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Abstract. This paper is devoted to a deep analysis of the process
known as Cheeger deformation, applied to manifolds with isometric
group actions. Here, we provide new curvature estimates near singular
orbits and present several applications. As the main result, we answer
a question raised by a seminal result of Searle–Wilhelm about lifting
positive Ricci curvature from the quotient of an isometric action. To
answer this question, we develop techniques that can be used to provide
a substantially streamlined version of a classical result of Lawson and
Yau, generalize a curvature condition of Chavéz, Derdzinski, and Rigas,
as well as, give an alternative proof of a result of Grove and Ziller.

1. Introduction

An interesting and challenging problem in Riemannian geometry is that of
producing examples of metrics of positive (Ricci or sectional) curvatures.
The current scarcity of known examples of metrics with positive sectional
curvature compared to the known examples of metrics with non-negative
sectional curvature illustrates the difficulty of the problem for the sectional
curvature.

Of particular interest is the search for positively curved metrics on
exotic manifolds. Gromoll and Meyer [GM74] constructed the first exotic
sphere with a metric of non-negative sectional curvature; Wilhelm [Wil01]
constructed metrics of positive Ricci curvature and almost non-negative
sectional curvature in every exotic sphere which is a 3-sphere bundle over the
4-sphere; Grove and Ziller [GZ00] produced metrics of nonnegative sectional
curvature on these examples and Goette, Kerin and Shankar [GKS20]
extended Grove–Ziller’s result to all 7-spheres. Apart from spheres, Grove,
Verdiani and Ziller [GVZ11], and independently Dearricott [Dea11], built an
exotic unit tangent space with positive sectional curvature.
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Concerning non-trivial examples of manifolds with metrics of positive
Ricci curvature, Nash [Nas79], Poor [Poo75], Searle and Wilhelm [SW15],
Wraith [Wra97, Wra07], Joachim [JW08] and Crowley and Nordström and
Crowley and Wraith [CN15, CW17] proved the existence of such metrics on
certain bundles and exotic manifolds. In [CS18, CS22] the first and third
named authors built metrics of positive Ricci curvature on several exotic
manifolds and on the total space of bundles where the fibers and/or the base
spaces are exotic manifolds, or even when the base manifold is a so-called
Shrinking Ricci Soliton ([CS18, CS22] are particularly related to the ones
of Searle and Wilhelm, Nash and Poor). With different aims, the works of
Gilkey, Park and Tuschmänn [GPT98] and Belegradek and Wei [BW02] are
also interesting references for positive Ricci curvature on bundles.

Riemannian submersions play an important role in the construction of
manifolds with positive curvature properties due to the O’Neill submersion
formula, which implies that Riemannian submersions do not decrease
sectional curvature. However, it is not necessarily true that Riemannian
submersions preserve positive Ricci curvature (see [PW14]).

On the other hand, one may ask whether one can lift positive curvature
from the base of a Riemannian submersion to its total space. There is an
easy counterexample to this question: simply consider the projection onto
the first coordinate RP 2 × RP 2 → RP 2. The base of this submersion
has positive sectional curvature, however Synge’s Theorem implies that
the positive sectional curvature cannot be lifted to the total space since
π1(RP 2 × RP 2) ∼= Z2 × Z2.

A next natural question is can one lift positive Ricci curvature from the
orbit space? Searle and Wilhelm [SW15] answered this question in affirmative
for a large class of submersions.

Theorem 1.1 (Searle–Wilhelm, [SW15]). Let (M, g) be a compact
Riemannian manifold endowed with a G-action satisfying

(SW1) G is a compact connected Lie group acting effectively and by isometries;
(SW2) A G-principal orbit has finite fundamental group;
(SW3) RicM/G ≥ 1 in the orbital distance metric.

Then M carries a G-invariant metric of positive Ricci curvature.

The main idea in the proof of Theorem 1.1 is to perform a conformal
change on the metric g followed by a standard deformation, commonly used
for constructing metrics of nonnegative/positive sectional curvature, called
Cheeger deformation (see [Che73, Müt87] for instance). Based on the proof’s
delicate estimates and the lack of examples, the question was raised: is it
possible to prove Theorem 1.1 using only Cheeger deformations?

Motivated by the two questions above, we provide a deep analysis of the
behavior of the Cheeger deformation near singular orbits. As a consequence,
we answer in negative the second question (Theorem A); simplify the proof
of a result in [GZ02] (Theorem 1.3); recover the celebrated result on the
existence of metrics of positive scalar curvature under non-Abelian symmetry
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assumptions [LY74] (Theorem 1.2); and improve the condition for positive
sectional curvature in [CDR92] (Theorem E).

As the first result, we show that it is not always possible to lift positive
Ricci curvature from the quotient only by using Cheeger deformation. Or,
equivalently, we show that the conformal change in the proof of Theorem
1.1 was applied in an essential way (see the family of examples presented in
Section 5.1.1 for details):

Theorem A. There are Riemannian manifolds satisfying the hypotheses of
Theorem 1.1 that do not develop positive Ricci curvature after any Cheeger
deformation.

Theorem A is proved through a fully algebraic characterization of
sufficient conditions for a manifold to admit a G-invariant metric that
does not develop positive Ricci curvature after Cheeger deformation. Such
a characterization is obtained by reducing the study to tangent vectors
at singular orbits, that are fixed by the isotropy representation, which we
call fixed axes. Afterwards, we recognize these algebraic conditions in terms
of geometric obstructions. This is the content of Theorem 5.9, which has
Proposition 5.8 as a local converse.

Related to what we just mentioned, given p ∈ M , denote by ρ : Gp →
O(Hp) the restriction of the isotropy representation at p to Hp = (TpGp)

⊥,
and let G0

p denote the identity component of the isotropy subgroup Gp. We
prove:

Theorem B. Let (M, g) and G satisfy (SW1)-(SW3). Then, if g has
directions with negative Ricci curvature after any finite Cheeger deformation,
it follows that

1. there is a point q in a singular orbit and a non-zero vector X ∈ Hq
which is fixed by ρ(G0

q);

2. the restriction of ρ to Hq ∩ span{X}⊥ is reducible.

In particular, we conclude some simple criteria for Cheeger deformations
to allow the development of positive Ricci curvature under the hypotheses
(SW1)-(SW3):

Corollary C. Let (M, g) and G satisfying (SW1)-(SW3). Then g develops
positive Ricci curvature after a finite Cheeger deformation if any of the
following conditions hold:

(a) the singular strata are composed of isolated orbits;
(b) isotropy representations have no non-zero fixed points;
(c) the isotropy representation ρ : G0

q → O(Hq) is irreducible at every point
in the singular strata.

Moreover, item (a) can be viewed as a condition on the quotient M/G:

Corollary D. Suppose that (M, g) and G satisfy (SW1)-(SW3). Then g
develops positive Ricci curvature after a finite Cheeger deformation if the
singular strata of the quotient M/G is 0-dimensional.
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The analysis here employed is rich enough to furnish a better
understanding of Cheeger deformations, making it possible to produce other
positive curvatures, or at least furnishing some criteria for it. For instance,
we recall that in [LY74], Lawson and Yau construct a metric with positive
scalar curvature on any compact manifold M endowed with an action
of a compact non-Abelian Lie group G. The proof considers a copy of
SU(2) ⊆ G (or SO(3) ⊆ G) and is broken in two parts: one first applies
the canonical deformation to the S3 fibers (see [Bes87] for details) on the
regular part; then delicate estimates are made near the singular strata,
independent of the deformation parameter. A downside of the construction
is the loss of symmetry. By using Cheeger deformations, we maintain the
original symmetry and reduce the problem near singular orbits to elementary
estimates. More precisely, we re-prove:

Theorem 1.2 (Lawson–Yau). Let (M, g) be a compact Riemannian
manifold. Suppose that G is a compact Lie group with non-Abelian Lie algebra
that acts effectively on M by isometries. Then g develops positive scalar
curvature after a finite Cheeger deformation.

In the realm of sectional curvature, we generalize the condition
for positive sectional curvature in [CDR92], by replacing the canonical
deformation, which would only work for principal S3- or SO(3)-bundles with
totally geodesic fibers, with Cheeger deformations. An interesting property
of the condition below is an almost complete decoupling of the three main
ingredients that characterize the geometry of the regular part Mreg: the
geometry of the fiber; the dynamics of the horizontal distribution; and the
geometry of the base. This fact should be extremely useful in applying
analysis methods to problems of existence of positive sectional curvature on
principal bundles.

To better understand the statement of Theorem E, we recall that given
a biinvariant inner product Q on g, for every point p in a principal orbit,
we denote by Ω : Hp × Hp → mp the curvature 2-form of the bundle
Mreg → Mreg/G, where Mreg stands for the open, dense and convex set
where each two orbits are diffeomorphic to each other. More precisely, given
two horizontal vector fields X,Y , we define Ω(X,Y ) as the unique element
in mp, where mp is identified via isometric action vectors with the tangent
space to the orbit through p, such that

Ω(X,Y )∗ = −[X,Y ]V = −2AXY,

where A : Hp × Hp → Vp stands to the so-called O’Neill tensor and the
superscript ∗ refers to action vectors. Observe that it can also be equivalently
characterized by:

g(Ω∗XV
∗, Y ) = Q(Ω(X,Y ), V ) = −2g(A∗XP

−1V ∗, Y ),

where P is uniquely characterized by g|Vp(·, ·) = Q(P ·, ·). In particular,

−2A∗P−1V ∗ = Ω∗V .
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Theorem E. Suppose that G is compact and that G/Gp has positive sectional
curvature as a normal homogeneous manifold for every p ∈ Mreg. Then
secgt > 0 for any sufficiently large t if, and only if, there is k > 0 such that

(RM/G(X,Y, Y,X)− k‖X ∧ Y ‖2g)
( 1

2Q(HessP−1(X)V, V ) + 1
4‖Ω

∗
XV ‖2g − k‖X‖2gQ(P−1V, V ))

≥ Q((∇XΩ)XY, V )2 (1)

for every X,Y ∈ Hp, V ∈ g and p ∈Mreg.

By recalling that Cheeger deformation preserves positive sectional
curvature, one concludes that the condition in Theorem E is a necessary
condition for a manifold to have positive sectional curvature (even before
applying a Cheeger deformation).

Finally, Theorem 1.1 demands positive Ricci curvature on the quotient.
This is not possible if the quotient is an interval, as in the case of
cohomogeneity-one actions. By studying the limit behavior of the Cheeger
deformation, we also use our techniques in this direction, recovering a special
case of a result of Grove and Ziller:

Theorem 1.3 (Grove–Ziller, [GZ02]). Suppose that M is a compact
cohomogeneity one manifold such that

(i) M has two singular orbits;
(ii) a principal orbit has a finite fundamental group.

Then, there is an invariant metric g on M with positive Ricci curvature.

The paper is structured as follows: the definition, construction and
basic facts about Cheeger deformations are gathered in Section 2. The main
estimates around singular orbits are in Section 3. Section 4 applies the theory
so far to prove Theorems E, 1.3, 1.2 and item 1 of Theorem B. In Section
5 we begin providing some algebraic description of the Ricci tensor on fixed
axes, proving item 2 of Theorem B. The examples that ensure Theorem A
are described in Section 5.1.1. Finally, Section 5 fully describes sufficient
conditions, despite presenting some obstructions, to positive Ricci curvature
be lifted from orbit spaces. Later on, the characterizations they provided are
recognized as geometric data.

2. Cheeger deformations on G-manifolds

We follow [Müt87] and [Zil] to give a brief review on the procedure known as
Cheeger deformations. Specifically, we recall some results that we shall need
in the rest of this work.
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2.1. Cheeger deformations and its associated tensors

Let (M, g) be a Riemannian manifold endowed with an isometric action by
a compact Lie group G with a biinvariant Riemannian metric Q. We recall
that, for each point p ∈ M , the map g 7→ gp induces a diffeomorphism of
G
/
Gp onto the orbit Gp, where Gp is the isotropy subgroup at p. Moreover,

the metric Q induces an orthogonal decomposition g = gp ⊕ mp, where gp
stands for the Lie algebra of Gp and mp is isomorphic to TpGp via action
fields:

g 3 U 7→ U∗p =
d

dt

∣∣∣
t=0

etUp,

where etU denotes the Lie group exponential map.
We call the tangent space to the orbit at p the vertical space at p and

denote TpGp = Vp; the g-orthogonal complement of Vp in TpM is called
the horizontal space at p and is denoted by Hp. Thus, every tangent vector

X ∈ TpM can be uniquely written as X = X + U∗p , where X ∈ Hp and
U ∈ mp. We omit the subscript p in U∗p whenever there is no risk of ambiguity.

The Cheeger deformation consists of a 1-parameter family ofG-invariant
Riemannian metrics onM produced by an appropriate shrinking of the metric
g in the orbit’s direction. It preserves the horizontal space at each point
together with its metric. This procedure promptly generalizes the classical
Canonical Variation (see [GW09, Example 2.1.1, p. 56]) on G-principal
bundles.

To construct the family of metrics, consider the following free isometric
G-action on (M ×G, g + 1

tQ):

r(p, g) := (rp, rg), ∀r ∈ G. (2)

The map π̄ : (p, g) 7→ g−1p defines a diffeomorphism between the quotient
and M , thus inducing a 1-parameter family of Riemannian metrics gt. One
observes that gt(Hp,Vp) = 0 and that gt|Hp = g|Hp for every p ∈M.

Definition 2.1. We call the resulting metric gt the Cheeger deformation of
g (at time t).

The metric gt can be completely described by the following tensors:
Definition 2.2.

• The orbit tensor at p is the linear map P : mp → mp defined by

g(U∗, V ∗) = Q(PU, V ), ∀U∗, V ∗ ∈ Vp.

• The deformed orbit tensor of gt at p is defined to be the linear map
Pt : mp → mp such that

gt(U
∗, V ∗) = Q(PtU, V ), ∀U∗, V ∗ ∈ Vp.

• The metric tensor of gt at p is the linear map Ct : TpM → TpM
satisfying

gt(X,Y ) = g(CtX,Y ), ∀X,Y ∈ TpM.
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All three tensors are symmetric, positive definite, and related in the
following way:

Proposition 2.3 (Proposition 1.1, [Zil]).

1. Pt = (P−1 + t1)−1 = P (1 + tP )−1,
2. Given X = X + U∗ then Ct(X) = X + ((1 + tP )−1U)∗.

Remark. Concerning our comment on the fact that Cheeger deformations
can be seen as a 1-parameter subgroup, just observe that: at least in the case
of principal bundles, we can see the orbit tensor P as a section of the bundle
over M in which the fibers are automorphisms of the Lie algebra g of G.
In this manner, using the fact that P is a symmetric tensor, one can check
that the Cheeger deformed tensor Pt corresponds to the flow associated to the
following ODE: {

d
dtψ(t) = −(ψ(t))2,

ψ(0) = P
(3)

The metric tensor Ct also plays a crucial role in the computation of the
sectional curvature of gt. As initially observed by Cheeger and essential in
the work of Müter (see [Müt87]), the expression of the sectional curvature
of gt is much more natural when computed in the reparameterized plane
C−1
t X ∧ C−1

t Y , instead of the original X ∧ Y . Specifically, it is better to
consider the following quantity:

κt(X,Y ) := Rgt(C
−1
t X,C−1

t Y ,C−1
t Y ,C−1

t X) (4)

where Rgt stands for the (4,1) Riemannian curvature tensor

Rgt(X,Y, Z,W ) = gt(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W ).

In particular, one concludes that the reparameterized sectional curvature is
non-decreasing in t:

Theorem 2.4 (Proposition 1.3, [Zil]). Let X = X + U∗, Y = Y + V ∗ be
tangent vectors. Then,

κt(X,Y ) = Rg(X,Y , Y ,X) +
t3

4
‖[PU,PV ]‖2Q + zt(X,Y ), (5)

where zt is bilinear in each entry, non-decreasing, and zero at t = 0.
Moreover, at points on the regular stratum, it can be written as

zt(X,Y ) = 3t

∥∥∥∥(1 + tP )−1/2P∇v
X
Y − (1 + tP )−1/2t

1

2
[PU,PV ]

∥∥∥∥2

Q

.

Remark. A precise definition of zt, together with important properties, is
given in Lemma 3.5.
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2.2. The Ricci and scalar curvatures of a Cheeger deformation

Finally, we take advantage of Theorem 2.4 to present formulae for the limit
Ricci curvature of gt as t → ∞ as well as for the scalar curvature scalgt for
any t > 0.

In what follows, fix p ∈ M , denote X = X + U∗ ∈ TpM and consider
{v1, . . . , vk}, a Q-orthonormal basis of eigenvectors of P with eigenvalues
λ1 ≤ . . . ≤ λk. Additionally, consider a g-orthonormal basis {e1, ...., en} for

TpM , where {ek+1, ..., en} is a basis for Hp and ei = λ
−1/2
i v∗i for i ≤ k.

Definition 2.5. We define the horizontal Ricci curvature of g at p as

RicH(X) :=

n∑
i=k+1

Rg(X, ei, ei, X). (6)

Lemma 2.6. For any X = X + U∗ ∈ TpM one has

lim
t→∞

Ricgt(X) = RicHg (X) + lim
t→∞

n∑
i=1

zt(CtX,C
1/2
t ei) +

1

4

∑
j

‖[vj , U ]‖2Q.

Moreover, the scalar curvature of gt is given by:

scalgt(p) =

n∑
i,j=1

κ0(C
1/2
t ei, C

1/2
t ej) + zt(C

1/2
t ei, C

1/2
t ej)

+

k∑
i,j=1

λiλjt
3

(1 + tλi)(1 + tλj)

1

4
‖[vi, vj ]‖2Q. (7)

Proof. Using Proposition 2.3, it is easy to check that {C−1/2
t ei}ni=1 is a gt-

orthonormal basis for TpM . Moreover, C
−1/2
t ei = (1+ tλi)

1/2ei for i ≤ k and

C
−1/2
t ei = ei for i > k. We claim that the Ricci curvature of gt satisfies:

Ricgt(X) = RicHg (CtX) +

n∑
i=1

zt(C
1/2
t ei, CtX) (8)

+

k∑
i=1

1

1 + tλi

(
κ0(ei, CtX) +

λit

4
‖[vi, tP (1 + tP )−1U ]‖2Q

)
.

Indeed, note that equation (5) implies that

Ricgt(C
−1
t X) =

n∑
i=1

Rgt(C
−1/2
t ei, C

−1
t X,C−1

t X,C
−1/2
t ei) =

n∑
i=1

κt(C
1/2
t ei, X)

=

n∑
i=1

κ0(C
1/2
t ei, X) +

n∑
i=1

zt(C
1/2
t ei, X) +

t3

4

k∑
i=1

‖[PC1/2
t λ

−1/2
i vi, PU ]‖2Q

= RicHg (X)+

n∑
i=1

zt(C
1/2
t ei, X)+

k∑
i=1

1

1 + tλi

(
κ0(ei, X)+

λit

4
‖[vi, tPU ]‖2Q

)
.
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Equation (8) now follows by replacing X by CtX above. Besides,

limt→∞ CtX = X. Therefore RicHg (CtX)→ RicHg (X) and

k∑
i=1

1

1 + tλi
κ0(ei, CtX)→ 0.

Moreover,

k∑
i=1

tλi
1 + tλi

1

4
‖[vi, tP (1 + tP )−1U ]‖2Q →

k∑
i=1

1

4
‖[vi, U ]‖2Q.

Equation (7) follows from an analogous calculation. �

3. The behavior of Cheeger deformations at singular
orbits

In this section, we shall explore the limit behavior of Cheeger deformations
at a singular orbit (Definition 3.1) and its influence on the sectional, Ricci,
and scalar curvatures. Although relatively elementary, these consist of the
main steps in the article.

Let (M, g) be a compact connected Riemannian manifold equipped
with an isometric action by a compact Lie group G. We recall that, as a
consequence of the Slice Theorem (see, for example [AB15, Theorem 3.49, p.
65]), there is an open dense convex set, Mreg ⊆M , called the regular stratum
of the G-action, where the orbits have maximal dimension. In particular,
for all p, q ∈ Mreg it holds that mp and mq are isomorphic. Moreover, the
restriction of the quotient projection Mreg →Mreg/G defines a Riemannian
submersion (see [AB15, Theorem 3.82, p. 75]).

Definition 3.1. The orbit through any point p ∈ Mreg is called either a
regular orbit or a principal orbit. Both the strata M \Mreg and any orbit
through it are called singular.

To motivate our interest in singular orbits, we recall that [CS18,
Theorem 6.3, p. 33] and [SW15, Proposition 6.7] implies that, after Cheeger
deformation, one can uniformly make the Ricci curvature positive in any
compact K ⊆ Mreg, as long as principal orbits have finite fundamental
group and the quotient GK/G has positive Ricci. It is then only left to
produce positive Ricci around singular orbits. To this aim, one usually needs
two ingredients: estimates on the Ricci curvature at singular orbits and
understanding the right hypothesis needed for these bounds to guarantee
positive curvature. We deal with the first ingredient in this section. For
the second part, we must consider how Searle–Wilhelm’s hypothesis (SW3)
affects the geometry. This is relatively more delicate and is done in Section
5.

This claim about positive Ricci in K ⊆ Mreg easily follows from the
limit expression in Lemma 2.6. Indeed, this is achieved since zt is non-negative
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and the hypotheses of RicM/G ≥ 1 and |π1(G/Gp)| < ∞ are translated as

positive RicHg and positive
∑
j ‖[vj , U ]‖2, respectively (see sections 4 and 5

below). However, once in a singular orbit, the RicHg -term becomes less related
to the (SW3)-hypothesis and we are compelled to rely on zt to produce new
curvature estimates. As a result, this section is devoted to the (interesting,
but usually less explored) zt-tensor.

Let q ∈M \Mreg and consider a horizontal geodesic s 7→ γ(s) starting
at q with initial velocity X ∈ Hq. Assume further that γ((0, ε]) ⊂ Mreg for
some ε > 0. We will see that Rgt(X,−,−, X) has a very special behavior
with respect to vectors which are the limit of Gq-action fields. As a first
step, denote the restriction of the isotropy representation of Gq to Hq by
ρ : Gq → O(Hq) and observe that the differential of ρ at the identity e ∈ Gq
defines a linear map dρ : gq → o(Hq). Since the geodesic exponential is a
Gq-equivariant map from TpM to M , it follows that

dρ(U)X = (∇XU∗)q.

We can naturally define an extension of this skew-symmetric
transformation (with fixed X) as the linear map

S̃X : g→ TqM

U 7→ ∇XU∗q .

We also remark that the restriction U∗(s) := U∗(γ(s)) is a Jacobi field, since
isometric action vector fields are Killing.

Lemma 3.2. Let q be a point in a singular orbit and X ∈ Hq. Assume that
the horizontal geodesic γ : [0, ε] → M defined as γ(s) = expq(sX) intersects
the regular stratum for any s > 0. Then

1. The image S̃X(gq) is contained in Hq. Moreover, for ε > 0 sufficiently
small, the following defines a smooth bundle on γ([0, ε))

H̃s =

{
Hγ(s) if s > 0

(S̃X(gq))
⊥ if s = 0.

2. the kernel of the restriction S̃X |gq coincides with gX , the Lie algebra of
GX = {g ∈ Gq | ρ(g)X = X}.

Proof. We follow [Wil07] (see also [GW09]). Consider the following family of
Jacobi fields:

J = {U∗|γ | U ∈ g}+ {J | J(0) = 0, J ′(0) ∈ Hγ(0)}.

Given J1, J2 ∈ J , as in [GW09], we have

g(J ′1(s), J2(s)) = g(J1(s), J ′2(s)) (9)

for all s. That is, J is a (n−1)-dimensional family of normal Jacobi fields with
self-adjoint Riccati operator. See [GW18, Section 1.1] for other applications
coming from equation (9).
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From [Wil07, GW09] it follows that

γ̇(s)⊥ = span{J(s) | J ∈ J } ⊕ span{J ′(s) | J ∈ J , J(s) = 0} (10)

is an orthogonal splitting of γ̇(s)⊥ ⊂ Tγ(s)M . In particular, if U∗(0) = 0,
then for every V ∈ g we have

g(∇XU∗(0), V ∗(0)) = g(U∗(0),∇XV ∗(0)) = 0.

Therefore, ∇XU∗(0) ∈ Hp. Observe further that J1 = {U∗|γ | U ∈ g} is itself
a family with self-adjoint Riccati operators. Therefore, as stated in [Wil07],

V (s) = {J(s) | J ∈ J1}+ {J ′(s) | J ∈ J1, J(s) = 0}
is smooth along γ. In particular, V (s)⊥ = H̃s is smooth. Item 2 follows
directly from the identity dρ(U)X = ∇XU∗(0). �

Denote by pX := gq ∩ (gX)⊥ the Q-orthogonal complement of gX on gq.

Then Lemma 3.2 says that the restriction S̃X |pX : pX → Hq is injective. We
define:

Definition 3.3. Let q ∈ M be singular and X ∈ Hq be such that the
horizontal geodesic expq(sX) lies in the regular part for every s > 0.

• Elements on the image S̃X(pX) are called fake horizontal vectors with
respect to X.
• Given Y ∈ Hq, we denote by YpX the unique element in pX = gq∩(gX)⊥

such that S̃XYpX is the orthogonal projection of Y onto S̃X(gq).

Remark. The idea of taking the limit of horizontal vectors along horizontal
geodesics is also present in Searle–Wilhelm [SW15, section 4]. Here we provide
straightforward estimates for zt.

3.1. The term zt

Let X ∈ Hq be a horizontal vector at q ∈ M \ Mreg and suppose that
expq(sX) lies in Mreg for s ∈ (0, ε]. Note that, since the regular stratum is
dense, there is an open and dense set of horizontal directions with such a
property and for which the following estimate holds. Therefore, it must hold
for every X,Y . The main result of this section is stated as:

Proposition 3.4. Let X,Y ∈ Hq \ {0}, where Y is a fake horizontal with
respect to X. Then,

zt(X,Y ) ≥ 3t
‖S̃XYpX‖4g
‖YpX‖2Q

. (11)

In what follows, we prove Proposition 3.4. To this aim, for any Z ∈ g
define the auxiliary 1-form

wZ : TM → R (12)

X 7→ 1
2g(X,Z∗), (13)

where Z∗ is the action vector associated with Z. We shall use Lemma
3.2 and Lemma 3.5 below, that provides a characterization of zt. For a



12 Leonardo F. Cavenaghi, Renato J.M. e Silva and Llohann D. Sperança

proof, see [Müt87, p. 23, Lemma 3.9]. We remark, however, that contrary to
[Müt87, Zil], we use the convention dω(X,Y ) = Xω(Y )−Y ω(X)−ω([X,Y ]).

Lemma 3.5. For every X = X + U∗, Y = Y + V ∗, zt satisfies

zt(X,Y ) = 3t max
Z∈g,
‖Z‖Q=1

{dwZ(X,Y ) + t
2Q([PU,PV ], Z)}2

tg(Z∗, Z∗) + 1
. (14)

Moreover, at regular points,

dwZ(X,V ∗) =
1

2
Xg(V ∗, Z∗) = −g(SXV

∗, Z∗), (15)

dwZ(X,Y ) = −1

2
g([X,Y ]V , Z∗) = −g(AXY,Z

∗), (16)

where AXY = pV(∇XY ), SXV
∗ = −pV(∇XV ∗) and pV denotes the

orthogonal projection onto V = H⊥.

Proof of Proposition 3.4. Given a fake horizontal Y ∈ S̃X(pX), we define

Y (s) :=
1

s
Y ∗pX (γ(s)), (17)

where γ(s) is the geodesic generated by X. It is easy to see that Y (s) is
well-defined and, according to Lemma 3.2,

lim
s→0

Y (s) = ∇XY ∗pX (0) = dρ(YpX )X = Y. (18)

Our next goal consists in computing dwZ(Y,X). In what follows, we
write X(s) = d

ds exp(sX) and, for any W ∈ g, we let W ∗(s) := W ∗(γ(s)).
We claim that

lim
s→0+

dwZ(Y (s), X(s)) = g (Y,∇XZ∗(0)) . (19)

Indeed, on the one hand, for any s > 0, equation (15) implies that

dwZ(Y (s), X(s)) =
1

2s
dωZ(Y ∗pX (s), Z∗(s)) =

1

2s
Xg(Y ∗pX (s), Z∗(s)).

On the other hand, since Y ∗pX (0) = 0, equation (15) gives

0 = dwZ(Y ∗pX (0), X) =
1

2
Xg(Y ∗pX , Z

∗)|s=0. (20)

Therefore,

lim
s→0+

dwZ(Y (s), X(s)) =
1

2

∂2

∂s2

∣∣∣
s=0

g(Y ∗pX (s), Z∗(s))

=
1

2

{
g

(
D2

ds2
Y ∗pX (0), Z∗(0)

)
+ g

(
Y ∗pX (0),

D2

ds2
Z∗(0)

)
+ 2g

(
D

ds
Y ∗pX (0),

D

ds
Z∗(0)

)}
.

The claim follows since D2

ds2Y
∗
pX (0) = −R(Y ∗pX (0), X(0))X(0) = 0 and,

according to equation (18), one has D
dsY

∗
pX (0) = Y .

Now observe that, since zt(X,Y ) ≥ 0, Proposition 3.4 follows

immediately if Y⊥S̃X(gp), once YpX = 0. If YpX 6= 0, take Z = YpX/‖YpX‖Q
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on equation (14) and apply equation (19). Since Z∗(0) = 0 and D
dsZ

∗(0) =
S̃XYp

‖Yp‖Q , one has

zt(X,Y ) ≥ 3t
g
(
Y, DdsZ

∗(0)
)2

tg(Z∗(0), Z∗(0)) + 1
= 3tg

(
Y,

S̃XYpX
‖YpX‖Q

)2

= 3t
‖S̃XYpX‖4g
‖YpX‖2Q

.�

4. Sufficient conditions for positive curvatures and
Applications

In this section, we explore the blow-up behavior of zt. In particular, we
prove Theorem B, item 1, and Corollary D. We also analyze the limit of
the sectional curvature under Cheeger deformations, obtaining the condition
in Theorem E. Finally, we apply the limiting analysis to both cohomogeneity-
one manifolds and scalar curvature, proving Theorems 1.3 and 1.2.

4.1. Lifting positive Ricci curvature via Cheeger deformations

This paragraph is dedicated to the proof of the following result, which
concerns our first goal of this subsection.

Theorem 4.1. Let (M, g) be a compact Riemannian manifold with a G-
action satisfying (SW1)-(SW3). If, for every t > 0, there exists a unit vector
X ∈ TpM such that Ricgt(X) < 0, then there exists a point q ∈ M \Mreg

and a non-zero vector X ∈ Hq fixed by the isotropy representation at q.

For the proof, we need the following auxiliary result. Although it follows
from [SW15, Proposition 3.3], here we give a different proof based on equation
(8).

Lemma 4.2. Consider the Riemannian submersion π: (Mreg, g) →
(Mreg/G, ḡ). If p ∈Mreg then

lim
t→∞

Ricgt(X) = Ricḡ(dπX), ∀X ∈ Hp. (21)

Proof. Observe that

lim
t→∞

Ricgt(X) = RicHg (X) +

n∑
i=1

lim
t→∞

z(C
1/2
t ei, X)

as long as limt→∞ zt(C
1/2
t ei, X) exists for all i. Now, on the one hand, Lemma

3.5 (see also [Müt87] or [Zil]) gives:

zt(X,Y ) = 3 max
Z∈g
‖Z‖Q=1

{
g(AXY, Z

∗)2

g(Z∗, Z∗) + t−1

}
(22)

zt(X,W
∗) = 3 max

Z∈g
‖Z‖Q=1

{
g(SXW

∗, Z∗)2

g(Z∗, Z∗) + t−1

}
(23)
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for all Y ∈ Hp, W ∈ g. In particular, zt(C
1/2
t ei, X) → 0 for i ≤ k,

since C
1/2
t ei → 0, and zt(X,Y ) → 3‖AXY ‖2g. On the other hand, O’Neill’s

submersion formula and equation (5) give

Rḡ(dπX, dπY, dπY, dπX)−Rgt(X,Y, Y,X) = 3‖AXY ‖2g − zt(X,Y ),

completing the proof. �

Proof of Theorem 4.1. Assume that, for every m ∈ N, there is a g-unit vector
Xm = Xm + U∗m ∈ TpmM such that Ricgm(Xm) < 0. By compactness, we
can pass to a convergent subsequence to obtain m∗ > 0 and a limiting g-unit
vector limm→∞Xm = X ∈ TpM , such that Ricgm(X) ≤ 0 for all m > m∗. We
will show that q = limm→∞ pm lies in a singular orbit and that ρ(G0

q)X = X

where G0
q stands for the connected component of the identity of Gq.

Indeed, using the same bases as in Lemma 2.6, it gives

0 ≥ RicHg (X) + lim
m→∞

n∑
i=1

zm(CmX,C
1/2
m ei) +

1

4

∑
j

‖[vj , U ]‖2Q. (24)

WritingX = X+U∗ and noting that, by equation (14) zm(CmU,C
1/2
m )→ 0 as

m→∞, Lemma 4.2 then implies that q lies in the singular strata, otherwise
we would have

0 ≤ Ricg(dπX) +
1

4

∑
j

‖[vj , U ]‖2Q,

which contradicts the hypothesis of positive Ricci curvature on Mreg/G.
Moreover, X 6= 0, since, otherwise (24) would imply that

0 ≥ lim
m→∞

n∑
i=1

zm(CmU
∗, C1/2

m ei) +
1

4

∑
j

‖[vj , U ]‖2Q. (25)

Equation (25) is a contradiction since zt is nonnegative and
∑
j ‖[vj , U ]‖2Q > 0

whenever |π1(Gq)| < ∞. To conclude the latter, observe that the term∑
j ‖[vj , U ]‖2Q is closely related to the Ricci curvature of G/Gq in its normal

homogeneous metric. Indeed,

RicG/Gq (U) =
∑
j

‖[vj , U ]‖2Q +
∑
j

3‖[vj , U ]mq‖2Q.

In particular, RicG/Gq (U) = 0 if
∑
j ‖[vj , U ]‖2Q = 0. On the other hand,

if |π1(Gq)| < ∞, RicG/Gq is a positive definite bilinear form. Therefore,∑
j ‖[vj , U ]‖2Q = 0 implies U = 0, a contradiction to the fact that X = U is

g-unit.
To conclude that |π1(Gq)| < ∞, one uses the hypothesis (SW2): For

every isotropy subgroup H of points in the regular stratum, it holds that
π1(G/H) is finite. Since we can assume that, up to conjugation, H < Gq, the
long exact sequence in homotopy Gq/H ↪→ G/H → G/Gq then gives:

· · · → π1(G/H)→ π1(G/Gq)→ π0(Gp/H)→ {0}
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Therefore, π1(G/Gq) is finite if, and only if, Gq/H has a finite number of
connected components. Which is true, since Gq is a closed subgroup of a
compact group. We thus conclude that X 6= 0.

To conclude that X is fixed by ρ(G0
q), note that, otherwise, there

would be a fake horizontal vector with respect to X (Lemma 3.2).
Hence, by applying Proposition 3.4, we would conclude that the sum∑n
i=1 zm(CmX,C

1/2
m ei) diverges, contradicting inequality (24). �

To prove Corollary D, we further observe that the existence of an X
fixed by ρ(G0

q) is related to the existence of a geodesic inside the singular
strata.

Proof of Corollary D. Assume that there is X ∈ Hq \ {0} fixed by ρ(G0
q).

Since the exponential map is ρ-equivariant, we have

g expq(sX) = expρ(g)q(ρ(g)sX) = expq(sX)

for every s and g ∈ G0
q. Therefore, Gexpq(sX) ⊇ G0

q, so we conclude that

expq(sX) is in M \Mreg. Therefore, the singular strata is not composed of
isolated points, as wanted. �

4.2. A condition for positive sectional curvature

To motivate our approach for the second goal, we make a small digression.
As observed in [SSW15], Cheeger deformations “renormalizes” the metric in
the foliation induced by the G-orbits as t→∞. More precisely, gt approaches
a metric with totally geodesic orbits as t → ∞. For instance, assuming that
the action is free, one can consider the connection metric g̃t defined through
the original vertical and g-horizontal spaces by: g̃t(H,V) = 0; g̃t|H = gt|H;
and g̃t(U

∗, V ∗) = t−1Q(U, V ).
Roughly, gt approaches g̃t as 1/t2. So much so that, recalling that a

Cheeger deformation does not produce negative curvature, one is tempted to
conjecture the following:

Conjecture 4.3. Suppose that G is a compact Lie group that acts freely and
by isometries on a compact Riemannian manifold (M, g). If g has positive
sectional curvature, then M admits a metric with nonnegative sectional
curvature where every G-orbit is totally geodesic.

As pointed out in [Spe17], this conjecture implies strong restrictions in
the manifold, including that the related principal bundle M → M/G is fat,

i.e., for any non-zero horizontal vector X and any horizontal extension X̃

of it, it holds that [X̃,H]V = V; (we redirect the reader to [Wei80, Zil00]
or [GW09] for definitions and results). This implies, for instance, Petersen–

Wilhelm’s dimension restriction conjecture (see [GÁR18]), for the case of
principal bundles.

Although it provides a promising approach, Cheeger deformation does
not solve conjecture 4.3 directly. Heuristically, the difference between the
curvatures of gt and g̃t decreases as 1/t. Since the (vertizontal) curvature
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of both decay with 1/t2, the approaching speed is not enough to guarantee
that g̃t has non-negative curvature. More specifically, Theorem E provides
one (and the only one) curvature condition that is preserved under Cheeger
deformation.

Here we explore the limit behavior of the Cheeger deformation and
present a necessary and sufficient condition for a G-manifold to have positive
sectional curvature after finite Cheeger deformation. Although seemly hard to
apply, this condition amounts to the intrinsic geometry of the fiber (decoded
by the orbit tensor P ) being relatively decoupled from O’Neill’s integrability
tensor.

Although the next lines are already presented in the Introduction, for
the readers’ convenience, we recall some notation before proceeding to the
proof of the Theorem E. Given a biinvariant inner product Q on g, for every
p ∈Mreg we denote by Ω : Hp×Hp → mp the curvature 2-form of the bundle
Mreg → Mreg/G. Specifically, given two horizontal vector fields X,Y , we
define Ω(X,Y ) as the unique element in mp such that

Ω(X,Y )∗ = −[X,Y ]

(see [GW09, p. 70].) It is equivalently characterized by:

g(Ω∗XV
∗, Y ) = Q(Ω(X,Y ), V ) = −2g(A∗XP

−1V ∗, Y ).

In particular, −2A∗P−1V ∗ = Ω∗V . We now prove Theorem E. That is, if
secG/Gp > 0, then gt has positive sectional for any t sufficiently large, if and
only if

(RB(X,Y, Y,X)− k‖X ∧ Y ‖2g)
( 1

2Q(HessP−1(X)V, V ) + 1
4‖Ω

∗
XV ‖2g − k‖X‖2gQ(P−1V, V ))

≥ Q((∇XΩ)XY, V )2

for every X,Y ∈ Hp, V ∈ mp and p ∈Mreg.

Remark. Here we think of P as a function from M to the linear
endomorphisms of g (setting Pgp = {0}). Given a basis of g, Hess is computed
as the Hessian of each entry in the matrix of P on that basis.

Proof of Theorem E. Since κt is the unnormalized sectional curvature of gt
reparametrized by a continuous parameter, we conclude that secgt > 0 if and
only if there exists k > 0, not depending on any particular plane, such that
limt→∞ κt(X,Y + V ∗) ≥ k‖X ∧ (Y + V ∗)‖2g.

Let p ∈ Mreg and consider the plane {X,Y } ∈ Gr2(TpM) where X,Y

is a g-orthonormal pair. As pointed out in Section 2, C
− 1

2
t X,C

− 1
2

t Y is gt-
orthonormal. We compute

Rgt(C
− 1

2
t X,C

− 1
2

t (Y + V ∗), C
− 1

2
t (Y + V ∗), C

− 1
2

t X) = κt(C
1
2
t X,C

1
2
t (Y + V ∗)).
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Observe that the right-hand side decays like t−2. To correct this rate of decay,
we consider the following family of linear isomorphisms Lt : TpM → TpM :

Lt(Y + V ∗) = Y + t
1
2C

1
2
t P
− 1

2V ∗. (26)

Note now that the term t
1
2 compensates the decay of C

1
2
t while P−

1
2 works

as a t-independent renormalization which takes the leaf metric into account:
g(P−

1
2V ∗, P−

1
2U∗) = Q(V,U). Furthermore, a direct calculation shows that

limt→∞ Lt = P−1.
Now since the parametrization Lt still covers all planes of TM , it suffices

to show that

lim
t→∞

κt(LtX,Lt(Y + V ∗)) ≥ k‖X ∧ (Y + P−1V ∗)‖2g. (27)

To this aim, note that

lim
t→∞

κt(X,Y + t
1
2C

1
2
t P
− 1

2V ∗) = κ0(X,Y ) + 2Rg(X,Y, P
−1V ∗, X)

+ κ0(X,P−1V ∗) + z∞(X,Y + P−1V ∗), (28)

where (22) gives

z∞(X,Y + V ∗) := lim
t→∞

zt(X,Y + V ∗) = 3‖AXY + SXV
∗‖2g. (29)

Also, we can see equation (28) as a quadratic function on V ∗ by
considering the change V ∗ 7→ λV ∗, where λ ∈ C, resulting in a polynomial
p(λ) = aλ2 + bλ+ c, for some a, b, c ∈ R.

Since for any degree two polynomial to be non-negative we only need to
understand the sign of the coefficients (a and c) and its discriminant b2−4ac,
applying these criteria we conclude that there exists k > 0 such that (27)
holds if, and only if, there exists k > 0 such that

(KM/G(X,Y )−k‖X∧Y ‖2g)(κ0(X,P−1V ∗)−3‖SXP−1V ∗‖2g−k‖X‖2gQ(P−1V, V ))

≥ 1

4
(Rg(X,Y, P

−1V ∗, X) + 3g
(
SXP

−1V ∗, AXY
)
)2,

where we have used that κ0(X,Y ) = KM/G(X,Y )− 3‖AXY ‖2.
Now let γ(s) be the geodesic defined by X. Recall that the restriction of

V ∗ to γ defines a holonomy Jacobi field (see [GW09, Definition 1.4.3, p.17]),
or, equivalently, ∇VXV ∗ = −SXV ∗. Moreover, for any W ∈ g,

g(W ∗(γ(s)), P−1V ∗(γ(s))) = Q(PW,P−1V ) = Q(W,V )

does not depend on s.
Gathering this informantion with the expression for the vertizontal

curvature of a Riemannian submersion (see [GW09, Corollary 1.5.1, p. 28])

Kg(X,V
∗) = 〈(∇SX)XV

∗, V ∗〉 − ‖SXV ∗‖2 + ‖A∗XV ∗‖2 (30)

one gets

κ0(X,P−1V ∗)− 3‖SXP−1V ∗‖2 = 1
2Q(HessP−1(X)V, V ) + 1

4‖Ω
∗
XV ‖2g (31)
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where we have used that

∇VX(P−1
s V )∗ = SX(P−1

s V )∗ (32)

(we refer to [Spe18] for further details).
We remark that equation (32), in its turn, follows from

g(∇VX(P−1
s V )∗,W ∗) = Xg((P−1

s V )∗,W ∗)− g((P−1
s V )∗,∇VXW ∗)

= −g((P−1
s V )∗,∇VXW ∗)

= g((P−1
s V )∗, (SXW

∗))

= g(SX(P−1
s V )∗,W ∗).

The term Rg(X,Y, P
−1V ∗, X) + 3g(SX

(
P−1V

)∗
, AXY ) appears in

[Spe17] where it is proved to be independent of P . Here we identify this
term with −2Q( ddsΩ(X,Y ), V ). We assume ∇XX = ∇XY H = 0 until the
end of the proof and recall that (see [GW09, section 1.9]):

Rg(X,Y,
(
P−1
s V

)∗
, X) = g((∇XA)XY, P

−1
s V ∗)− 2g(SX

(
P−1
s V

)∗
, AXY ).

Therefore, (32) gives

Rg(X,Y, (P
−1
s V )∗, X)+3g(SX(P−1V )∗, AXY )

= g((∇XA)XY, (P
−1V )∗) + g(SX(P−1V )∗, AXY )

= g
(
∇X(AXY ), (P−1V )∗

)
+ g(SX(P−1V )∗, AXY )

= Xg(AXY, (P
−1V )∗)

= −2XQ(Ω(X,Y ), V )

= −2Q(V,∇XΩ(X,Y )). �

4.3. Positive Ricci curvature of cohomogeneity-one manifolds

Our next step is to prove Theorem 1.3. Cohomogeneity-one manifolds present
a special challenge. Here we again consider the limit behavior of the Cheeger
deformation, but now considering that there is no horizontal curvature. We
deal with the case where the quotient space is a closed interval M/G = [0, R]
and denote π : M → [0, R] as the quotient map. Let γ : [0, R] → M be
a horizontal geodesic satisfying π ◦ γ(s) = s. Denote γ̇ = X. From the G-
invariance of the curvature, it suffices to show that Ricgt > 0 along γ. As
in [GZ02], we use diagonal metrics and (to a lesser extent) a disk bundle
argument to provide suitable smoothness conditions at the singular orbits.
In the process, we also show that not every invariant metric has positive Ricci
curvature, even after Cheeger deformation. This points to the fact that M/G
is flat, contrasting with Theorem 1.1.

The natural steps would be to produce an initial metric g and then use
a sequential argument in the spirit of the proof of Theorem 4.1. To motivate
the construction of the initial metric, we invert the order of the steps, making
explicit which conditions g must satisfy before producing it. More precisely,
Proposition 4.4 below provides necessary and sufficient conditions to the
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existence of the desired metric with positive Ricci curvature. Theorem 1.3
then follows verifying such conditions in a standard way. That said, the merit
in our approach relies only on establishing such a proposition.

In what follows, to emphasize the dependence of the orbit tensor along
the points in M , we denote the orbit tensor at γ(s) by Ps.

Proposition 4.4. Suppose that (M, g) is a cohomogeneity one manifold
whose orbits have finite fundamental group. Then gt has positive Ricci
curvature for all large t if and only if there is c > 0 such that, for all
s ∈ (0, R),

d2

ds2
trP−1

s ≥ c.

Proof. We only prove the if part. The converse can be proven in a similar
way.

Consider the function F (Y , t) = tRicgt(Y ) where Y has unit g-

norm (the t-factor is essential since the Ricgt(Y ) might decay.) Arguing

by contradiction, we assume that for every m ∈ N there is Y m such that
F (Y m,m) ≤ 0. By compactness, passing to a converging subsequence, we
obtain a g-unit vector Y such that limm→∞ F (Y ,m) ≤ 0.

Denote by p ∈ γ([0, R]) the footpoint of Y and decompose Y = Y + V ∗

into its horizontal and vertical components. We first note that p must lie in
a regular orbit: recall that Gγ(0), Gγ(R) act transitively on their respective
horizontal spheres, as noted in [GZ00, GZ02]. Therefore, dρ(gp)Y 6= {0}
whenever p ∈ M \Mreg. Hence, Lemma 2.6 and Proposition 3.4 imply that
Ricgt(Y ) would have an unbounded zt-term whether Y 6= 0 (by summing
it with any fake horizontal) or V ∗ 6= 0 (by summing it with Y ). Therefore,
p ∈Mreg, as claimed.

Now, since p lies in a regular orbit, RicHg (Y ) = 0 and conclude that

V ∗ = 0; otherwise we would have lim
m→∞

Ricgm(Y ) ≥ 1
4

∑
‖[vi, V ]‖2Q, which

is positive whenever V ∗ 6= 0. Therefore, the limit vector Y is precisely the
velocity γ̇ = X. To finish the proof, observe that equation (8) gives

0 ≥ lim
m→∞

F (X,m) = lim
m→∞

k∑
i=1

m

1 +mλi

(
κ0(ei, X) + zm(ei, X)

)
=

k∑
i=1

(
κ0(λ−1

i v∗i , X)+3‖SX(λ−1
i v∗i )‖2g

)
=

k∑
i=1

(
κ0(P−1

s v∗i , X)+3‖SX(P−1
s v∗i )‖2g

)
.

This finishes the proof since (31) gives

κ0(P−1
s v∗i , X) + 3‖SX(P−1

s v∗i )‖2g =
1

2

d2

ds2
Q(P−1

s vi, vi) ≥ c. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let π : M → [0, R] be the quotient projection and
γ : [0, R] → M be a horizontal geodesic satisfying π ◦ γ(s) = s. Set γ̇ = X



20 Leonardo F. Cavenaghi, Renato J.M. e Silva and Llohann D. Sperança

and recall that both mγ(s) and Gγ(s) do not depend on s ∈ (0, R). Write
mγ(R/2) = n and Gγ(R/2) = H. A diagonal metric is a metric satisfying

Ps|ni = fi(s)
2 id, where n = ⊕ni is an Ad(H)-invariant decomposition of n.

Since (see for instance Lemma 3.3 in [GZ02])

d2

ds2
trP−1

s =
∑ d2f−2

i

ds2
=
∑
−2

f ′′i
f3
i

+ 6
(f ′i)

2

f4
i

,

we conclude Theorem 1.3 by showing that we can choose {fi} as a set of
concave functions such that, for each s ∈ [0, R], there is at least one index,
say i, for which f ′′i < 0. Such functions can be easily produced by imitating
bundle metrics on the tubular neighborhoods of each singular orbit, then
manipulating the behavior of the functions in the regular part.

For instance, we choose the decomposition n = n− + n0 + nR + n+

where: n− = gγ(0) ∩ gγ(R) is composed of vectors whose action fields vanish

at both 0 and R; n0 = gγ(0) ∩ (n−)⊥ (respectively, nR = gγ(R) ∩ (n−)⊥),
composed of vectors whose action fields vanish only at 0 (respectively, at R);
n+ = n ∩ (gγ(0) + gγ(R))

⊥ is composed of fields that never vanish. Instead
of choosing one function for each ni, we choose f0, f−, f+, fR relative to the
new decomposition.

Based on the geometry of disk bundles, see for instance the content of
Lemma 3.3 in [GZ02], it is known that there is some A > 0 for which we
can impose that: f−, f0 agree with A−1 sin(At) near 0; f−, fR agree with
A−1 sin(A(R− t)) near R; and fi is constant near an extreme point where it
does not vanish (see [GZ02].) Since we are assuming that both γ(0), γ(R) are
at the singular orbits, both n0 + n−, nR + n− are non-trivial, therefore, we
guarantee that there are strictly convex functions around each singular orbit.
Fixing these conditions, it is straightforward to manipulate the functions fi
in the interior of (0, s) so that the desired concavity conditions hold. �

4.4. Non-abelian symmetry and positive scalar curvature

Lawson and Yau in [LY74] prove that any Riemannian manifold (M, g)
endowed with the action of a non-Abelian compact connected Lie group G
has a metric of positive scalar curvature. The result was specially interesting
at the time, since it guarantees both positive scalar curvature in a plethora
of exotic spheres and lack of symmetry in the examples of exotic spheres
without positive sectional curvature recently found by Hitchin [Hit74].

The positively curved metric in [LY74] was obtained by reducing the
group to S3 (or SO(3)) and then proceeding in two parts: they considered a
bundle-like metric in a compact subset of Mreg, with totally geodesic orbits,
where they could freely apply the Canonical Variation (see [GW09, Example
2.1.1, p. 56]); and then constructed fixed metrics around the singular strata,
considering delicate estimates independent of the canonical variation. In
particular, during the procedure, the symmetry group is reduced to either
S3 or SO(3). To our fortune, scalar curvature is much more susceptible
to become positive through Cheeger deformation than Ricci or sectional
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curvature. Indeed, the blow-up of zt and the last term in (7) guarantee
positive scalar curvature in a straightforward manner, as long as g is non-
abelian1.

As a result, we provide a simpler proof of the result of Lawson and Yau.

Proof of Theorem 1.2. Assume by contradiction that there is a sequence of
points pm ∈M such that scalgt(pm) ≤ 0. By compactness, we conclude that
there is a point p ∈M such that

lim
t→∞

scalgt(p) ≤ 0.

On the one hand, p cannot be regular since, in this case, there is c > 0 such
that λi > c for every i. Therefore,

λiλjt
3

(1 + tλi)(1 + tλj)
‖[vi, vj ]‖2Q ≥ t

‖[vi, vj ]‖2Q
( 1
c + 1)2

.

Assuming g non-Abelian, there is some pair i, j such that [vi, vj ] 6= 0. Since∑n
i,j=1 κ0(C

1/2
t ei, C

1/2
t ej) is bounded and zt is non-negative, by recalling

equation (7), we conclude that one can take t large enough so that scalgt(p)
is positive.

On the other hand, p cannot be in a singular orbit: if p ∈ M \Mreg,
dim gp > 0 and there is U such that U∗ is not the zero field but U∗(p) = 0. We

claim that S̃HpU 6= {0}, thus Proposition 3.4 and the arguments in the last
paragraph shows that scalgt(p) is arbitrarily large as t→∞, a contradiction
to the existence of the sequence pm.

To prove S̃HpU 6= {0}, consider a g-unit horizontal vector X such that
γ(s) = expp(sX) is in Mreg for some interval (0, ε). Since U∗|γ is a non-zero

Jacobi field and U∗(p) = 0, ∇XU∗(p) = S̃XU 6= 0, as desired. �

5. The Ricci tensor on fixed axes

Throughout this section we consider compact (M, g) and G also satisfying
the hypotheses of Theorem 1.1. Our main goal now is to prove Theorem A,
besides giving some concrete algebraic conditions for the existence of metrics
whose no Cheeger deformation lifts positive Ricci curvature. These examples
are presented in Section 5.1.1. Also see Proposition 5.8 for a local description
of the metrics to be produced.

We start by showing that the only obstruction for lifting positive Ricci
curvature is the term RicHg at fixed axes (see definition 5.1 below. The

term RicHg first appears in equation (8) in this paper). This emphasizes
the need for using a conformal change on the metric to guarantee positive
Ricci curvature everywhere. We soon shall see that the irreducibility of the
isotropy representation for every orbit at the singular strata implies that
Cheeger deformations do work on lifting positive Ricci curvature from the

1C. Searle and F. Wilhelm were already aware that Cheeger deformation yields this result.
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orbit space. Hence, in Section 5.1 we shall study some combinatorial and
algebraic descriptions of the Ricci tensor on the fixed axes to provide a
general picture of whether Cheeger deformations can be used as a single
tool to produce positive Ricci curvature.

Though such algebraic characterization proves to be very useful in
providing the needed examples to complete Theorem A, it is natural to
translate it in terms of some geometric data. This is the content presented in
Section 5.2.

Definition 5.1. Let q ∈M \Mreg. We say that a vector X ∈ Hq is a fixed

axis if it is fixed by ρ(G0
q), or equivalently, if S̃X = 0.

Remark. • Since fixed axes are only defined at points in a singular orbit,
from now on it is implicit we are considering only such points.
• The complete failure of Cheeger deformations for lifting positive

Ricci curvature, as we shall see, is completely characterized by
the isotropy representation action, parametrizing the so-called fake
horizontal vectors. The equivalent definition of fixed axes, provided in
Definition 5.1, regarding S̃X , provides that only the infinitesimal aspect
of the isotropy group plays some role, namely, only its Lie algebra. This
justifies why we restrict the definition of fixed axes only at the identity
connected component of each isotropy subgroup.

Proposition 5.2. Let X ∈ Hq be a fixed axis. Then for every Y ∈ Hq one
has that

zt(X,Y ) = 0, ∀t. (33)

In particular, lim
t→∞

Ricgt(X) = RicHg (X).

Proof. According to equation (14) it suffices to prove that dwZ(X,Y ) = 0
for every Z ∈ g. To do so, we use the definition of the exterior derivative also
recalling that the isometric action field Z∗ is a Killing vector field:

2dwZ(X,Y ) = Xg(Z∗, Y )− Y g(Z∗, X)− g([X,Y ], Z∗)

= g(∇XZ∗, Y ) + g(Z∗,∇XY )− g(∇Y Z∗, X)− g(Z∗,∇YX)− g([X,Y ], Z∗)

= 2g(∇XZ∗, Y ) + g(Z∗, [X,Y ])− g([X,Y ], Z∗)

= 2g(S̃XZ, Y )

= 0.

To conclude the limit, given V ∈ g, extend X and V ∗ by the respective
derivatives of ϕ(t, s) = etV expp(sX), so that X is a horizontal field and
[X,V ∗] = 0. We have,

2dωZ(X,V ∗) = Xg(V ∗, Z∗)− V ∗g(X,Z∗)− g([X,V ∗], Z∗)

= g(∇XV ∗, Z∗) + g(V ∗,∇XZ∗)
= −2g(X,∇V ∗Z∗)− g(X, [V ∗, Z∗])

= −2g(X,σ(V ∗, Z∗)),
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where σ is the second fundamental form of the orbit. The limit now follows
from Lemma 2.6 since both Rg and σ are bounded and Ct|V → 0. �

Combining Proposition 5.2, Lemma 4.2 and Theorem 4.1 we get:

Corollary 5.3. Let (M, g) and G satisfy the hypotheses (SW1)-(SW2) of
Theorem 1.1. Then (M, gt) has positive Ricci curvature for every sufficiently

large t > 0 if, and only if, RicHg (X) > 0 for every X ∈ H \ {0}.

The proof of Theorem A follows from Corollary 5.3. We shall use
it to produce the mentioned examples of Riemannian manifolds satisfying
the hypotheses of Searle–Wilhelm’s Theorem 1.1 but which do not develop
positive Ricci curvature after any Cheeger deformation. However, to proceed
we need to furnish some algebraic description of the horizontal Ricci curvature
on fixed axes, which justifies the forthcoming discussion.

So let X ∈ Hq be a fixed axis and consider the operator RX :=

Rg(·, X)X. Given Y ∈ TqM , we recall that

ρ̃(r)RX(Y ) = Rg(ρ̃(r)Y , ρ̃(r)X)ρ̃(r)X = Rg(ρ̃(r)Y ,X)X = RX(ρ̃(r)Y ),
(34)

for all r ∈ Gq, where ρ̃ : Gq → O(TqM) is the full isotropy representation
(not its restriction to the horizontal space). Schur’s Lemma ([SS96, p. 13,
Proposition 4]) then implies that RX is block diagonal on each irreducible
subspace of ρ̃. We state this as a lemma:

Lemma 5.4. Let V ⊂ TqM be ρ̃-irreducible. Then RX |V is a multiple of the
identity.

Now sinceHq is ρ̃-invariant one gets that RX(Hq) ⊆ Hq. Moreover, once

RX(X) = 0 it follows that Hq ∩ span{X}⊥ is RX -invariant. From now on,
unless otherwise stated, we abuse notation and denote by RX the restriction

RX : Hq ∩ span{X}⊥ → Hq ∩ span{X}⊥. In this notation, we benefit from

the useful expression RicHg (X) = trRX .
Although Corollary 5.3 guarantees that g fails to develop positive Ricci

curvature after any finite Cheeger deformation if there exists a fixed axis X
such that RicHg (X) < 0, and it is reasonably simple to produce an arbitrary

metric such that RicHg (X) < 0, condition (SW3) does impose restrictions to
RX .

More precisely: let l be the codimension of a regular orbit. Recalling that
q ∈ M \Mreg, one has that dimHq > l. Now, since limt→∞Ricgt(X

′) ≥ 1
for every X ′ ∈ H in the regular part (see Lemma 5.5), whenever W ⊆ Hq
is a l-dimensional subspace which is the limit of horizontal subspaces on the
regular stratum, one gets

RicWg (X) :=

l−1∑
i=1

Rg(X, ei, ei, X) = lim
t→∞

l−1∑
i=1

Rgt(X, ei, ei, X) ≥ 1, (35)

where {e0 = X, e1, ..., el−1} is an orthonormal basis for W. The last equality
follows since zt(X, ei) = 0 for all i (Proposition 5.2). On the other hand, the
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set of such W’s can be restricted enough so that both (35) and RicHg (X) < 0
hold together.

To understand the former constrained relations, let c(s) be a smooth
curve with c(0) = q such that c(s) ∈ Mreg for s > 0. For every s, Hc(s)
defines a curve in Grl(TM). Moreover, any limit subspace W of the curve
Hc(s) ∈ Grl(TM) as s→ 0 must satisfy (35). We conclude that every limit of
a sequence Hpi , pi ∈ Mreg, arises as the limit of the horizontal space along
a curve and we call it as a limit horizontal space.

Denote the set of all limit horizontal spaces at q as W̃q. In the next
result, we give an algebraic description of such spaces.

Lemma 5.5. Let W ∈ W̃q. Then there is Y ∈ Hq such that W = (S̃Y gq)
⊥ =

(dρ(gq)Y )⊥.

Proof. Let c(s) be a smooth curve, c(0, ε) ⊆Mreg, such thatW is the limit of
Hc(s). If ε > 0 is sufficiently small, according to Lemma 3.2, a basis for Hc(s)
can be taken as { 1

sv
∗
1 , . . . ,

1
sv
∗
d, v
∗
d+1, . . . , v

∗
k}, where {v1, . . . , vk} is a basis for

mc(ε), v
∗
1 , . . . , v

∗
d ∈ gq and v∗d+1, . . . , v

∗
k are Q-orthogonal vectors to gp. Since

v∗i (c(s))→ 0 for all i ≤ d, it follows that

lim
s→0+

1

s
v∗i (c(s)) = ∇c′(0)v

∗
i = S̃c′(0)v

∗
i .

The result then follows since the set {v1, . . . , vd} must span pX . �

Lemma 5.5 and its proof motivates the following definition, needed to
understand Theorem 5.9.

Definition 5.6. A non-zero vector Y ∈ Hq which generates a subspace W
such as in Lemma 5.5 is named a regular vector with respect to the isotropy
representation ρ. We denote the set of these vectors by R.

Lemma 5.5 implies that, since X is a fixed axis (and hence dρ(gq)X =

0), it holds that X ∈ W for all W ∈ W̃q. Gathering all the previous
discussion, to prove Theorem A, and hence, better understanding when
Cheeger deformations are the only tool needed to lift positive Ricci curvature
from orbit spaces, we are interested in sets of vectors fulfilling the following
requirements:

(a) RicHg (X) < 0;

(b) RicWg (X) ≥ 1 for all W ∈ W̃q.

Indeed, condition (a) obstructs the lift of positive Ricci while (b) is necessary
to fulfill condition (SW3) in Theorem 1.1.

Now, observe that ifHq∩span{X}⊥ is ρ-irreducible, then RX is diagonal

and hence, condition (b) implies that RicHq (X) > 0. This verifies item
2. of Theorem B. For this reason, the next subsection is solely devoted to
understanding the Ricci tensor evaluated in fixed axes based at points where
the isotropy representation is reducible.
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5.1. An algebraic description of the Ricci curvature

Here we present a combinatorial description of conditions (a) and (b).
Specifically, we search for algebraic conditions for the existence of a symmetric
operator RX satisfying (a) and (b). A metric realizing RX is then constructed
a posteriori. For clarity sake, we first assume that Hq = span{X}⊕H1⊕H2,
where the Hi are ρ-irreducible subspaces. Lemma 5.7 provides an easily
computable condition for RX with exactly two distinct eigenvalues λ1, λ2.

Remark.
• Although the space Hq is metric dependent, the linear action of Gq in
Hq is equivalent to the classical isotropic representation of Gq in the
quotient TqM/TqGq. Therefore, all calculations can be done using a
fixed complement of TqGq.
• As we shall see, the irreducibility of Hi is not needed to produce the

examples in Theorem A.

Start by considering the complementary projections

pi : Hq → Hi.

Then for any G-invariant metric g and Y ∈ H1 ⊕H2,

RX(Y ) = λ1‖p1Y ‖2g + λ2‖p2Y ‖2g.

In particular, RicH(X) = λ1 dimH1 + λ2 dimH2 and for each W ∈ W̃q one
has

RicW(X)g =

l∑
i=1

(
λ1‖p1ei‖2g + λ2‖p2ei‖2g

)
= λ1 tr(p1|W)+λ2 tr(p2|W). (36)

Remark. Although the definition of W = (dρ(gq)Y )⊥ is metric dependent,
the quantity

tr(p1|W) = tr(p1)− tr(p1|dρ(gq)Y )

is not, as a direct computation shows.

The existence of λ1, λ2 satisfying (a) and (b) can be totally translated
as properties of the set

A = {(tr(p1|W), tr(p2|W)) ∈ R2 | W ∈ W̃q} :

Problem 1. Let A ⊂ R2 be a given collection of pairs of real numbers
satisfying a+ b = l − 1 ∀(a, b) ∈ A. Find λ1, λ2 ∈ R such that

aλ1 + bλ2 ≥ 1, ∀(a, b) ∈ A (37)

and

λ1 dimH1 + λ2 dimH2 < 0. (38)

Lemma 5.7 gives necessary and sufficient conditions to solve Problem 1.
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Lemma 5.7. Denote by A := dimH1 and B := dimH2. Problem 1 has an
affirmative answer if, and only if, either

inf
(a,b)∈A

{a} > A(l − 1)

A+B
, (39)

or

inf
(a,b)∈A

{b} > B(l − 1)

A+B
, (40)

Proof. From conditions (37),(38) it is clear that λ1λ2 < 0. Moreover, if
λ1, λ2 gives a solution to Problem 1 then −λ1,−λ2 also gives a solution
after interchanging the roles of H1 and H2. Since the two conditions stated
in Lemma 5.7 only differ by the sign of λ1, we can assume without loss of
generality that λ1 > 0 and prove (39).

To see that (39) is necessary, suppose that Problem 1 has an affirmative
answer for λ1 > 0. Let (a, b) ∈ A. Equation (37) gives a > −λ2

λ1
b + ε

λ1
for

some 0 < ε < 1. Hence, since a+ b = l− 1, we have a > (a− (l− 1))λ2

λ1
+ ε

λ1
.

Therefore,

a > (l − 1)
−λ2

λ1

(1− λ2

λ1
)

+
ε

λ1 − λ2
.

On the other hand, equation (38) gives A
B < −λ2

λ1
. Since the function

f(x) = x
x+1 is increasing in ]0,∞[ we conclude that

a > (l − 1)
A
B

(AB + 1)
+

ε

λ1 − λ2
=

(l − 1)A

A+B
+

ε

λ1 − λ2
,

for every (a, b) ∈ A, proving condition (39).
Conversely, suppose that there is ε > 0 such that

a ≥ A(l − 1) + 2εB

A+B

for every (a, b) ∈ A. Since a+ b = l− 1, we have a(A+B)− 2εB ≥ A(a+ b).
Thus a−2ε

b ≥ A
B whenever b 6= 0. Choose λ1, λ2 such that λ1 > 0 and

a−ε
b ≥ −λ2

λ1
> A

B . We obtain 0 > λ1A + λ2B and λ1a + λ2b ≥ ε for every

(a, b) ∈ A, b 6= 0. The result then follows a rescaling of λ1, λ2 since whenever
λ1 > 0 equation (37) is automatically satisfied for b = 0. �

Having understood necessary and sufficient pointwise conditions to
produce the needed counterexamples to Theorem A, we now construct a
local Riemannian metric that fails to develop positive Ricci curvature after
any finite Cheeger deformation:

Proposition 5.8. Suppose that Hq admits a ρ-invariant subspace H1 and
let X /∈ H1 be such that

inf
W∈W̃q

{tr(p1|W)} > (l − 1) dimH1

dimHq − 1
. (41)

Then there is a G-invariant metric g on a neighborhood U of q satisfying
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1. RicUreg/G ≥ 1,
2. Ricgt(X) < 0 for every Cheeger deformation gt of g.

Proof. Since (41) is assumed, a direct application of Lemma 5.7 gives λ1, λ2

such that RX = λ1p1+λ2p2 satisfies 1 and 2. Now, classical theory should give
a G-invariant metric with such prescribed curvature and this would complete
the proof: In Riemannian normal coordinates (using the exponential map as
chart), the Taylor expansion of the metric at 0 has identity as constant part,
vanishing linear part (Christoffel’s symbols vanish at 0), and the quadratic
part is the curvature. Nevertheless, it is worth pointing it out that a double
warped product provides an explicit metric.

Consider a biinvariant metric Q on G and recall that there is a G-
invariant neighborhood of q equivariantly diffeomorphic to G×ρHq. It suffices
to define a ρ(Gq)-invariant metric on Hq such that RX = λ1p1 + λ2p2 and

RicW ≥ c for all W ∈ W̃q for some c > 0.
Write Hq ∼= R × Rn1 × Rn2 where R corresponds to the subspace

spanned by the fixed axis and Rn1 ,Rn2 correspond to the two ρ(Gq)-invariant
subspaces H1,H2, respectively. Now consider the metric:

ḡ = dt2 + φ2 (t) ds2
Rn1 + ψ2 (t) ds2

Rn2 , (42)

where ds2
Rni is the standard flat metric of Rni and

φ(t) = 1√
λ1

sin
(√
λ1t
)
, (43)

ψ(t) = 1√
−λ2

exp
(√
−λ2t− b

)
, (44)

for some b > 0 to be fixed later. Following the notation of [Pet06, p. 71],
given V, V ′ ∈ TRn1 , W,W ′ ∈ TRn2 we have

Rḡ(X,V ) = λ1X ∧ V, (45)

Rḡ(X,W ) = λ2X ∧W, (46)

Rḡ(V, V
′) = λ1V ∧ V ′, (47)

Rḡ(W,W
′) = −λ2

(
exp(b−

√
−λ2t)

2 − 1
)
W ∧W ′, (48)

Rḡ(V,W ) = −
√
−λ1λ2 cot(

√
λ1t)V ∧W, (49)

where X ∧Y (v) = g(Y, v)X − g(X, v)Y . In particular, RX = λ1p1 +λ2p2. To

verify that RicWḡ ≥ c at q, identify R × Rn1 × Rn2 with Hq so that q is the
point (t0, 0, 0), where

−
√
−λ1λ2 cot(

√
λ1t0) ≥ max

{
λ1, (1− λ2)

dimHq − 1

(l − 1) dimH1

}
. (50)

Choose b >
√
−λ2t0. Using (45)-(49) we conclude that

RicW(αX + V +W ) = α2 RicW(X) + RicW(V ) + RicW(W ),

for all α ∈ R. Using λ1, λ2 given in Lemma 5.7, we guarantee that RicWḡ (X) ≥
1 and RicWḡ (V ) ≥ λ1‖V ‖2 (this follows from equations (45),(47) and (49)).
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Finally. RicWḡ (W ) satisfies

RicWḡ (W ) ≥ K(X,W ) + tr(p1|W)(−
√
−λ1λ2 cot(

√
λ1t0))‖W‖2 ≥ λ1‖W‖2,

where the last inequality follows from (50) since tr(p1|W) ≥ (l−1) dimH1

dimHq−1 . A

suitable rescaling of (42) completes the proof. �

We now use the explicit local description given in Proposition 5.8 to
prove Theorem A, by providing the following family of examples:

5.1.1. A family of counterexamples. Here we prove Theorem A. To do
so, we present a family of examples of manifolds satisfying the hypotheses of
Theorem 1.1, but that do not develop positive Ricci curvature after any
Cheeger deformation. The main idea consists of combining the algebraic
description given by the solution of Problem 1 with the local construction
obtained in Proposition 5.8. Our model example consists of a doubly warped
metric on the sphere S5 ⊂ R6 with the usual mono-axial SO(3)-action on it.

Consider S5 ⊂ R6 endowed with the standard linear SO(3)-action
given by the inclusion SO(3) 3 A 7→ diag(1, 1, 1, A) ∈ SO(6). Take
q = (1, 0, 0, 0, 0, 0) and X = (0, 1, 0, 0, 0, 0). Note that Gq = GX = SO(3).
Moreover, the regular orbits are diffeomorphic to 2-spheres. Therefore, the
dimension l of the horizontal space at points in a regular orbit is 3.

Write Hq = span{X} ⊕ H1 ⊕H2 where H1 is the ρ-invariant subspace
spanned by {(0, 0, 1, 0, 0, 0)} and H2 the ρ-invariant space spanned by the
last three coordinates. In this way, A = 1 and B = 3 in Lemma 5.7. Let us

show that tr(p1|W) > 1
2 for all W ∈ W̃q:

Given Y ∈ H1 ⊕ H2 one has that dρ(so(3))Y ⊂ H2. Therefore,
(0, 0, 1, 0, 0, 0) ∈ (dρ(so(3))Y )⊥ for every Y . Using Lemma 5.5 we conclude
that tr(p1|W) = 1 for all W. Moreover, Lemma 5.7 guarantees that there
are λ1, λ2 such that if g satisfies RX |Hi = λi id then Ricgt(X) < 0 for all
sufficiently large t. To construct a global explicit Riemannian metric with
such a prescribed RX we consider the doubly warped metric

g = dt2 + φ2 (t) ds2
S2 + ψ2 (t) ds2

S2 (51)

where t ∈
(

π
2
√
λ1
, π√

λ1

)
; φ is as in (43); and ψ(t) = 1√

−λ2
sinh(

√
−λ2t) for

t ∈
(

π
2
√
λ1
, π

2
√
λ1

+ε
)

smoothly extended so that (51) defines a smooth metric

on S5. Here, the first ds2
S2 appearing in equation (51) corresponds to the first

three coordinates in S5 and the second to the last three coordinates on it.
The fixed points correspond to t = π/2

√
λ1, which by the continuity of the

metric are such that RX = λ1p1 + λ2p2. Moreover, the action is polar and
transitive in the second S2. Thus, its quotient space is a disc with the warped
metric

g̃ = dt2 + 1
λ1

sin(
√
λ1t)

2ds2
S2 ,

which has positive constant curvature.
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The sphere S5 with (a rescaling of) (51) is our first global example of
a manifold satisfying the hypotheses of Searle–Wilhelm’s theorem that does
not develop positive Ricci curvature after any Cheeger deformation.

In higher dimensions, consider Sn with the standard mono-axial SO(n−
2)-action fixing the first three coordinates. Take q = (1, 0, 0, ..., 0), X =
(0, 1, 0, ..., 0), H1 = span{(0, 0, 1, 0, ..., 0)} and H2 as the H1-orthogonal
complement (in the standard metric in Rn+1). Note that regular orbits have
dimension n− 3. Similarly to the previous case one proves that

tr(p1|W) = 1 >
(l − 1) dimH1

dimHp − 1
=

2

n− 1

for every W ∈ W̃q. The analogous doubly warped metric has all the desired
properties.

5.2. The algebraic characterization in geometric terms

On the one hand, we have decoupled geometric data from Ricci tensors
on fixed axes to algebraic terms (Problem 1) to accomplish the proof of
Theorem A. On the other hand, it is natural to try to understand if such
algebraic conditions could be re-translated on other geometric obstructions.
With this aim, to provide a complete description of the “failure” or not
of Cheeger deformations for providing positive Ricci curvature, we proceed
proving Theorem 5.9 below.

Theorem 5.9. Let (M, g) be a compact Riemannian manifold with an
effective isometric action by a compact Lie group G satisfying the hypotheses
(SW1)-(SW3) in Theorem 1.1. Suppose that for every t > 0 there exists a
unit vector X ∈ TpM such that Ricgt(X) < 0. Let q ∈ M \Mreg such that
X ∈ Hq is a non-zero vector fixed by the isotropy representation at q, which
when restricted to {X}⊥ ∩Hq is reducible.

If Hq ∩ span{X}⊥ has exactly m ρ-irreducible summands, namely
Hq ∩ span{X}⊥ = H1 + H2 + · · · + Hm, then (up to changing the order
of the summands), for every regular vector Y = Y1 + Y2 + · · · + Ym ∈
H1 +H2 + · · ·+Hm there exist j0 6= i0 ∈ {1, . . . ,m} such that

dimHj0 − dim ρ(G0
q)Yj0 >

(l − 1) dim
∑
j 6=i0 Hj

dimHq − 1
,

where l is the codimension of a principal orbit.

Before proving Theorem 5.9, we briefly describe the corresponding
analogue of Problem 1 in the case of an arbitrary number of ρ-invariant
subspaces.

Let q ∈ M \ Mreg and X ∈ Hq be a fixed axis. If there exists

a decomposition of Hq ∩ span{X}⊥ into m ρ-invariant subspaces H ∩
span{X}⊥ = H1 ⊕ H2 ⊕ · · · ⊕ Hm, a similar formulation to the existence
of a metric satisfying (a) and (b) can be given.
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Problem 2. Let A ⊂ Rm be a given collection of m-tuples of real numbers
satisfying a1 +a2 + · · ·+am = l−1, ∀(a1, . . . , am) ∈ A. Find λ1, λ2, . . . , λm ∈
R such that

n∑
i=1

aiλi ≥ 1, ∀(a1, . . . , am) ∈ A (52)

and
n∑
i=1

λi dimHi < 0. (53)

Since the geometric data plays no role in the proof of Lemma 5.7, we
can solve Problem 2 in a similar way:

Lemma 5.10. Let A1, . . . , Am be positive real numbers corresponding to
dimH1, . . . ,dimHm. Then Problem 2 has an affirmative answer if, and only
if, there exist i0 6= j0 ∈ {1, . . . ,m} such that

inf
(a1,...,am)∈A

{aj0} >
(l − 1)

∑
j 6=i0 Aj∑m

k=1Ak
, (54)

Proof. If Problem 2 has an affirmative answer with solution λ1, . . . , λn, define
λi0 = maxi{λi} and λj0 = minj{λj}. Inequality (54) then follows from
Lemma 5.7 applied to the problem(∑

i 6=j0

ai

)
λi0 + aj0λj0 ≥ 1, (55)

Ai0λi0 +
(∑
j 6=i0

Aj

)
λj0 < 0, (56)

where (a1, . . . , an) ∈ Ã =
{

(
∑
i6=j0 ai, aj0) : (a1, . . . , am) ∈ A

}
⊂ R2.

The converse is a straightforward consequence of Lemma 5.7 since we
can choose i0 6= j0 arbitrarily and set λ = λj = λi for all j, i 6= j0. �

We finally pass to the proof of Theorem 5.9 by recognizing inf{tr(p1|W)}
as an invariant quantity associated to the G-action. To this aim, fix a ρ-
invariant inner product on Hq and let R be the regular part of Hq with
respect to ρ (recall Definition 5.6). Then:

Proposition 5.11. Suppose dρ(gq)X = 0 and Hq = span{X} ⊕H1 ⊕H2 is
a ρ-invariant decomposition. For every Y ∈ R, write Yi as its Hi-component.
Then

inf
W∈W̃q

{tr(p1|W)} = inf
Y ∈R
{dimH1 − dim ρ(G0

q)Y1}.

Proof. Let us fix Y = Y1 + Y2 ∈ R and, for every α > 0, define

Wα= (dρ(gq)(αY1 + Y2))
⊥

. It suffices to show that

inf
α>0
{tr(p1|Wα)} = dimH1 − dim ρ(Gq)Y1. (57)
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Write Wα =W1 ⊕W2 ⊕Wα
12 where

W1 := ker p2 ∩Wα, (58)

W2 := ker p1 ∩Wα, (59)

Wα
12 :=Wα ∩ (W1 ⊕W2)

⊥
, (60)

where pi is the Hi-projection. Note that W1,W2 do not depend on α, since
Wi = {Zi ∈ Hi | Zi ⊥ dρ(gq)Yi}. Observe also that the dimension of Wα

12

does not depend on α. Moreover:

Lemma 5.12. There are constants c, C > 0, not depending on α, such that

1

1 + cα2
≤ ‖p1(vα)‖2

‖vα‖2
≤ 1

1 + Cα2

for every vα ∈ Wα
12.

Proof. Let M = dρ(gq)Y1 ⊕ dρ(gq)Y2 and note that Wα
12 ∈ M. Let Mα

12 be
the orthogonal complement of Wα

12 in M and note that both p1|Mα
12
, p2|Mα

12

are isomorphisms onto their images: an element in ker p1|Mα
12

lies in H2 and
is orthogonal to both W2 and Wα

12, however p2(W2 +Wα
12) = H2 for every

α > 0. Analogously, ker p2|Mα
12

= {0}. Moreover, given Z1 + Z2 ∈ M1
12,

we have αZ1 + Z2 ∈ Mα
12. In particular, there is an invertible linear map

T : p1(M)→ p2(M) such that

Z ∈Mα
12 ⇐⇒ Z = αZ1 + T (Z1), for some Z1 ∈ p1(M).

We conclude that:

W ∈ Wα
12 ⇐⇒W = W1 − α(T ∗)−1W1, for some W1 ∈ p1(M).

Using that ‖T‖−1 ≤ ‖T−1‖ and ‖T ∗‖ = ‖T‖, we have

‖W1‖2 + α2‖T‖−2‖W1‖2 ≤ ‖W‖2 ≤ ‖W1‖2 + α2‖(T−1)‖2‖W1‖2. �

Now we estimate tr(p1|Wα). Since W2 ⊂ ker p1, we take orthonormal
bases {e1, ..., ed1} and {eα1 , ..., eαd } forW1 andWα

12, respectively, and consider:

tr(p1|Wα) =

d1∑
j

〈p1ej , ej〉+

d∑
k

〈p1e
α
k , e

α
k 〉 = dimW1 +

d∑
k

‖p1e
α
k‖2.

Lemma 5.12 gives:

dimW1 +
1

1 + cα
dimWα

12 ≤ tr(p1|Wα) ≤ dimW1 +
1

1 + Cα
dimWα

12. (61)

By taking α → ∞ we conclude that infα{tr(p1|Wα)} = dimW1. On the
other hand, H1 = W1 + dρ(gq)Y1. So it follows that dimW1 = dimH1 −
dim ρ(Gq)Y1, completing the proof. �

The proof of Proposition 5.11 can be adapted when Hq ∩ span{X}⊥ is
decomposed into m ρ-invariant components:
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Proposition 5.13. Suppose that dρ(gq)X = 0 and that Hq ∩ span{X}⊥ =
span{X} ⊕ H1 ⊕ H2 ⊕ · · · ⊕ Hm is a ρ-invariant decomposition. For every
Y ∈ R, write Yi as its Hi-component. Then there exists j0 ∈ {1, 2, . . . ,m}
for which

inf
W∈W̃q

{tr(pj0 |W)} = inf
Y ∈R
{dimHj0 − dim ρ(G0

q)Yj0}.

Proof. Following the proof of Proposition 5.11, fix Y = Y1+· · ·+Ym ∈ R. For

every α > 0, define Wα= (dρ(gq)(αY1 + Y2 + · · ·+ Ym))
⊥

, where Yi ∈ Hi.
Take j0 given by Lemma 5.7 and let Wα =W1 ⊕W2 ⊕Wα

12, where

W1 := (
⋂
i 6=j0

ker pi) ∩Wα, (62)

W2 := ker pj0 ∩Wα, (63)

Wα
12 :=Wα ∩ (W1 ⊕W2)

⊥
, (64)

where pi is the Hi projection. As in Proposition 5.11, W1,W2 and the
dimension of Wα

12 do not depend on α. Moreover, Lemma 5.12 remains valid
in this case and we can estimate tr(pj0 |Wα) as well.

The same calculation performed in Proposition 5.11 yields

inf
α
{tr(pj0 |Wα)} = dimW1.

Since these dimensions are finite, it is clear that W1=Hj0 ∩ (dρ(gq)Yj0)
⊥

,
which completes the proof. �

Now Theorem 5.9 follows by combining Theorem 4.1, Propositions 5.11
and 5.13 and Lemma 5.10.
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[Müt87] M. Müter. Krummüngserhöhende deformationen mittels gruppenaktionen.
PhD thesis, Westfälischen Wilhelms-Universität Münster, 1987.

[Nas79] J. Nash. Positive Ricci curvature on fibre bundles. Journal of Differential
Geometry, 14(2):241–254, 1979.

[Pet06] P. Petersen. Riemannian Geometry. Springer, 2006.

[Poo75] W. A. Poor. Some exotic spheres with positive ricci curvature.
Mathematische Annalen, 216(3):245–252, Oct 1975.

[PW14] C. Pro and F. Wilhelm. Riemannian submersions need not preserve
positive Ricci curvature. Proceedings of the American Mathematical
Society, 142(7):2529–2535, 2014.

[Spe17] L. D. Sperança. An intrinsic curvature condition for submersions over
Riemannian manifolds, 2017. eprint arXiv:1706.09211.

[Spe18] L. D. Sperança. On riemannian foliations over positively curved manifolds.
The Journal of Geometric Analysis, 28(3):2206–2224, 2018.

[SS96] L. L. Scott and J. P. Serre. Linear Representations of Finite Groups.
Graduate Texts in Mathematics. Springer New York, 1996.
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Instituto de Matemática, Estat́ıstica e Computação Cinet́ıfica – Unicamp, Rua
Sérgio Buarque de Holanda, 651, 13083-859, Campinas, SP, Brazil
e-mail: leonardofcavenaghi@gmail.com

Renato J.M. e Silva
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