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Positive scalar curvature and periodic fundamental groups 

SEAWOMIR KWASIK a n d  REINHARD SCHULTZ 

If M is a smooth manifold and g is a riemannian metric on M, then the scalar 

curvature is a smooth real valued function kg : M - *  • that measures the average 
sectional curvature at a point of M; more precisely, kg is formed by double 
contraction of  the riemannian curvature tensor of g (compare [He, pages 74-75]). 
Geometrically speaking, the scalar curvature function measures the difference 
between the volumes of  the riemannian and euclidean geodesic disks. The existence 
of a riemannian metric with positive scalar curvature on a smooth manifold turns 
out to be of  interest in many contexts. For example, by results of J. Kazdan and 
F. Warner [KW] the entire question of realizing a smooth function as a scalar 
curvature reduces to the existence of such a metric, and results of R. Schoen [Schn] 
on the Yamabe problem show that a metric with positive scalar curvature can be 
conformally deformed to one with constant  positive scalar curvature. Furthermore, 
the existence of a riemannian metric with positive scalar curvature is directly related 
to some questions and results from index theory, transformation groups, and the 
applications of differential geometry to general relativity; discussions of  these 
relationships can be found in papers by H. B. Lawson and M. Gromov [GL1-2],  
and R. Schoen and S.-T. Yau [SY]. Several results from the past two decades have 
shown that differential-topological invariants often yield necessary or sufficient 
conditions for a manifold to admit a positive scalar curvature metric. In most cases 
the invariants involve characteristic class data and the manifold's fundamental 
group (compare [GL1-2] ,  [Miyl], [Rosl -3] ,  [SY]). As in surgery theory, there are 
major differences between the techniques for studying finite and infinite fundamen- 
tal groups; the latter often require geometric and analytic input related to the Index 
Theorem, while algebraic and homotopy-theoretic methods are often preferable for 

finite groups. 
For  various technical reasons one expects that the most tractable finite funda- 

mental groups are those of odd order. In [Ros3] J. Rosenberg considered the special 
case of  cyclic groups Zp, where p is an odd prime. The main conclusion of  [ Ros3] 
in this direction is that a dosed smooth manifold M with fundamental group Zp 
and dimension at least 5 admits a riemannian metric with positive scalar curvature 
if and only if its universal covering ~t does. Motivated by this result and by earlier 
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results in [Ros2] in the non-spin case, Rosenberg conjectured that a similar relation 
holds for arbitrary odd order groups. 

In Section 1 of  this paper we shall prove Rosenberg's conjecture for manifolds 
with periodic odd order fundamental groups (Theorem 1.8). Recall that a finite 
group G is periodic if there is a d > 0 such that Hi(G) ~ Hd+i(G) for all i > 0; the 
least such d is called the period of  G and is denoted by dG. One reason for interest 
in such groups is that a finite group of odd order acts freely and smoothly on some 
(homotopy) sphere if and only if G is periodic (compare [DM]). The most basic 
class of such actions is given by orthogonal (or linear) spherical spaceforms in which 
the action of G on S" is induced by an orthogonal representation on R" § i that is 
free except at the origin. For these examples the quotient manifolds S"/G admit 
complete riemannian metrics of  constant positive sectional curvature, and in fact an 
arbitrary manifold M" admits such a metric if and only if M" is an orthogonal 
spherical spaceform. 

Although the orbit manifold of a free nonlinear differentiable action on a 
homotopy sphere cannot admit a metric with constant positive sectional curvature, 
it is still meaningful to ask if there is a metric on M" with weaker positive curvature 
properties, and scalar curvature provides a natural starting point. The existence of 
metrics with reasonable positive curvature properties has attracted particular inter- 
est when the group G admits a free differentiable action on some homotopy sphere 
but does not act freely and orthogonally on any sphere (compare [Schu, Problem 
8.13, page 558]); the simplest examples are nonabelian groups of  order pq, where p 
and q are distinct odd primes, and the smallest such group has order 21 (compare 
[Pc], [Lee]). Our results imply a complete characterization of  those quotient 
manifolds M = S"/G admitting riemannian metrics with positive scalar curvature. 
Specifically, M admits such a metric if and only if its universal covering does (see 
Corollary 1.8). It follows that either M admits a positive scalar curvature metric or 
the connected sum of M with some homotopy sphere does (see Complement 1.9). 
Special cases of  these results beyond [Ros3] had previously been verified by 
Rosenberg. 

In Section 2 we consider the existence of metrics with positive scalar curvature 
on the orbit manifolds F,/G, where G has even order and acts freely and smoothly 
on the homotopy sphere ~r. As in the odd order case, the group G must be periodic, 
and the dimension of ,~ must be congruent to - 1  mod the period d~ of G. 
Furthermore, there are systematic families of  such groups that act smoothly and 
freely on homotopy spheres but never orthogonally; in all cases it is possible to find 
examples in each dimension congruent to - 1  mod 2d~, and in most cases it is 
possible to find examples in each dimension congruent to - 1  mod de (compare 
[DM]). If  the order of  G is greater than 2, then there are infinitely many 
differentiably inequivalent examples in every such dimension, and we prove that 
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there is always an infinite subfamily of manifolds that admit riemannian metrics 
with positive scalar curvature (see Theorem 2.1). In fact, in each dimension 
congruent to 4 except 3 itself, one can show that every smooth spherical spaceform 
admits such a metric (see Theorem 2.2). 

Our methods rely on a result of Gromov-Lawson  [GL2] and Schoen-Yau 
[SY]: If M n has a riemannian metric with positive scalar curvature and N n is 
obtained from M n by surgery on an embedded sphere of dimension < (n - 3), then 
N ~ also admits such a metric. It follows that the existence of a positive scalar 
curvature metric essentially depends upon the bordism class of a closed manifold 
M n and its 2-connected reference map M n ~  K(g, (Mn), 1). The results of this paper 
will be proved by a combination of previous results of T. Miyazaki [Miy l -2]  and 
J. Rosenberg [Ros l -3]  on such bordism classes, additional homotopy-theoretic 
techniques from bordism theory, and surgery-theoretic results on the existence of 
smooth spherical spaceforms as in [DM] or [Ma]. 

It appears that techniques from surgery theory and homotopy theory can yield 
much further information on the existence of riemannian metrics with positive 
scalar curvature on smooth spherical spaceforms. More generally, such methods 
should also yield quantitative criteria for determining when a positive scalar 
curvature metric g on a closed spin manifold M with finite fundamental group can 
be propagated to a second closed spin manifold N that is homotopy equivalent to 
M. We shall consider these questions in subsequent papers. 
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1. Rosenberg's conjecture 

We begin with some notation. If ~ is a finite group and k is a positive integer, 
let ~kSpin(B~) be the k-th spin bordism group of g. As in [CF] or [St], this group can 
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be described by equivalence classes of pairs ( f :  V ~ Bit, a), where (V, a) is a closed 
k-dimensional spin manifold (with spin structure a) and f is a continuous map into 
the classifying space of It, modulo bordism, and the group can also be described 
algebraically as the stable homotopy group n k ( M  Spin ^ Bit+ ), where M Spin is 
the Thom spectrum associated to B Spin and Bit+ is the disjoint union of Bit and 
a point. Define POS k (it) c l'2spin(Bit) to  be the set of all classes with representatives 
of the form ( V  ~ Bit, a), where V has a riemannian metric with positive scalar 
curvature. It is immediate from [GL2] and [SY] that Posk (n) is a subgroup if k > 5. 
Furthermore, the results in the latter papers imply an important invariance prop- 
erty for POSk (it) (compare [Ros2]). 

PROPOSITION 1.1. Let  f : M ~ Bit represent a class in P o s  k (it), where k > 5. 

I f  f is 2-connected, then M admits a riemannian metric with positive scalar curvature. 
[] 

Following standard practice we define ~kSpin(Brt) to  be the kernel of the 
homomorphism t2spin(Bit) ~ t2spin({pt}) induced by the constant map. The proof of 
Rosenberg's conjecture for Zp in [Ros3] has two steps. One involves results of T. 
Miyazaki [Miy2] that yield lower bounds for the set POSk ({pt}) c I2Spin({pt}),  and 
the other is a proof that POSk (n) contains i~sPi"(Bn) for all k > 0. In fact, the 
methods of [Ros3] and the equivalence of ordinary and spin bordism away from 2 
immediately yield a reduction of Rosenberg's conjecture to the case of spin 
manifolds: 

(1.2) Let  It be a f inite group o f  odd order. Then Rosenberg's conjecture is true for  
It i f  and only i f  POS k (It) contains ~'~spin(Bit) for  all k > O. [] 

The subgroups POS k (~)  have covariant and contravariant naturality properties 
that are extremely useful in formal manipulations. We begin with covariant 
naturality. 

(1.3) I f  q~ : n ~ It" is a group homomorphism and Bq~ is the associated map o f  
classifying spaces, then 

(Btp), : oSpin(BI) ~ I']Spin(Bit') 

sends POSk (n) to POSk (it'). 

This follows because BqJ, sends the class represented by ( f :  V ~ Bn, a) to the 
class represented by ((Bq~)f : V ~ Bit' ,  a). [] 
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The statement of the contravariant naturality property involves the transfer 

homomorphism 

(B(p) ! .  [~'~kSpin(B2z ')  --~ ~C~kSpin(BT[ ) 

associated to the inclusion of one finite group 7t' into another group n. Geometri- 
cally, this map takes a class represented by the pair ( f :  V ~ Brt, tr) into the class 
represented by ( f  : V' --* Bn' ,  tr'), wheref '  and V' are obtained from the pullback of 
the diagram V ~ Bn ,,-Bn' and a '  is obtained by lifting a through the covering 
space projection V ' ~  V (compare [CF]). The map (B~p) ~ can also be described 
homotopy-theoretically as the homomorphism induced by a transfer map of CW 

spectra 

t~ : S ~ B n  ~ S~176 ", 

where S ~ X  denotes the CW spectrem associated to a CW complex X (compare 
[BG]). 

(1.4) I f  tp : n --, lt' is an inclusion and 

(Btp)' �9 O Spin(Brt') --* OSpin(BT[) 

is the associated transfer homomorphism, then (Bcp) ~ sends POSk (n') to Posk (n). 

This follows because a metric with positive scalar curvature can always be lifted 

to a covering space. [] 

The following consequence of (1.3) and (1.4) will be used repeatedly in this 

paper. 

PROPOSITION 1.5. Let  ~ be a finite group, let p be a prime dividing the order 
o f  n, and let jp :rtp ~ n be inclusion o f  a Sylow p-subgroup. Then a class �9 e t2kSPin(Bn) 
lies in POSk (n) /f  and only i f  the images (Bjp)!(ot) under the associated transfer 

homomorphisms lie in POSk(ne)for all p. 

Proof. Half of the proposition is a restatement of (1.4), so it suffices to show 
that 0t e POSk 0Z) if for every prime p dividing the order I~zl of n the transfer (Bjp)"~ 

lies in POSk (rtp). 
For each prime p let Tp be the composite (Bjp),(Bjp) ~. Standard transfer 

arguments as in [BG] show that Tp | Z(p~ is an isomorphism. 
We shall need the following elementary fact: 
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(1.5A). Let R be a noetherian ring, let f2 be a finitely generated R-module, and let 
T be an automorphism of  f2. I f  P is a submodule of  f2 such that T(P) is contained in 
P, the T(P) is in fact equal to P. 

Proof of  (1.5A). The ascending chain of submodules 

P ~ T - l ( p )  ~ T-2(P) . . .  

must terminate because ~2 is noetherian. But if T k(p) = T - k  ~(p), then T(P) = P 
(apply T k +~ to both sides of  the equation). [] 

We now return to the proof of 1.5. Assume now that for every prime p dividing 
the order Inl of ~ the transfer (Bjp)~ lies in Posk(np). By (1.3) it follows that 
Tp(~) e POSk (n) for all p. Since Tp | is an automorphism of g2spin(Bn)tp) and 
POSk (n)~p) is Tp-invariant by (1.3) and (1.4), it follows from (1.5A) that the image 
of ~p) of  ~ in f2spin(Bn)tr ) lies in POSk (n)~p). A similar conclusion holds for all 
primes p not dividing tnl, for if jr denotes the inclusion of  the trivial subgroup in n 
then Te, is again a bijection by transfer considerations, and the hypotheses imply 
that (Bjt)~ct lies in Pos, ({pt}). Since f2svin(Bn) is finitely generated and the image 
classes ~p~ lie in POSk (~Z)O,) for all primes p, elementary considerations imply that 
must lie in POS k (/t). [] 

C O R O L L A R Y  1.6. Let it be a finite group of  odd order. Then Rosenberg's 

conjecture is true for n i f  and only if  it is true for each Sylow subgroup xp of  x. [] 

Proposition 1.5 reflects well known results on stable splittings of  classifying 
space spectra S * B n  into p-primary components (where p is a prime dividing the 
order of n). In fact, the subgroups Posk (n) are compatible with all of the splittings 
of  S * B n  that have been discovered during the past decade (e.g., see the expository 
article by S. Priddy [Pr]). 

PROPOSITION 1.7. Suppose that S ~ B n  is (stably) equivalent to a wedge of  
spectra X~ v �9 �9 �9 v .'Yr. For each i such that 1 < i < r let E i : S ~ B n  ~ S~176 be the 
homotopy idempotent given by projection onto XJol lowed by inclusion, and let Et. be 
the induced idempotent on f2Spin(Bn). Then a class ot~ f2spin(Bn) lies in POSk (n) i f  and 

only i f  Ei.ot lies in POSk (n)for  all i. 

Proof. Since a = X,. E~.~ the if direction is trivial, so it suffices to prove the only 
if direction. Suppose that �9 ~ Posk (n). By Proposition 1.5 and other transfer 
considerations as in [Pr] it suffices to prove the result when n is a p-group. In this 
case the truth of  the Segal Conjecture implies that the S-maps E~ of S~176 are given 
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E~ ~- ~ c~j �9 a~jl ' a q 2  " " �9 aijq(j) 
J 

where each c U is a p-adic integer and each agjk is either a map S~Bq~ associated to 
a group homomorphism q~ as in (1.3) or a transfer t~ associated to an inclusion ~o 
as in (1.4); as noted in [Pr], this follows by combining the results of [Ca] and 
[LMM]. Since the induced self-map Eg. of f2Spin(Brr) is completely determined by 
the restriction of E~ to a finite subspectrum of S~ with finite stable homotopy 
groups, for each k it is possible to approximate the p-adic integers c~j by ordinary 

integers c~ such that 

El. = E C~ " aij,. " aijz. " " aijq~j). 
y 

on the group ~'~Spin(B/[); of course, one needs increasingly better approximations to 
the p-adic integers cij as k --* oo. By (1.3) and (1.4) the map E~. must send POSk (n) 
to itself, and consequently E;.~ lies in POSk (n) if ~ ~ POSk Or). [] 

We are now ready to prove our result on Rosenberg's conjecture: 

T H E O R E M  1.8. Let n be a finite periodic group o f  odd order, and let M be a 

closed spin manifold with fundamental  group n and dimension > 5. Then M admits a 

riemannian metric with positive scalar curvature i f  and only i f  its universal covering ffl  

admits such a metric. 

Proof. Recall that a finite group rt is periodic if and only if each of its Sylow 
p-subgroups r~p is periodic, and for p odd this happens if and only if np is cyclic (see 
[CE, Theorem XII.11.6]). Therefore by Corollary 1.6 it suffices to prove the 

theorem for n = Zp,, where p is an odd prime. 
The At iyah-Hirzebruch spectral sequence for the groups ~2SPi"(BZp0 collapses 

for all r > 1; the considerations used in [Ros3] to verify this when r = 1 extend to 

all values of  r. 
Let bo be the stable homotopy spectrum for connective real K-theory (compare 

[ABP]), and let D : M Spin--* bo be the morphism of ring spectra induced by the 
Dirac orientation of a spin vector bundle (see [ABP] or [St]). The associated natural 

transformation of  homology theories 

~.~"(x) ~ bo,(X) 
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will be denoted by ( D x ) ,  or more simply by D , .  As noted in [Ros3, w it is well 
known that POSk ({pt}) is contained in the kernel of D , ,  and if k < 23 the results 
of [Ros3, w show that equality holds. Furthermore, the results of Miyazaki [Miy2] 
imply that 2"t2sP~n({pt})~POSk({pt}) for some r >0.  Therefore the collapsing 
of the Atiyah-Hirzebruch spectral sequence implies that POSk (Zp,) contains the 
kernel of D ,  restricted to the reduced group f~sP~(B2~p,). As in [Ros3, w this 
reduces the proof to showing that the image of Posg (Zp,) contains all of ~'ok(BZp,); 
furthermore, the methods of [Ros2, Theorem 2.14] and [Ros3, Theorem 3.1] imply 
that it suffices to prove containment when k = 5. We shall prove this assertion by 
induction on r. 

The case r = 1 is essentially contained in [Ros3, Theorem 1.3]. Assume that 
r > 2 and D,(Pos5 (n)) contains Gos(Bn) for n = 2~p,_t. An Atiyah-Hirzebruch 
spectral sequence argument implies that the sequence 

0 --* ~os(BZ p, - ,) ~ Gos(BT_p,) ~ ~os(BT_p) ~ 0 

is exact, where the monomorphism is induced by inclusion and the epimorphism is 
the transfer. By the induction hypothesis and (1.3) we know that the image of 
~os(BZp,_ ~) is contained in D, (Po% (Zp0). On the other hand, by [Ros3, Thm. 1.3] 
we also know that every element in ~os(BZe) has the form D,(Zaixi) ,  where the a~ 
are integers and each x; is represented by a Zp lens space. But every free linear 
action of 7/p on a sphere extends to a free linear action of Zp,, and therefore each 
xi lifts to an element y~ e Po% (Zp,) represented by an appropriate lens space. 
Therefore every element u e ~os(BT/pr) can be written as a sum u0 + u~, where u0 lies 
in the image of Pos5 (7/p,) and u~ e Gos(BZp,- O. By the induction hypothesis we 
know that u~ = D , v  for some v ePo%(~'p,_,),  and it follows that u lies in the 
image of Po% (Zp,). [] 

REMARK.  Recently S. Stolz has announced that Pos k (1) is the kernel of the 
Dirac orientation D ,  �9 t2Spin(X) ~ bog(X) "~ rrk(Z • BO). This is a strengthening of  
the result from [Miy2] used in the proof of Proposition 1.5. 

Theorem 1.8 has immediate consequences for smooth spherical spaceforms 
M ' = Z ' / G ,  where n > 5 and G is an odd order group that acts freely and 
differentiably on the homotopy sphere Z ". 

COROLLARY 1.9. Let G be a finite group of  odd order, and assume we are 
given a free differentiable G-action on the homotopy n-sphere Z", where n > 5. Then 
Z /G admits a riemannian metric with positive scalar curvature i f  and only i f  Z bounds 

a spin manifold. 



Positive scalar curvature and periodic fundamental groups 279 

P r o o f  If M" as above admits a riemannian metric with positive scalar curva- 
ture, then by [Hi, Remark (3), page 46] the universal covering _r, bounds a spin 
manifold. Conversely, if s  bounds a spin manifold, then the invariance principle 
in Proposition 1.1 implies that _r admits a riemannian metric with positive scalar 
curvature (since s  is spin cobordant to S" and the latter has such a metric). [] 

C O M P L E M E N T  1.10. Let  M "  and ~" be as in 1.8, and assume that G ~ {1}. I f  

n is not congruent to 1 mod 8 then every smooth spherical spaceform M ~ as in 1.8 

admits a riemannian metric with positive scalar curvature. I f  n is congruent to 1 mod 8 
then either M n admits such a metric or else there is a homotopy sphere ~.o such that 

M # 2;0 admits such a metric. 

In particular, Corollary 1.9 and Complement 1.10 answer a question posed by 
I. Madsen in [Schu, Problem 8.13, page 558]: If G is the nonabelian group of order 
21 and ~ is an arbitrary free differentiable action of G on S 5, then $5 /~  admits a 
riemannian metric with positive scalar curvature. 

Proof. First of all, if G acts freely on a homotopy n-sphere, then it is well- 
known that n must be odd. 

Every homotopy n-sphere bounds a spin manifold if n is not congruent to 1 or 
2 mod 8, and in these cases there is a homotopy sphere Z, that does not bound a 
spin manifold such that s  # Z, is diffeomorphic to S", and for every homotopy 
n-sphere T either T or T # Z, bounds a spin manifold (compare [Bru, Theorem 1.1 

and Section 2]). 
If Z bounds a spin manifold, then M admits a riemannian metric with positive 

scalar curvature by 1.8. If ,~ does not bound a spin manifold, then by the preceding 
observations the homotopy sphere 2; # Z, bounds a spin manifold and is the 
universal covering of  M # s  (the universal covering of the latter is the connected 
sum of M and [G I = order (G) copies of s  and since Ia/is odd the connected sum 
of Ia I copies of Z', is diffeomorphic to Z,). It follows that M # s  admits a 
riemannian metric with positive scalar curvature by 1.8. [] 

REMARK.  As noted in the introduction, if the odd order group G acts freely 
and smoothly on some sphere but never orthogonally, one can also ask if there is 
some free action for which the orbit manifold has a riemannian metric with positive 
curvature properties that are stronger than positive scalar curvature but (necessar- 
ily) weaker than constant positive sectional curvature. As noted in the first 
paragraph of this paper, if a metric with positive scalar curvature exists, then there 
is a metric with constant positive scalar curvature by Schoen's results on the 
Yamabe problem [Schn]. Two natural strengthenings of positive scalar curvature 
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are (variable) positive sectional curvature and positive Ricci curvature (definitions 
may be found in many references- for example, see [He, pages 74-75]; in 
particular, positive sectional curvature implies positive Ricci curvature). Examples 
of nonlinear smooth spherical spaceforms with cyclic fundamental groups and 
positive Ricci curvature metrics can be obtained from results of J. Cheeger [Ch] and 
the work of Hernhndez-Andrade [He]. If n is a nonabelian group of order pq,  where 
p > q are odd primes, then there are smooth spherical spaceforms for G that are 
closely related to certain Brieskorn manifolds with positive Ricci curvature. Specifi- 
cally, if V is the Brieskorn manifold defined by the intersection of the zero set of 

z~ + . .  �9 + Z{q + Z~,q + l (k > O) 

with the unit sphere in C kq+ 1, then V is ( k q -  2)-connected by general results on 
Brieskorn manifolds, the group ~ acts freely and differentiably on V (compare [Pe] 
for the case k = 1), and for all sufficiently large positive integers k the methods and 
results of H. Hern~ndez-Andrade [He] imply that V admits a n-invariant rieman- 
nian metric with positive Ricci curvature. Furthermore, one can combine the 
methods of T. Petrie [Pe] with subsequent results of A. Bak [Bak] and C. T. C. Wall 
[Wa2-3]  to perform rc-equivariant surgery on embedded (kq  - 1)-spheres in V to 
obtain homotopy spheres with free differentiable it-actions. It seems natural to ask 
whether the orbit manifolds of these free n-actions also admit riemannian metrics 
with positive Ricci curvature. 

2. Spaceforms with even order fundamental groups 

The results of  Section 1 completely describe the smooth spherical spaceforms 
admitting riemannian metrics with positive scalar curvature when the fundamental 
group has odd order. If  the fundamental group G of the smooth spherical 
spaceform M has even order, then the study of  the scalar curvature problem for M 
is considerably more difficult. However, for each group n that arises and for at least 
half of the possible dimensions there are infinite families of spaceforms that admit 
riemannian metrics with positive scalar curvature. 

A precise statement of  the result for even order groups requires some additional 
notation. If the nontrivial finite group rt acts freely on some sphere, then the results 
of surgery theory yield free differentiable actions on homotopy spheres in all 
dimensions > 5 and congruent to - 1 mod 2d, (twice the period of n) in all cases, 
and for most n the results also yield actions in all dimensions > 5 congruent to 
- 1  mod the period d~. The hypotheses of [DM, corollary 5.11(a), page 275] 
describe sufficient conditions for the stronger conclusion to hold (in this connection 
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also see [Ma2]). Set a = an equal to 1 if these conditions are satisfied, and set a = a~ 
equal to 2 if they do not. 

T H E O R E M  2.1. Let n ~ 1, 2~ 2 be a finite group that acts freely and smoothly on 

some sphere, let d = dr be the period o f  ~, and let a = an be defined as above. Then 

for  each positive integer k with kad > 5 there exist infinitely many differentiably 

inequivalent smooth spherical spaceforms M kad- t o f  dimension kad - 1 such that M 

admits a riemannian metric with positive scalar curvature. 

Proo f  o f  Theorem 2.1. Let n be a finite group that acts freely and smoothly on 
some sphere. Then for each k > 0 the methods of [Ma], Section 4, imply that ~z acts 
freely on some homotopy (kad - 1)-sphere such that for each Sylow p-subgroup np 

the manifold Z/np is normally cobordant to an orthogonal spaceform. In fact, the 
results of  [Ma] and results on Wall groups from [Wa2] imply that there are 
infinitely many differentiably inequivalent free n-actions on the standard sphere 
S k~d- ~ that are equivariantly normally cobordant to a given free action of this type. 
Let { T~ ad ~ } denote such an infinite family of smooth n-actions. For many choices 
of n it is even possible to construct an infinite family of distinct free g-actions that 
are equivariantly h-cobordant to a specific example (compare [Mlnr]). 

Since 7t has order > 3, its period d is even. The balance of  the proof  splits into 

two cases depending upon the residue class of  kad mod 4. 

Case 1. Assume that kad is divisible by 4. 

In this case we claim that the quotient space Z/n is a spin manifold. Transfer 

considerations reduce the verification of this to the case where n is a 2-group, and 
thus to cases where n is either a cyclic or generalized quaternionic 2-group. In the 
first subcase the stable tangent bundle is given by a balanced product 2; • ~ V where 
V is a free complex n-representation with an even number of  summands; it is an 
elementary exercise to check that the first two Stiefel-Whitney classes vanish for 
such bundles. In the second subcase the stable tangent bundle is also given by a 
balanced product 2; x~ V, but in this case V is a quaternionic E-representation; 
since the first two Stiefel-Whitney classes vanish for quaternionic vector bundles, 

the claim is also true in this subcase. 
Now choose a spin structure a on Z/rt, and let 

Spin e f2k~ a _ 1 (Bn) 

be the cobordism class associated to (Zln ~ B n ,  a). Since the manifolds T~ln are 
all normally cobordant  to S / n  and the normal cobordism between them is 
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automatically a spin cobordism, by Proposition 1.1 the manifolds Z/n  and Tj/n 
will all admit riemannian metrics with positive scalar curvature if ~t E Poskad- ~ (n). 

Let p be a prime dividing the order of  n, let np be the Sylow p-subgroup of n, 
and let j~:np--*n be the inclusion. Since ,~,/np is normally cobordant to an 
orthogonal spaceform, by the results of  [Wal] it is obtained from the latter by 
surgeries on embedded spheres of  codimension > 3, and the relevant cobordism is 
a spin cobordism. Therefore if (Bjp) ~ denotes the transfer associated to the Sylow 
p-subgroup, it follows that (Bjp)~(at) lies in POSka d_ l(np) (because the class in 
question can be represented by an orthogonal spaceform and hence by a manifold 
with a metric of  constant positive sectional curvature). Therefore by Proposition 
1.5 it follows that at ~ POSka d_ 1 ( / t ) .  This proves Theorem 2.1 when kad is divisible 
by 4. 

Case 2. Assume that kad > 6 is congruent to 2 mod 4. 

In this case the Sylow 2-subgroup of  ~ must be cyclic, the period d must be 
congruent to 2 mod 4, and a must be 1. More important, the quotient ,Y,/n has a 
nontrivial second Stiefel-Whitney class (essentially because the same is true for 
I~P 4s+ ~). Therefore it is necessary to modify the preceding arguments in order to 
handle nonspin manifolds. Similar modifications may be found in [Ros2, Theorem 
2.14] and [Miyl,  Theorem 5.1]. 

If n is a positive integer or n = o% 7t is a finite group, and f l e  H2(n;/ '2)  is a 
cohomology class, define Y,(n, fl) to be the homotopy pullback of  
fl :K(n, 1)-*K(7/2, 2) and the second Stiefel- Whitney class w2:BSO . --* K(2~ 2, 2). 
Following standard conventions, if no subscript appears it is understood that 
n = ~ .  If n < m the canonical maps classifying spaces BSO,  ~ BSO,, yield corre- 
sponding morphisms Y.(rr, fl) ~ Y,,,(rr, fl), and if 

~,. (n < ~ )  

denotes the pullback of the universal oriented n-plane bundle with associated 
Thom space Th,  (n, ~), then one obtains a sequence of maps 

S Th~ (n, fl) -* Th~ +, (n, fl) 

that yield a Thom spectrum Th(n, fl). The homotopy groups of  Th(n, r )  have the 
usual sort of interpretation as the bordism groups of manifolds with appropriate 
normal structure (compare [St]). 
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NOTE. If fl = 0 then Y,,(n,/3) reduces to B Spinn x K(~, 1). 

If (p : rc ~ it' is a group homomorphism and fl' e H 2 ( g  ', ~'2), then the universal- 
ity properties of pullbacks yield mappings of spaces Cn(tp):Yn(n,  t p* f l ' )~  
Yn(n',fl') and an associated morphism of Thorn spectra Atp :Th(n ,  tp*fl')--* 
Th (n', fl'). The induced map of stable homotopy groups will be denoted by (Atp).. 
Similarly, if (p is an inclusion there is an associated transfer morphism of spectra 
from Th (Tt', fl') to Th (rt, (p*fl'); the induced homomorphism of stable homotopy 
groups will be denoted by (Atp) ~. 

Suppose now that It and kad satisfy the conditions for Case 2. Then 
H2(n; 7/2) ~ 7/2 and the nonzero class fl corresponds to the second Stiefel-Whitney 
class of smooth spherical spaceforms M kad- l with fundamental group 7t. Conse- 
quently the manifold M kad- 1 together with an orientation and a reference map 
to Brr determine a bordism class associated to an element ~t of the group 

nk~d-, (Th (n, fl)). 
Since ( k a d -  1) is odd, the Atiyah-Hirzebruch spectral sequence implies that 

the stable homotopy group rCk,,d , (Th (n, fl)) is finite, and therefore ~t may be 
decomposed as a finite sum E ~tp, where p ranges over all the primes dividing the 
order of lZka d_  ,(Th (n, fl)) and the order of ctp is a power ofp .  

Let POSkad--, (re, /3) be the set of all classes in nkad-,  (Th (rt,/3)) representable by 
manifolds V k 'd-  ' supporting riemannian metrics with positive scalar curvature. 
Exactly as in Proposition 1.1 (the special case/3 = 0), if k > 5 the results of [GL2] 
and [SY] imply that PoSkad_, (n, 13) is a subgroup of Th(n,/3) and that all 
representatives for which the associated reference map V k 'a-  ' ~ Bn is 2-connected 
admit riemannian metrics with positive scalar curvature. Therefore it suffices to 
prove that each ~tp lies in POSkad-,(n, f l)(p)c POSk,d_ i(n, r) (the latter is finite 
because 7'~ka d - -  , (Th (re,/3)) is). 

As in Case 1, if p is a prime dividing the order of n, let np be the Sylow 
p-subgroup of n, and let jp : np ~ n be the inclusion. By construction the covering 
spaces X/np are normally cobordant to orthogonal spaceforms, and the normal 
cobordisms are automatically (np,/3)-bordisms. It follows that (Ajp)~ lies in 
POSkad- 1 (Tip, /3)(p), If  we project onto the p-primary component, we obtain the 
relations 

(Ajp)!~v e PoSkad- I (rip, fl)(v), 

(Ajp).(Ajp)'~p e PoSkad-, (n, /3)(p). 

AS in Case I, the second of these implies that ~tp lies in POSkaa_ 1 (~, fl)(v)" By our 
previous remarks, this completes the proof of Theorem 2.1 when kad is congruent 
to 2 mod 4. [] 
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Refinements of  Theorem 2.1 

Roughly speaking, Corollary 1.9 and Theorem 2.1 show that there are basi- 
cally no obstructions to the existence of  positive scalar curvature metric on 
smooth spherical spaceforms that arise from the fundamental groups or dimen- 
sions of  these manifolds. The obvious next question is to determine exactly which 
spherical spaceforms admit such metrics; for fundamental groups or odd order the 
results of  Section 1 answer this question completely. In a subsequent paper we 
shall prove a result that disposes of  half the remaining cases: 

THEOR EM 2.2. Let n = 4k + 3 > 7. Then every n-dimensional smooth spheri- 
cal spaceform admits a riemannian metric with positive scalar curvature. 

The results of this paper reduce the proof  of this result to the case of  
spaceforms whose fundamental groups are 2-groups. For  such groups all spherical 
spaceforms are homotopy equivalent to linear models, and therefore the existence 
question can be viewed as a spacial case of  the following: 

PROPAGATION QUESTION. Let M ~ and N ~ be closed smooth manifolds 
that are homotopy equivalent, and suppose that N has a positive scalar curvature 
metric. Does M also have such a metric? 

If N = S n and n > 5 then this question has an affirmative answer if and only if 
n is not congruent to 1 or 2 mod 8 (compare [ G L 1 -  2]). Theorem 2.2 is essentially 
an affirmative answer to the propagation question for linear spaceforms N 4k§ 3 
whose fundamental groups are 2-groups. 

Our study of  this question involves the surgery exact sequence of  [Wal]. It is 
fairly straightforward to show that the existence of  a riemannian metric with 
positive scalar curvature on a spherical spaceform M homotopy equivalent to the 
linear spaceform Z/;t (where n is a finite 2-group) depends only upon the 2-local 
normal invariant of the homotopy equivalence from M to Z/n. Furthermore, a 
case by case analysis shows that each normal invariant can be realized by a degree 
1 normal map ~o ~M* ~ Z / n ,  where ~ is 2-connected and M* has a metric with 
positive scalar curvature; this analysis uses a variety of techniques from algebraic 
topology and the representation theory of compact Lie groups. Theorem 2.2 
follows directly from these considerations and the invariance property described in 
Proposition 1.1. 
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