prior belief of the reward rate.

Using the model-derived reward rate, we quantified the extent to which each new outcome 
influenced the subsequent prediction as the learning rate in a delta-rule:

Bt+1 = Bt + αtδt
δt = Xt − Bt

(2)

where B is the belief about the current reward rate, α is the learning rate, and δ is the 
prediction error, defined as the difference between the observed (X) and predicted (B) 
outcome. Rearranging, we were able to compute the trial by trial learning rate 
(Supplementary Fig. 8):

α =
Bt+1 − Bt

Xt − Bt
(3)

Trial by trial modulation of change-point probability (i.e. surprise) was calculated by 
marginalizing over μt, which is a measure of how likely it is, given the current observation, 
that a change-point has occurred (Supplementary Fig. 8):

p CPt|X1: t   ∝  p(Xt μt)∑
μt

∑
μt−1

p μt|CPt, μt−1 p CPt p μt−1|X1: t p X1: t − 1 (4)

Uncertainty was determined by computing the entropy of the posterior probability 
distribution of the reward rate on each trial, measured in units of nats (Supplementary Fig. 
8):

H t = − ∑p μt|X1: t ln p μt|X1: t (5)
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Descriptive analysis—Memory scores for each image were computed by transforming 
the recognition and confidence reports provided by the participant. On each trial of the 
recognition memory task, participants first chose between “old” and “new”, then reported 
their confidence in that choice on a scale of 1–4. We converted these responses so that 
choosing “old” with the highest confidence (4) was a score of 8, while choosing “new” with 
the highest confidence was a score of 1. Similarly, choosing “old” with the lowest 
confidence (1) was a score of 5, while choosing “new” with the lowest confidence was a 
score of 4. As such, memory scores reflected a confidence-weighted measure of memory 
strength ranging from 1 to 8. These memory scores were used for all analyses involving 
recognition memory.

For some statistical tests and plots (Figs. 4, 5, 7f,g) memory scores for target items were 
mean-centered per participant by subtracting out the average memory score across only the 
target items. Statistical analyses were then performed in a between-participant manner to 
assess the degree to which certain task variables affected mean-centered memory scores.

Relationships between computational factors and memory scores were assessed by 
estimating the slope of the relationship between each computational factor and the 
subsequent memory score separately for each computational variable and participant. 
Statistical testing was performed using one sample t-tests on the regression coefficients 
across participants (for overall effects) and two sample t-tests for differences between delay 
conditions (for delay effects).

In cases where reward probability was included in a statistical analysis, we used the reward 
probabilities estimated by the Bayesian ideal observer model described above, as these 
subjective estimates of the reward rate departed substantially from ground truth probabilities 
after change-points and were more closely related to behavior.

To generate the descriptive figures, we performed a binning procedure for each participant to 
ensure that each point on the x axis contained an equal number of elements. For each 
participant, we divided the y variable in question into quantiles and used the mean y value of 
each quantile as the binned value. To plot data from all participants on the same x axis, we 
first determined the median x value for each bin per participant, then took the average of the 
bin median values across participants. For some figures containing more than one plot, we 
shifted the x values of each plot slightly off-center to avoid overlap of points (Figs 5, 7f,g).

We were interested in testing whether participants who were sensitive to reward value and 
probability also had a strong image RPE on memory effect. In other words, participants that 
better adjusted their behavior using information about the trial value and probability will be 
more likely to remember items associated with higher RPEs. To quantify sensitivity to 
reward value and probability, we fit a logistic regression model on play/pass behavior that 
included z-scored versions of the reward probability (derived from the ideal observer model) 
and reward value as predictors for each participant. To find the effect of image RPE on 
memory, we fit a linear regression model on mean-centered memory score that included the 
image RPE as the predictor. We then computed the Spearman correlation between the 
coefficients of the two regression models.
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Unless otherwise specified, statistical comparisons in the manuscript used a two-tailed t-test. 
Data distribution was assumed to be normal, but this was not formally tested. We used an 
alpha level of 0.05 for all statistical tests.

RL model fitting—We fit a reinforcement learning model directly to the participant 
behavior using a constrained search algorithm (fmincon in Matlab), which computed a set of 
parameters that maximized the total log posterior probability of betting behavior (Fig. 2c,d). 
Four such parameters were included in the model: 1) a temperature parameter of the softmax 
function used to convert trial expected values to action probabilities, 2) a value exponent 
term that scales the relative importance of the trial value in making choices, 3) a play bias 
term that indicates a tendency to attribute higher value to gambling behavior, and 4) an 
intercept term for the effect of learning rate on choice behavior. In fitting the model, we 
wanted to account for the fact that there may be individual differences in how a participant’s 
betting behavior is biased by certain aspects of the task. For instance, some participants may 
be more sensitive to trial value, while others may attribute higher value to trials in which 
they gambled. This was the rationale behind adding the second and third parameters. The 
overall, “biased” value estimated from gambling on a given trial was given by:

V
B

t = B
play

+ P
rew

*V
t
k + 1 − P

rew
* −10 k

Where Bplay is the play bias term, Prew is the reward probability inferred from the ideal 
observer model, Vt is the trial value (provided during the value phase), and k is the value 
exponent. This overall value term was converted into action probabilities (p(play|
V(t)),p(pass|V(t))) using a softmax function. This was our base model.

Next, we fit additional RL models to the data by adding parameters to the above base model. 
These additional parameters controlled the extent to which other task variables affected the 
trial-to-trial modulation of learning rate, including surprise, uncertainty, the learning rate 
computed from the ideal observer model, and betting behavior. Specifically, learning rate 
was determined by a logistic function of a weighted predictor matrix that included the above 
variables and an intercept term. Therefore, it captured the degree to which learning rate 
changed as a function of these variables. The best fitting model was determined by 
computing the Bayesian information criterion (BIC) for each model, then comparing these 
values to that of the base model71.

To compare participant behavior to model-predicted behavior, we simulated choice behavior 
using the model with the lowest BIC, which incorporated surprise and uncertainty variables 
in determining learning rate (Fig. 2b). On each trial, we used the expected trial value (V(t)) 
computed above, and the parameter estimates of the temperature variable as inputs to a 
softmax function to generate choices.

Hierarchical regression model—Participant memory scores were modeled using a 
hierarchical mixture model that assumed that the memory score reported for each item and 
participant would reflect a linear combination of participant level predictors and item level 
memorability (Fig. 6a). The hierarchical model was specified in STAN (http://mc-stan.org) 
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using the matlabSTAN interface (http://mc-stan.org)72. In short, memory scores on each trial 
were assumed to be normally distributed with a variance that was fixed across all trials for a 
given participant. The mean of the memory score distribution on a given trial depended on 1) 
a trial-to-trial task predictors that were weighted according to coefficients estimated at the 
participant level and 2) item-to-item predictors that were weighted by coefficients estimated 
across all participants. Participant coefficients for each trial-to-trial task predictor were 
assumed to be drawn from a group distribution with a mean and variance offset by a delay 
variable, which allowed the model to capture differences in coefficient values for the two 
different delay conditions. All model coefficients were assumed to be drawn from prior 
distributions and for all coefficients other than the intercept (which captured overall memory 
scores) prior distributions were centered on zero.

Experiment 2

Experimental procedure—In Experiment 2, the learning task was modified to dissociate 
reward rate from RPE. The reward probability of the two image categories (animate vs. 
inanimate) were independent and set to either 0.8 or 0.2, allowing for a 2×2 design (0.8/0.8, 
0.8/0.2, 0.2/0.8, 0.2/0.2; Fig. 7a). Change-points occurred with a probability 0.05 on every 
trial for the two categories independently. Change-points did not occur for the first 20 trials 
of the task and the first 20 trials following a change-point. Tasks were generated to contain 
at least one block of each trial type in the 2×2 design. Each participant completed a unique 
task with pseudorandomized order of images that followed these constraints. The task 
instructions explicitly stated that the two image categories had independent reward 
probabilities that need to be tracked separately. Importantly, participants were also unaware 
that probabilities were either 0.2 or 0.8, and most likely assumed that the probabilities could 
be set to any value ranging from 0 to 1. The rest of the task, including the recognition 
memory portion, was identical to that of Experiment 1.

Participants—A total of 279 participants (157, no delay condition; 122, 24hr-delay 
condition) completed the task on Amazon Mechanical Turk. 105 participants (64, no delay; 
41, 24hr-delay) were excluded from analysis because they previously completed a prior 
version of the task or didn’t meet our criteria of above-chance performance in the learning 
task. The criteria for above-change performance was identical to that of Experiment 1. 
Participants who completed Experiment 1 or any prior versions of the task were identified 
and excluded using the participant-unique identifier provided by Amazon Mechanical Turk, 
to ensure that participants were unaware of the surprise memory portion of the task. The 
final sample had a total of 174 participants (93, no delay, 81, 24hr-delay; 101 males, 71 
females, 2 no response) with the age of 34.0 ± 9.1 (mean ± SD). Informed consent was 
obtained in a manner approved by the Brown University Institutional Review Board.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dissociating effects of RPEs, surprise and uncertainty on incidental memory encoding. a, 
Task: On each trial, participants were first shown the value of a successful gamble for the 
current trial (e.g. 100). Next, a unique image belonging to one of two categories (animate/
inanimate) was shown, which indicated the probability of reward. Participants made a play 
or pass decision. Then, participants were shown their earnings if they played (top and middle 
rows), or shown the hypothetical trial outcome if they passed (bottom row). At the end of 
each trial a cumulative total score was displayed. b, Manipulation of RPEs before, during, 
and after image presentation. For the image prediction error, we show example probabilities 
(0.8 and 0.2), and values (100 and 20). c, Types of RPE: The value RPE signals how the 
current value is better or worse than what is expected on average (10). The image RPE is 
computed as the difference between the expected reward of the current image category (e.g., 
89) and the reward prediction, computed as the average expected reward of the two image 
categories (e.g., 45). The expected rewards are computed using the values and probabilities 
for reward/punishment (value: Vrew, Vpun, probability: Prew, Ppun). The feedback RPE is 
computed as the difference between the expected and experienced outcomes. d, Model 
predictions: Reward probabilities were determined by image category, yoked across 
categories (i.e., p(rew | animate) = 1 – p(rew | inanimate)), and reset occasionally to require 
learning (solid black line). Binary outcomes (red/black dots), governed by these reward 
probabilities, were used by an ideal observer model to infer the underlying reward 
probabilities (blue line). e-g, Inputs to ideal observer model. The ideal observer learned in 
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proportion to the surprise associated with a given trial outcome (e) and the uncertainty about 
its estimate of the current reward probability (f), both dissociable from RPE signals at time 
of feedback (g) and image presentation (h). Surprise is a probability, and uncertainty is 
measured in units of nats. i, Recognition memory: in a surprise recognition test, participants 
provided a binary answer (“old” or “new” image) and a 1–4 confidence rating.
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Figure 2. 
Participants’ behavior indicates an integration of reward value and subjective reward 
probability estimates, which were updated as a function of surprise and uncertainty (N = 
199). a, Proportion of trials in which the participants chose to play, broken down by reward 
value and reward probability. b, Participant choice behavior and model-predicted choice 
behavior. The model with the lowest Bayesian information criterion (BIC), which 
incorporated the effects of surprise and uncertainty on learning rate, was used to generate 
model behavior (yellow bars in c, d). Expected rewards for all trials were divided into 8 
equally sized bins for both participant and model-predicted behavior. c, BIC of five 
reinforcement learning models with different parameters that affect learning rate. d, Mean 
maximum likelihood estimates of surprise and uncertainty parameters of the best fitting 
model (first bar in c). Error bars indicate standard error across participants.
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Figure 3. 
Dependence of recognition memory strength on gambling behavior. a, Average d’ for the 
two delay conditions (no delay, N = 109; 24hr delay, N = 90). b, Average proportion of 
image stimuli that were “old” (presented during the learning task), separated by memory 
score. c, Mean memory score of “old” images for play vs. pass trials. Each point represents a 
unique participant. A majority of participants lie above the diagonal, indicating better 
memory performance for play trials. d, Mean pairwise difference in memory score between 
the “old” images and their semantically-matched foil images. e, ROC curves for play vs. 
pass trials. Area under the ROC curves (AUC) is shown in the inset. AUC was greater for 
play versus pass trials, indicating better detection of old vs. new images for play trials 
compared to pass trials. Error bars indicate standard error across participants. Colors 
indicate time between encoding and memory testing; blue = no delay, red = 24 hour delay.
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Figure 4. 
Dependence of recognition memory strength on the RPE at time of image presentation, but 
not trial value. a,b, Positive association between subsequent recognition memory and RPE 
during image presentation for both no delay (a; blue) and 24 hour delay (b; red) conditions 
(no delay, N = 109; 24hr delay, N = 90). c-f, Positive association of recognition memory 
with reward probability estimates (c,d), but not with reward value (e,f) associated with the 
image. This suggests that the RPE that occurs during image presentation, but not the overall 
value of the image, is driving the subsequent memory effect. Error bars indicate standard 
error across participants. Colors indicate time between encoding and memory testing; blue = 
no delay, red = 24 hour delay.
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Figure 5. 
No association between subsequent memory and RPE (a,b), surprise (c,d), or uncertainty 
(e,f) during the feedback phase of either the previous (a,c,e) or current trial (b,d,f). See 
Methods: Bayesian ideal observer model. Error bars indicate standard error across 
participants. Colors indicate time between encoding and memory testing; blue = no delay, 
red = 24 hour delay (no delay, N = 109; 24hr delay, N = 90).
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Figure 6. 
Hierarchical regression model, which reveals effects of choice and positive RPEs on 
recognition memory encoding (N = 199). a: Graphical depiction of the hierarchical 
regression model. Memory scores for each participant and item (Ms,i) were modeled as 
normally distributed with participant specific variance (σs) and a mean that depended on the 
sum of two factors: 1) participant level predictors related to the decision context in which an 
image was encountered (i.e., whether the participant played or passed) linearly weighted 
according to coefficients (βs,x) and 2) item level predictors specifying which image was 
shown on each trial and weighted according to their overall memorability across participants 
(βi). Coefficients for participant level predictors were assumed to be drawn from a global 
mean value for each coefficient (μx) plus an offset related to the delay condition (Dx). 
Parameters were weakly constrained with priors that favored mean coefficient values near 
zero and low variance across participant and item specific coefficients. b: Posterior 
probability densities for mean predictor coefficients (μx; top row) and delay condition 
parameter difference (Dx; bottom row), estimated through MCMC sampling over the 
graphical model informed by the observable data (Ms,i).
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Figure 7. 
Task structure and results from Experiment 2. which allowed us to separately estimate the 
effects of both the observed and unobserved category probabilities on subsequent memory 
recall. a, Example task structure and model predictions. In the new learning task, the true 
reward probabilities of the two categories were independent, and restricted to either 0.2 or 
0.8. The task contained at least one block (constituting at least 20 trials) of the four possible 
reward probability combinations (0.2/0.2, 0.2/0.8, 0.8/0.2, 0.8/0.8). b, Trial-by-trial reward 
probability, showing stretches of stable reward probability (0.2/0.2, 0.8/0.8), or varying 
reward probability (0.2/0.8, 0.8/0.2). c, The variability of image RPE, influenced by the 
reward probability conditions shown in b. d, Average d’ for both delay conditions (no delay, 
N = 93; 24hr delay, N = 81). e, Mean pairwise difference in memory score between the “old” 
images and their semantically-matched foil images. f,g, Interaction between image category 
and reward probability. There is a positive association between recognition memory and the 
reward probability of the currently observed image category, and a negative association 
between memory and the reward probability of the other, unobserved image category. Error 
bars indicate standard error across participants. In d-g, colors indicate time between 
encoding and memory testing; blue = no delay, red = 24 hour delay.
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Figure 8. 
Hierarchical modeling results from Experiment 2 (N = 174). Memory scores depend on 
participant gambling behavior and the probabilities associated with both image categories. 
Memory score data from Experiment 2 was fit with a version of the hierarchical regression 
model described in Fig. 6a to replicate previous findings and determine whether reward 
probability effects were attributable to both observed and unobserved category probabilities. 
a, Posterior probability estimates of the mean play/pass coefficient. The posterior estimates 
were greater than zero and consistent with those measured in the first experiment. b, Image 
category probability (observed) coefficients, plotted against other category probability 
(unobserved) coefficients, revealing that participants tended to have higher memory scores 
for images that were associated with high reward probabilities (upward shift of density 
relative to zero) and when the unobserved image category was associated with a low reward 
probability (leftward shift of density relative to zero).
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