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POSITIVE SCALAR CURVATURE WITH SKELETON

SINGULARITIES

CHAO LI AND CHRISTOS MANTOULIDIS

Abstract. We study positive scalar curvature on the regular part of
Riemannian manifolds with singular, uniformly Euclidean (L∞) metrics
that consolidate Gromov’s scalar curvature polyhedral comparison the-
ory and edge metrics that appear in the study of Einstein manifolds.
We show that, in all dimensions, edge singularities with cone angles
≤ 2π along codimension-2 submanifolds do not affect the Yamabe type.
In three dimensions, we prove the same for more general singular sets,
which are allowed to stratify along 1-skeletons, exhibiting edge singu-
larities (angles ≤ 2π) and arbitrary L

∞ isolated point singularities. We
derive, as an application of our techniques, Positive Mass Theorems for
asymptotically flat manifolds with analogous singularities.

1. Introduction

1.1. Background and statement of results. Comparison, rigidity, and
compactness theorems, and their applications on the study of low-regularity
Riemannian metrics satisfying some “weak” curvature conditions, has been a
central theme in Riemannian geometry. There has been considerable success
here in the case of sectional curvature lower bounds (Alexandrov spaces; see,
e.g., [ABN86, BBI01]) as well as Ricci curvature lower bounds (Cheeger-
Colding-Naber theory; see, e.g., [CC97, CC00a, CC00b, CN12, CN13]; for
an optimal transport approach, see, e.g., [LV09, Stu06a, Stu06b, Stu06c]).

The case of scalar curvature lower bounds is not as well understood, pos-
sibly due to a lack of a relevant geometric comparison theory. Gromov
[Gro14] recently proposed a polyhedral comparison theory for the study of
positive scalar curvature1, building on (1.1) of Theorem 1.1, which charac-
terizes smooth manifolds as being in one of three families:

(1) those that carry (smooth) metrics with positive scalar curvature;
(2) those that don’t, but do carry metrics with nonnegative scalar cur-

vature and are automatically Ricci-flat;
(3) those that carry neither.

(Unless otherwise specified, all manifolds in this paper are smooth and of
dimension at least three.) The three families are conveniently distinguished

1which was recently confirmed by the first-named author, alongside a rigidity result
conjectured by Gromov, using altogether different methods; see [Li].
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by the sign of the smooth σ-invariant (or Schoen invariant) of M :

σ(M) := sup{Y(M, [g0]) : [g0] is a conformal class of metrics on M},
where

Y(M, [g0]) := inf

{∫

M
R(g) dVolg : g ∈ [g0],Volg(M) = 1

}

and R(g) denotes the scalar curvature of a smooth metric g. The sign
of σ(M) determines the so-called Yamabe type of M : positive, zero, or
negative. For example: σ(Sn) > 0, σ(Tn) = 0, and σ(Σg × (S1)n−2) < 0 for
any surface Σg with genus g ≥ 2. (See [GL83, Corollary A].)

Theorem 1.1 (See [KW75, Sch89]). Let Mn, n ≥ 3, be closed. Then

σ(M) > 0 ⇐⇒ M carries a smooth metric g with R(g) > 0. (1.1)

Moreover,

R(g) ≥ 0 and σ(M) ≤ 0 =⇒ Ric(g) ≡ 0. (1.2)

Gromov’s [Gro14] polyhedral comparison theory for positive scalar cur-
vature relies on a construction of a 3-torus with a singular uniformly Eu-
clidean metric with positive scalar curvature. (See Section 8.5.) Motivated
by further implications of such a study of weak notions of positive scalar
curvature, one naturally wonders which uniformly Euclidean metrics with
nonnegative scalar curvature (on their regular part) are compatible with the
global obstruction and rigidity aspects of Theorem 1.1:

Question 1.2 (Weakly nonnegative scalar curvature, globally). Suppose g
is an L∞ metric on M that is smooth away from a compact subset S ⊂ M .
What conditions on S, g, ensure that

R(g) ≥ 0 on M \ S and σ(M) ≤ 0

=⇒ g extends smoothly to M and Ric(g) ≡ 0? (1.3)

Said otherwise, under what conditions on S, g doesM carry singular metrics
with nonnegative scalar curvature (on the regular part), but no such smooth
metrics?

Definition 1.3 (Uniformly Euclidean (L∞) metrics). We define the class
of L∞ metrics on a closed manifold M to consist of all measurable sections
of Sym2(T

∗M) such that

Λ−1g0 ≤ g ≤ Λg0 a.e. on M

for some smooth metric g0 on M and some Λ > 0.

Let us discuss what is known in the general direction of Question 1.2. We
also survey previous (singular) Positive Mass Theorem results because, in
the smooth setting, [Loh99, Section 6], [SY, Proposition 5.4], and Theorem
1.1 imply the Positive Mass Theorem of Schoen-Yau [SY79a] and Witten
[Wit81] for complete asymptotically flat (Mn, g) with R(g) ≥ 0.
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Codimension 1.

The case that is best understood is

codim(S ⊂ M) = 1,

where S is a closed embedded hypersurface with trivial normal bundle and
where the ambient metric g induces the same smooth metric on S from both
sides.

One cannot hope for Question 1.2 to be valid in such generality. To main-
tain any hope of validity, one must make an additional geometric assump-
tion: the sum of mean curvatures of S computed with respect to the two
unit normals as outward unit normals has to be nonnegative. See Section
8.1 for more details.

There have been three approaches, all subject to the geometric assumption
just described. The first, and closest in spirit to this paper, is to combine the
conformal method with arbitrarily fine desingularizations that are aware of
the ambient geometry; this was first carried out in the positive mass setting
by Miao [Mia02]; see also [Cor00, Bra01]. The second is to use Ricci flow as
a smoothing tool; see [ST18], or [MS12] for the positive mass analog. The
third is to use spinors; see [ST02, LL15] for positive mass, or [CH03] for
positive mass in asymptotically hyperbolic spaces.

Codimension 2.

Much less is known when S ⊂ M is a closed embedded submanifold with

codim(S ⊂ M) ≥ 2.

Nonetheless, one can still not expect Question 1.2 to be valid in such gen-
erality and needs to decide on additional geometric assumptions; see, e.g.,
Section 8.2 for counterexamples.

One approach, which we won’t pursue, is to strengthen the regularity
assumptions on g; to that end, Shi-Tam [ST18] proved (using Ricci flow)
that (1.3) is true if g is Lipschitz across S. See [Lee13] for a result in the
positive mass setting that uses the conformal method.

In our work in codimension two, we opt to keep the low (L∞) reg-
ularity assumption and instead study metrics whose singularities are of
“edge” type (see Definition 2.2), which consolidate Gromov’s polyhedral
comparison theory together with the study of singularities in Einstein man-
ifolds. Edge singularities have been studied intensively recently due to
the Yau-Tian-Donaldson program in Kähler-Einstein geometry; see, e.g.,
[CDS15a, CDS15b, CDS15c, Tia15, JMR16], or [AL13] for non-complex-
geometric results in (real) dimension four. See Section 8.4 for examples of
edge metrics.

Our first theorem deals with codimension two edge singularities in all
dimensions, n ≥ 3:

Theorem 1.4. Let Mn be closed, with σ(M) ≤ 0, and g a metric such that:
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(1) g ∈ L∞(M) ∩ C2
loc(M \ S), S ⊂ M is a codimension-2 closed sub-

manifold, and g is an η-regular edge metric along S with η > 2− 4
n

and cone angles 0 < 2π(β + 1) ≤ 2π,
(2) R(g) ≥ 0 on M \ S.

Then g extends to a smooth Ricci-flat metric everywhere on M .

We note, in Section 8.2, that Theorem 1.4 would be false if one were to
allow edge metrics with cone angles > 2π.

Despite recurring success in the study of Einstein metrics, the role of edge
metrics in scalar curvature geometry has not been understood with depth.
We expect general stratified singular sets with edge singularities along the
codimension two strata to appear in the study of singular scalar curvature
in a natural way. See, e.g., Akutagawa-Carron-Mazzeo [ACM14] for the
singular Yamabe problem in this setting.

Codimension 3.

Rick Schoen has conjectured that the situation is drastically different in
codimension three than in codimensions one or two: one shouldn’t need any
additional regularity assumptions beyond L∞ for (1.3) to hold true:

Conjecture 1.5. Suppose g is an L∞ metric on M that is smooth away
from a closed, embedded submanifold S ⊂ M with codim(S ⊂ M) ≥ 3.
Then

R(g) ≥ 0 on M \ S and σ(M) ≤ 0

=⇒ g extends smoothly to M and Ric(g) ≡ 0.

We confirm Conjecture 1.5, when n (= dimM) = 3, as a corollary to our
second theorem.

Corollary 1.6. Let M3 be closed, with σ(M) ≤ 0. If S ⊂ M is a finite set,

g is an L∞(M) ∩ C2,α
loc (M \ S) metric, α ∈ (0, 1), and R(g) ≥ 0 on M \ S,

then g is a smooth flat metric everywhere on M .

Our second theorem is specific to the three-dimensional case, where we
allow stratified singular sets of codimension two. We prove (see Definitions
2.2, 2.3):

Theorem 1.7. Let M3 be closed, with σ(M) ≤ 0, and g a metric such that:

(1) g ∈ L∞(M) ∩ C2,α
loc (M \ S), α ∈ (0, 1), where S ⊂ M is a compact

nondegenerate 1-skeleton, and is an η-regular edge metric along regS
with η > 2

3 and cone angles 0 < δ ≤ 2π(β + 1) ≤ 2π,
(2) R(g) ≥ 0 on M \ S.

Then g extends to a smooth flat metric everywhere on M .

1.2. Applications to asymptotically flat manifolds. Recall that, in the
smooth setting, [Loh99, Section 6] and [SY, Proposition 5.4] together imply
that the positive mass theorem follows from Theorem 1.1. The constructive
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techniques in our proofs of Theorems 1.4, 1.7 similarly allow us to obtain
Riemannian Positive Mass Theorems for singular metrics on analogous man-
ifolds:

Theorem 1.8. Let (Mn, g) be a complete asymptotically flat manifold, such
that:

(1) g ∈ L∞(M) ∩ C2
loc(M \ S), S ⊂ M \ ∂M is a closed codimension

two submanifold, and g is an η-regular edge metric along S with
η > 2− 4

n and cone angles 0 < 2π(β + 1) ≤ 2π,
(2) ∂M = ∅, or its mean curvature vectors vanish or point inside M ,
(3) R(g) ≥ 0 on M \ S.

Then the ADM mass of each end of M is nonnegative. Moreover, if the
mass of any end is zero, then (Mn, g) ∼= (Rn, δ).

Theorem 1.9. Let (M3, g) be a complete asymptotically flat three-manifold,
such that:

(1) g ∈ L∞(M) ∩C2,α
loc (M \ S), α ∈ (0, 1), with S ⊂ M \ ∂M a compact

nondegenerate 1-skeleton, so that g is an η-regular edge metric along
regS with η > 2

3 and cone angles 0 < δ ≤ 2π(β + 1) ≤ 2π,
(2) ∂M = ∅, or its mean curvature vectors vanish or point inside M ,
(3) R(g) ≥ 0 on M \ S,

Then the ADM mass each end of M is nonnegative. Moreover, if the mass
of any end is zero, then (M, g) ∼= (R3, δ).

Remark 1.10. Our proofs of Theorems 1.4, 1.7, 1.8, 1.9 make use of
fine desingularizations in the spirit of Miao [Mia02]. This constructive
approach has been pursued in part for reasons of compatibility with the
Sormani-Wenger [SW11] notion of “intrinsic flat” distance between Rie-
mannian manifolds, which (see [Sor]) work of Gromov [Gro14] suggests is
the “correct” notion for taking limits of manifolds with lower scalar curva-
ture bounds. See Section 8.6 for more discussion.

Acknowledgments. The authors would like to thank Rick Schoen,
Brian White, Rafe Mazzeo, Pengzi Miao, and Or Hershkovits for stimulat-
ing conversations on the subject of this paper, as well as Gerhard Huisken,
Dan Lee, André Neves, Yuguang Shi, and Peter Topping for their interest
in this work. The first author would like to thank ETH-FIM for their hos-
pitality, during which part of this work was carried out. The second author
would like to thank the Ric Weiland Graduate Fellowship at Stanford, which
partially supported the early portion of this research.

2. Edge singularities

The starting point of our discussion is the classical example of isolated
conical singularities on two-dimensional Riemannian manifolds.
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Assume M is a closed Riemann surface, {p1, . . . , pk} ⊂ M , and g is an
L∞(M)∩C2

loc(M \ {p1, . . . , pk}) metric. We call pi, i = 1, . . . , k, an isolated
conical singularity with cone angle 2π(βi + 1), βi ∈ (−1,∞), if around pi
there exist coordinates so that

g = dr2 + (βi + 1)2r2dθ2. (2.1)

See Figure 1 for a graphical illustration of a model isolated conical singular-
ity.

Remark 2.1. In complex geometry one often works with the complex vari-
able

z = [(βi + 1)r]1/(βi+1)e
√
−1θ ∈ C \ {0},

asserting that g = |z|2βi |dz|2, z 6= 0. We will not pursue this here.

The Gauss-Bonnet formula in this setting of isolated conical singularities
is

∫

M\{p1,...,pk}
Kg dAreag −2π

k∑

i=1

βi = 2πχ(M). (2.2)

This can be seen, for instance, by excising arbitrarily small disks around the
conical points and taking limits. (See also Lemma 3.1 below.)

As a straightforward corollary of (2.2), the presence of conical singularities
all of whose cone angles are ≤ 2π does not affect the Yamabe type of M .
On the other hand, conical singularities with cone angle bigger than 2π can
affect the Yamabe type in the negative. We give an example in Section 8.2.

Let’s proceed to the more interesting higher dimensional analog. A nat-
ural extension of the previous situation to higher dimensions leads to the
definition of an edge singularity. Qualitatively, the singular metric g may
be viewed as a family of two-dimensional conical metrics along a smooth
(n− 2)-dimensional submanifold.

Definition 2.2 (Edge singularities). Let Nn−2 ⊂ Mn be a codimension-2
submanifold (without boundary). We call g an η-regular edge metric along
N with data (η, β, σ, ω, ̺, h), where η ∈ (0,∞), β : N → (−1,∞) is C2, σ
is a C2 1-form on N , ω is a C2 metric on N , ̺ : N → (0,∞) is C2 on N ,
h is a C2 symmetric 2-tensor on U , if for some open set U ⊇ N ,

g = dr2 + (β + 1)2r2(dθ + σ)2 + ω + r1+ηh on U \N, (2.3)

{(r, θ, y) : r < ̺(y), θ ∈ S1, y ∈ N} ⊆ U, (2.4)

and

‖β‖C2(N) + ‖σ‖C2(N) + ‖ω‖C2(N) + ‖(detω)−1‖C0(N)

+ ‖̺‖C1(N) + ‖̺−1−η∂2̺‖C0(N) + ‖h‖C2(U) < ∞. (2.5)

Specifically, we require that U can be covered with Euclidean local coordinate

charts (x1, x2, y1, . . . , yn−2), where re
√
−1θ = x1+

√
−1x2 and (y1, . . . , yn) ∈
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N , in which

‖β‖L∞(N) + ‖∂iβ‖C0(N) + ‖∂i∂jβ‖L∞(N) < ∞,

‖σi‖L∞(N) + ‖∂iσj‖L∞(N) + ‖∂i∂jσk‖L∞(N) < ∞,

‖(detωij)
−1‖L∞(N) + ‖ωij‖L∞(N) + ‖∂iωjk‖L∞(N) + ‖∂i∂jωkℓ‖L∞(N) < ∞,

‖hαβ‖L∞(U) + ‖∂αωβγ‖L∞(Y ) + ‖∂α∂βωγδ‖L∞(U) < ∞,

‖̺‖L∞ + ‖∂i̺‖L∞(N) + ‖̺−η∂i∂j̺‖L∞(N) < ∞.

Latin indices only run through (y1, . . . , yn−2) on N , while Greek indices run
through all coordinates (x1, x2, y1, . . . , yn−2) on U .

This definition is taken from [AL13, (1.1)-(1.2)], and has corresponding
analogs in Kähler-Einstein geometry. The ̺ structural requirement did not
appear in [AL13], which only considered compact manifolds, but it is needed
here for our general smoothing procedure in case N is noncompact. (Notice
that the ̺-requirement is trivially true when N is compact.) It is a mild
requirement that stipulates that our domain of validity of the cone expansion
does not degenerate too wildly near the endpoints.

We conclude our collection of definitions with the notion of skeletons:

Definition 2.3 (Skeletons). We say that a compact subset S ⊂ M is an
(n − 2)-skeleton if S = N1 ∪ · · · ∪ Nk, where N1, . . . , Nk ⊂ M are compact
submanifolds-with-boundary (possibly empty), each with dimension ≤ n− 2,
and which are such that Nℓ ∩N ′

ℓ ⊂ ∂Nℓ ∪ ∂N ′
ℓ for all ℓ, ℓ′. We denote

regS :=
⋃{

S ∩W : W ⊂ U is open and S ∩W is a smooth

(n− 2)− dimensional submanifold (without boundary)
}
,

and singS := S \ regS. A skeleton S is said to be nondegenerate if there
are no two inner-pointing conormals of ∂Nℓ ⊂ Nℓ and ∂Nℓ ⊂ Nℓ (ℓ 6= ℓ′)
that coincide.

One could ostensibly also want to allow higher stratum singularities (i.e.,
codimension-1) away from S (e.g., in the spirit of Miao [Mia02], [ST18]).
We do not pursue this direction in this paper.

3. Smoothing edge singularities, I

We will prove the following smoothing lemma.

Lemma 3.1. Let W ⊂ M be a precompact open set containing a nondegen-
erate (n− 2)-skeleton S ⊂ M , and suppose that g ∈ C2,α

loc (W \ S), α ∈ [0, 1],
is an η-regular edge metric along regS with data (η, β, σ, ω, ̺, h) satisfying

0 < Λ−1 ≤ inf
regS

2π(β + 1) ≤ sup
regS

2π(β + 1) ≤ 2π, (3.1)
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and

(η − 2 + 4
n)

−1 + ‖(detω)−1‖L∞ +

2∑

j=1

‖∂jβ‖L∞ +

1∑

j=0

‖∂j̺‖L∞

+ ‖̺−η∂2̺‖L∞ +
2∑

j=0

+‖∂jσ‖L∞ + ‖∂jω‖L∞ + ‖∂jh‖L∞ ≤ Λ. (3.2)

See Definition 2.2 for the notation. If R(g) ≥ 0 on W \ S, then for every
W ′ ⊂⊂ W containing the ̺-normal tubular neighborhood of regS and every
γ > 0, there exist

ε1 = ε1(n,Λ, γ, distg(W
′, ∂W )), c1 = c1(n,Λ, distg(W

′, ∂W )),

δ = δ(n,Λ, distg(W
′, ∂W )) > 0,

such that for every ε ∈ (0, ε1], there is a metric ĝε on W such that:

(1) ĝε is C2,α
loc (W \ singS);

(2) ĝε = g on W \ (W ′ ∩Bg
ε (regS));

(3) ‖R(ĝε)−‖Ln
2 +δ(W,g)

≤ γ;

(4) c−1
1 g ≤ ĝε ≤ c1g on W ;

(5) if p ∈ regS is such that β(p) < 0 and µ > 0 is such that

|β(p)|−1 + ̺(p)−1 ≤ µ,

then

R(ĝε) ≥ c2ε
−2

on Bg
c2(p) ∩Bg

c3ε(regS) \Bg
c3ε/2

(regS), with

c2 = c2(n,Λ, distg(W
′, ∂W ), µ) > 0,

c3 = c3(n,Λ, distg(W
′, ∂W ), µ) > 0,

and Bg
c2(p) ⊂ W ′.

It is worth first looking at the special case in which S = N for some
embedded (n− 2)-dimensional submanifold N (without boundary), and the
edge singularity datum h is identically zero, i.e.,

g = dr2 + (β + 1)2r2(dθ + σ)2 + ω in U \N. (3.3)

As we’ll see, all the interesting complications already arise in this situation.
Let’s temporarily divert our attention to metrics g̃ of the computationally

simpler form

g̃ = f2dr2 + r2(dθ + σ)2 + ω̃ on U \N. (3.4)
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Figure 1. An illustration of a two-dimensional cone metric,
and its smoothing procedure (Lemma 3.1). Roughly speak-
ing, we glue a flat disk onto the conical singularity, such that
the metric is L∞, and the Gauss curvature is positive in the
buffer region.

Here, f = f(r, y). We require the structural conditions

‖(det ω̃)−1‖L∞ +
2∑

j=0

‖∂jσ‖L∞ + ‖∂jω̃‖L∞

+ ‖f−1‖L∞(U) + ‖r∂rf‖L∞ + ‖r∂f‖L∞ + ‖r2−η∂2f‖L∞ ≤ Λ̃. (3.5)

All partial derivatives except the one explicitly denoted ∂r are taken only
with respect to (y1, . . . , yn−2) ∈ N , but not in the two transversal polar
directions.
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Proposition 3.2. The scalar curvature R(g̃) of metrics g̃ of the form (3.4),
which are subject to the structural assumptions (3.5), satisfies

r2−η|R(g̃)− 2r−1f−3∂rf | ≤ c(n, Λ̃), (3.6)

at all points (r, θ, y1, . . . , yn−2) with r ≤ R0 = R0(n, Λ̃).

Proof. We circumvent a brute force computation by a slicing technique mo-
tivated by (8.1). The family of hypersurfaces

Nr := {r = const} ∩ U, r > 0,

forms a codimension-1 foliation of U \N , which is orthogonal to the ambient
vector field

νr := f−1∂r

with respect to g̃. In particular, the Gauss equation traced twice over Nr

gives:

R(g̃|Nr) = R(g̃)− 2〈Ric(g̃), νr ⊗ νr〉+H2
Nr

− |ANr |2, (3.7)

where HNr , ANr denote the mean curvature and second fundamental form
of Nr ⊂ (U, g̃). On the other hand, the Jacobi equation implies

∂r(HNr) = −∆g̃|Nr
f − (〈Ric(g̃), νr ⊗ νr〉,+|ANr |2)f. (3.8)

Together, (3.7)-(3.8) yield:

R(g̃) = R(g̃|Nr)− 2f−1∂r(HNr)− 2f−1∆g̃|Nr
f −H2

Nr
− |ANr |2. (3.9)

This is the quantity we wish to estimate, written out in terms of the slicing
technique. Let’s fix r > 0 small and estimate the right hand side of (3.9).

Recall that

g̃|Nr = r2(dθ + σ)2 + ω, (3.10)

and that, by the definition of second fundamental forms (here, L is the Lie
derivative on 2-tensors),

ANr = 1
2Lνr g̃ = 1

2f
−1L∂r(g̃|Nr) =

1
rf r

2(dθ + σ)2. (3.11)

It will be convenient to pick out vector fields

v1, . . . ,vn−2 ∈ Γ(TNn−2) to be an

ω-orthonormal frame on Nn−2.

We emphasize, that these are orthonormal on Nn−2 with a metric other
than the model metric ω ∈ Met(Nn−2). This modified metric was chosen
specifically because, now,

r−1∂θ,v1 − σ(v1)∂θ, . . . ,vn−2 − σ(vn−2)∂θ

are a g̃Nr -orthonormal frame on Nr.

By repeated use of (3.11), we find:

ANr(r
−1∂θ, r

−1∂θ) =
1
rf ; (3.12)
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ANr(vℓ − σ(vℓ)∂θ,vm − σ(vm)∂θ)

= ANr(vℓ,vm)− σ(vℓ)ANr(∂θ,vm)

− σ(vm)A(vℓ, ∂θ) + σ(vℓ)σ(vm)ANr(∂θ, ∂θ)

= r
f σ(vℓ)σ(vm)− 2 r

f σ(vℓ)σ(vm) + r
f σ(vℓ)σ(vm)

= 0 for ℓ,m ∈ {1, . . . , n− 2}; (3.13)

ANr(r
−1∂θ,vℓ − σ(vℓ)∂θ)

= ANr(r
−1∂θ,vℓ)−ANr(r

−1∂θ, σ(vℓ)∂θ)

= r
f σ(vℓ)− r

f σ(vℓ)

= 0 for ℓ ∈ {1, . . . , n− 2}. (3.14)

Altogether, (3.12)-(3.14) imply

|ANr | = HNr = 1
rf ,

and thus

2f−1∂r(HNr) +H2
Nr

+ |ANr |2 = −2r−1f−3∂rf. (3.15)

In particular, three out of five terms in (3.9) cancel out.
Next, we seek to understand R(g̃|Nr), which denotes the scalar curvature

of the (n− 1)-dimensional manifold (Nr, g̃|Nr), with g̃|Nr given explicitly in
(3.10). We re-employ the slicing technique; this time we use the fact that

Nr,θ := {θ = const} ∩Nr

is a codimension-1 foliation of Nr, whose induced metrics are given by

g̃|Nr,θ
= ω + (rσ)2. (3.16)

If νr,θ ∈ Γ(TNr) denotes the unit normal vector field to the foliation, then,
arguing as before, we have

R(g̃|Nr) = R(g̃|Nr,θ)− 2〈νr,θ, ∂θ〉−1
g̃ Lνr,θ(HNr,θ

)

− 2〈νr,θ, ∂θ〉−1
g̃ ∆g̃|Nr,θ

〈νr,θ, ∂θ〉g̃ −H2
Nr,θ

− |ANr,θ
|2. (3.17)

Note that, unlike the previous slicing application, ∂θ is no longer orthogonal
to the foliation. Instead, the unit normal vector field νr,θ is proportional to

∂θ +
n−2∑

ℓ=1

αℓvℓ

for some coefficients α1, . . . , αn−2 : Nn−2 → R; the vector fields vℓ are the
same as before. The coefficients α1, . . . , αn−2 are such that

〈νr,θ,v1〉g̃ = . . . = 〈νr,θ,vn−2〉g̃ = 0.
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This is a uniformly invertible (n−2)×(n−2) linear system for small enough

r ≤ r0 = r0(n, Λ̃). Recalling (3.5), the linear system readily implies:

n−2∑

ℓ=1

|αℓ|+ r|∂αℓ|+ r2|∂2αℓ| ≤ c(n, Λ̃)r2. (3.18)

In particular, the unit normal vector field is

νr,θ = (1 + ζ)

(
∂θ +

n−2∑

ℓ=1

αℓvℓ

)
,

with
|ζ|+ r|∂ζ|+ r2|∂2ζ| ≤ c(n, Λ̃)r2. (3.19)

Combined, (3.16), (3.18), and (3.19), imply a uniform bound on the right
hand side of (3.17). Thus,

|R(g̃|Nr,θ)| ≤ c(n, Λ̃). (3.20)

Finally, the last remaining term of (3.9), ∆g̃|Nr
f , can be estimated directly

by (3.5):

r2−η|∆g̃|Nr
f | ≤ c(n, Λ̃). (3.21)

The proposition follows by plugging (3.15), (3.20), (3.21) into (3.9). �

Proof of Lemma 3.1. Let us first see how Proposition 3.2 fits into our sim-
plified smoothing lemma situation, i.e., S = N and h ≡ 0. Let’s fix a smooth
cutoff function ζ : [0, 1] → [0, 1] such that

ζ ≡ 0 on [0, 13 ], ζ ≡ 1 on [23 , 1], 0 ≤ ζ ′ ≤ 6, ζ ′ = 1 on [49 ,
5
9 ].

Define fε(r, y), ε > 0:

fε(r, y) := 1 + ζ(ε−1̺(y)−1r)
[
(1 + β(y))−1 − 1

]
. (3.22)

From (3.1), (3.2), and the defining properties of ζ:

fε ≥ 1, 0 ≤ r∂rfε ≤ 6, (3.23)

fε = 1 for r ≤ 1
3ε̺, fε = (β + 1)−1 for r ≥ 2

3ε̺, (3.24)

r∂rfε(r, y) = (1 + β)−1 − 1 for ε49̺(y) ≤ r ≤ 5
9ε̺(y), (3.25)

|r∂fε|+ |r2−η∂2fε| ≤ c(Λ). (3.26)

Setting
g̃ε := f2

ε dr
2 + r2(dθ + σ)2 + (β + 1)−2ω, (3.27)

it follows from (3.23)-(3.26) and (3.1)-(3.2) that g̃ε is of the form (3.4) and
satisfies the structural assumptions (3.5).

We’ll verify that, for sufficiently small ε > 0, the conformal metric

ĝε := (β + 1)2g̃ε

is the metric postulated by Lemma 3.1. Without loss of generality,

distg(W
′, ∂W ) ≥ 1, ̺ ≤ 1 on N.



POSITIVE SCALAR CURVATURE WITH SKELETON SINGULARITIES 13

Conclusions (1), (2), (4) of Lemma 3.1 is an immediate consequence of (3.2)
and the definitions of g̃ε, ĝε. Now we prove conclusion (5). If p is as in the
statement of the Lemma, then by Proposition 3.2 and (3.24),

r2−η|R(g̃ε)− 2r−2f−3
ε ((1 + β(p))−1 − 1)| ≤ c, (3.28)

whenever r ∈ [49ε̺(p),
5
9ε̺(p)]. This readily implies conclusion (5). Finally,

we move on to conclusion (3). By Proposition 3.2, we have

R(g̃ε)− ≤ cr−2+η,

so the conformal metric ĝε = (β + 1)2g̃ε satisfies

R(ĝε) = (β + 1)
n+2
2

[4(1− n)

n− 2
∆g̃ε +R(g̃ε)

]
(β + 1)

n−2
2 .

Since β has no dependence on r, θ, and is uniformly C2 in (y1, . . . , yn−2):

R(ĝε)− ≤ c(1 +R−(g̃ε)) ≤ c(1 + r−2+η) ≤ cr−2+η,

where the last inequality follows from our assumption that ̺ ≤ 1. In partic-
ular, if we denote the ε̺-tubular neighborhood of N by Uε, we have, from
the coarea formula, that

‖R(ĝε)−‖qLq(W,g) = ‖R(ĝε)−‖qLq(Uε,g)

≤ c

∫

Uε

(r−2+η)qdVolg

≤ c

∫

N

∫ ε̺(y)

0
rq(−2+η)+1 dr dµω(y)

= c

∫

N

[
rq(−2+η)+2

q(−2+η)+2

]ε̺(y)
r=0

dµω(y)

≤ c(ε‖̺‖C0(N))
q(−2+η)+2,

provided
q(−2 + η) + 2 > 0 ⇐⇒ q < 2

2−η .

In the chain of inequalities above, c denotes a constant depending on n and
Λ, which varies from line to line. Since η ≥ Λ−1 + 2− 4

n , it follows that

q < 2
4
n−Λ−1

,

and conclusion (3) follows. This completes the proof of the lemma in the
special case when S = N and h ≡ 0.

Let’s generalize to allow h 6≡ 0 in

g = dr2 + (β + 1)2r2(dθ + σ)2 + ω + r1+ηh.

We will regularize in two steps, leading up to

ĝε := (β + 1)2g̃ε + (β + 1)2f2
ε r

1+ηh,

where fε is as in (3.22) and g̃ε as in (3.27). The first step, studying (β+1)2g̃ε,
is the step we carried out above. Now, a crude estimate that relies on (3.5)
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shows that when ξ is a C2
loc(U \N) 2-tensor, which in Euclidean coordinates

(recall Definition 2.2) is controlled by

|ξαβ |+ r|∂αξβγ |+ r2|∂α∂βξγδ| ≤ ǫ

and ǫ > 0 sufficiently small, then

r2|R
(
(β + 1)2g̃ε + ξ

)
−R

(
(β + 1)2g̃ε

)
| ≤ c(n,Λ)ǫ. (3.29)

But note that

ξ := ĝε − (β + 1)2g̃ε = (β + 1)2f2
ε r

1+ηh

satisfies

|ξαβ |+ r|∂αξβγ |+ r2|∂α∂βξγδ| ≤ c(n,Λ)rη,

and η > 0, which applied to (3.29) tells us that R(ĝε) has precisely the same
behavior now as in (3.28), so the result follows as before.

Finally, we deal with the most general case, where g can be of general
edge type, and the skeleton S consists of more than just one piece; i.e.,
S = N1 ∪ . . . ∪ Nk. Since we’re assuming S is nondegenerate, it follows
that the pieces N1, . . . , Nk can be separated from each other with ̺-tubular
neighborhoods that decay with

̺ ∼ distg(·, ∂N1 ∪ . . . ∪ ∂Nk). (3.30)

In particular, we may apply the lemma to each component N1, . . . , Nk in-
dividually with a modified Λ that also accounts for the linear decay (3.30),
and then glue all the metrics together since they agree away from their
degenerating tubular neighborhoods by virtue of the rightmost equality in
(3.24). �

4. Almost positive scalar curvature

The following lemma will play a key and recurring role in this work, stat-
ing that C2,α

loc ∩ L∞ metrics with little negative scalar curvature and suffi-
ciently much positive scalar curvature are conformally equivalent to metrics
with positive scalar curvature of the same regularity.

Lemma 4.1. Suppose Mn is closed, g0 is a smooth background metric on M ,
g is an L∞(M) ∩ C2,α

loc (M \ S), α ∈ (0, 1), S ⊂ M is compact, Volg(S) = 0,
and Λ−1g0 ≤ g ≤ Λg0. If χ ∈ Cα

loc(M \ S) ∩ Lq(M, g) with q > n
2 ,

χ ≤ R(g), ‖χ−‖Ln/2(M,g) ≤ δ0,

then there exists u ∈ C2,α
loc (M \ S) ∩ C0(M), u > 0, such that

inf
M\S

u
4

n−2R(u
4

n−2 g) ≥ 1

c20Volg(M)

(∫

M
χ+ dVolg −c40

∫

M
χ− dVolg

)

and sup
M

u ≤ c0 inf
M

u, (4.1)

where δ0 = δ0(g0,Λ) > 0, c0 = c0(g0,Λ, q, ‖χ‖Lq(M,g,Λ)) ≥ 1.
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Proof. We construct, using the direct method, the principal eigenvalue of

the operator −4(n−1)
n−2 ∆g + χ on S. Namely, we minimize

‖f‖−2
L2(M,g)

∫

M

4(n− 1)

n− 2
‖∇gf‖2g + χ|f |2 dVolg, (4.2)

over f ∈ L2(M, g), f 6≡ 0. From the Poincaré-Sobolev inequality,

(∫

M
f

2n
n−2 dVolg

)n−2
n

≤ C1

∫

M
‖∇gf‖2g + |f |2 dVolg

=⇒
∫

M
‖∇gf‖2g dVolg ≥ C−1

1

(∫

M
|f | 2n

n−2 dVolg

)n−2
n

−
∫

M
|f |2 dVolg

for C1 = C1(g0,Λ) > 0. From Hölder’s inequality,

∫

M
χ|f |2 dVolg ≥ −δ0

(∫

M
|f | 2n

n−2 dVolg

)n−2
n

and the lower bound on (4.2) follows as long as we require δ0 to be small
enough depending on g0, Λ. From functional analysis, minimizing (4.2)
yields some u ∈ W 1,2(M, g), u ≥ 0 g-a.e. on M , that satisfies, for some
λ ∈ R,

− 4(n− 1)

n− 2
∆gu+ χu = λu on M, (4.3)

in the weak sense. From elementary elliptic PDE theory, u ∈ C2,α
loc (M \ S).

From De Giorgi-Nash-Moser theory,

u ∈ C0,θ(M), and λ ≥ −Λ, Λ = Λ(g0,Λ, q, ‖χ‖Lq(M,g)) > 0.

(The precise θ ∈ (0, 1) isn’t relevant.) The inequality

sup
M

u ≤ c0 inf
M

u (4.4)

with c0 = c0(g0,Λ, q, ‖χ‖Lq(M,g)) follows from Moser’s Harnack inequality.
From the variational characterization of (4.3) as a minimizer of (4.2), and
from (4.4), we see that

λ = ‖u‖−2
L2(M,g)

∫

M

4(n− 1)

n− 2
‖∇gu‖2g + χ|u|2 dVolg

≥ ‖u‖−2
L2(M,g)

∫

M
χ+|u|2 dVolg −‖u‖−2

L2(M,g)

∫

M
χ−|u|2 dVolg

≥ inf
M

u2 · ‖u‖−2
L2(M,g)

∫

M
χ+ dVolg − sup

M
u2 · ‖u‖−2

L2(M,g)

∫

M
χ− dVolg

≥ c−2
0 Volg(M, g)−1

(∫

M
χ+ dVolg −c40

∫

M
χ− dVolg

)
. (4.5)
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Thus, from the scalar curvature conformal transformation formula and (4.3),

R(u
4

n−2 g) = u−
n+2
n−2

(
−4(n− 1)

n− 2
∆gu+R(g)u

)

= u−
4

n−2 (R(g)− χ+ λ) ≥ λu−
4

n−2 on M \ S,
and the result follows from (4.5). �

We obtain, as a direct corollary, the following rigidity result that extends
a well-known (to the experts of the field) result from the smooth case to a
general singular setting: nonnegative scalar curvature can be conformally
transformed into positive scalar curvature, as long as the original metric
isn’t scalar-flat.

Corollary 4.2. Suppose Mn is closed, g is an L∞(M)∩C2,α
loc (M \S) metric,

α ∈ (0, 1), S ⊂ M is compact, and Volg(S) = 0. If R(g) ≥ 0 on M \ S, and
R(g) 6≡ 0, then

R(u
4

n−2 g) > 0 on M \ S
for some u ∈ C2,α

loc (M \ S) ∩ C0(M), u > 0.

Remark 4.3. We will later show that for particular kinds of singular behav-
ior, we can construct everywhere smooth metrics with positive scalar curva-
ture, at the expense of leaving the conformal class of g. This is essentially
the content of Theorems 1.7, 1.4, and Corollary 1.6.

5. Smoothing edge singularities, II

Proposition 5.1. Suppose Mn is closed, σ(M) ≤ 0, S ⊂ M is a nondegen-

erate (n− 2)-skeleton, and g ∈ L∞(M)∩C2,α
loc (M \ S), α ∈ [0, 1]. Assume g

is an η-regular edge metric along regS with η > 2− 4
n and cone angles

0 < inf
regS

2π(β + 1) ≤ sup
regS

2π(β + 1) ≤ 2π.

If R(g) > 0 on M \ S and either

(1) R(g) 6≡ 0 on M \ S, or
(2) 2π(β + 1) 6≡ 2π on regS,

then there exists an L∞(M) ∩ C2,α
loc (M \ singS) metric g̃ with

R(g̃) > 0 on M \ singS.
We need to introduce some more notation. For s > 0, define

φ(·; s) : R → R with φ(x; s) =

{
x for x ∈ (−∞, s],

2s for x ∈ [3s,∞),
(5.1)

with
∂

∂x
φ(x; s) ≥ 0 and φ(x; s) ≤ x for all x ∈ R, s > 0, (5.2)
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and, for q ∈ (n2 , n) fixed for the remainder of the paper, and ε > 0,

ζ(·; ε) : M → R with ζ(x; ε) =

{
1 for x 6∈ Bg

2ε(S),
ε−2/q for x ∈ Bg

ε (S),
(5.3)

such that

|ζ(x; ε)| ≤ ε−2/q for all x ∈ M, ε > 0. (5.4)

Proof of Proposition 5.1. Let ĝε be as in Lemma 3.1 above, for a choice of
γ > 0 that is yet to be determined.

Claim. We have

lim sup
ε→0

‖φ(R(ĝǫ); ζ(·; ε))‖Lq(M,g) < ∞.

Remark 5.2. The Lq norm can be taken with respect to the measure induced
by any one of g, ĝε, since they are uniformly equivalent by Lemma 3.1 (4).

Proof of Claim. We estimate the integral by splitting up M into the region
of negative scalar curvature (which is controlled by Lemma 3.1), the tubular
neighborhood Bg

2ε(S) (which is controlled by the codimension of S), and the
remainder:

‖φ(R(ĝε); ζ(·; ε))‖qLq(M,g)

≤ ‖R(ĝε)−‖qLq(M,g) +

∫

Bg
2ε(S)

|2ε−2/q|q dVolg

+

∫

M\Bg
2ε(S)

|min{R(ĝε)+, 2}|q dVolg

≤ γq + 2qε−2Volg(B
g
2ε(S)) + 2q Volg(M),

which is uniformly bounded as ε → 0 when S is an (n−2)-skeleton, i.e., one
with codimension ≥ 2. �

We now apply Lemma 4.1 with ĝε in place of g, singS in place of S, and
χ = φ(R(ĝε); ζ(·; ε)). Note that the constant δ0 in Lemma 4.1 is independent
of ε → 0, since the metrics ĝε, g are all uniformly equivalent. It remains to
show
∫

M
φ(R(ĝε); ζ(·; ε))+ dVolĝε −c40

∫

M
φ(R(ĝε); ζ(·; ε))− dVolĝε > 0 (5.5)

for sufficiently small ε > 0.
Separating the positive scalar curvature regions from the negative ones,

recalling R(ĝε) ≥ 0 on M \Bg
ε (regS) by Lemma 3.1 (2), and ‖R−(ĝε)‖Lq ≤ γ
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by Lemma 3.1 (3),
∫

M
φ(R(ĝε); ζ(·; ε))+ dVolĝε −c40

∫

M
φ(R(ĝε); ζ(·; ε))− dVolĝε

≥
∫

M
φ(R+(ĝε); ζ(·; ε−1)) dVolĝε −c40‖R−(ĝε)‖L1(M,ĝε)

≥
∫

M
φ(R+(ĝε); ζ(·; ε−1)) dVolĝε −c40γVolĝε(B

g
ε (S))(q−1)/q

≥
∫

M
φ(R+(ĝε); ζ(·; ε−1)) dVolĝε −γC1ε

2(q−1)/q, (5.6)

where C1 = C1(S, g0,Λ) > 0, and g0 is some fixed background smooth metric
on M . Note that

lim inf
ε→0

∫

M
φ(R+(ĝε); ζ(·; ε)) dVolĝε

≥ lim inf
ε→0

∫

M\Bg
2ε(regS)

φ(R+(g); 1) dVolĝε =

∫

M
φ(R(g); 1) dVolg .

In particular, if R(g) 6≡ 0 on M \S, then (5.6) implies (5.5), and we’re done.
Alternatively, when R(g) ≡ 0 on M \ S, suppose that β 6≡ 0 on regS. By

Lemma 3.1 (5), there exists p with

φ(R+(ĝε); ζ(·; ε)) = 2ε−2/q on Bg
c3(p) ∩Bg

c4ε(regS) \B
g
c4ε/2

(regS),

and Bg
c3(p) ⊂ U . Note that

Volĝε(B
g
c3(p) ∩Bg

c4ε(regS) \B
g
c4ε/2

(regS)) ≥ C2ε
2,

with C2 = C2(S, g0,Λ) > 0 since S is an (n − 2)-skeleton, i.e., it has codi-
mension ≥ 2. In sight of this, (5.6) implies

∫

M
φ(R(ĝε); ζ(·; ε))+ dVolĝε −c40

∫

M
φ(R(ĝε); ζ(·; ε))− dVolĝε

≥ 2 · ε−2/q · C2ε
2 − γC1ε

2(q−1)/q,

which can be made to be positive provided γ is sufficiently small depending
on S, g0, Λ. �

6. Smoothing point singularities, n = 3

Our method for smoothing point singularities consists of:

(1) “blowing up” the singularity;
(2) excising the asymptotic end produced in the previous step by cutting

along a particular minimal surface;
(3) “filling in” the holes created in the two previous steps with regions

of positive scalar curvature.
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Step (1) is inspired from works of Schoen-Yau (e.g. [SY79b, SY81]). Steps
(2) and (3) are inspired by constructions that feature in the second author’s
recent work with Pengzi Miao [MM17].

A new key necessary ingredient in this work is the following new excision
lemma for asymptotic ends with weak regularity at infinity:

Lemma 6.1. Suppose g is a C2,α
loc metric on Rn \B1(0) with

Λ−1δ ≤ g ≤ Λδ, (6.1)

where δ is the standard flat metric on Rn and α ∈ [0, 1]. If

C := {Ω ⊂ Rn bounded open set containing B1(0)},
then inf{Hn−1

g (∂Ω) : Ω ∈ C } is attained by some Ω ⊂ BR(0), R = R(n,Λ).

Proof. First, by a direct comparison argument, we have

inf{Hn−1
g (∂Ω) : Ω ∈ C } ≤ Hn−1

g (∂B1(0)) ≤ c1(n,Λ). (6.2)

Let {Ωi}i=1,2,... ⊂ C be a minimizing sequence of domains for the left hand
side of (6.2), for each of which we denote

ri := inf{|x| : x ∈ ∂Ωi}.
Here, |x| denotes the Euclidean length of a position vector x ∈ Rn. By
another direct comparison and the area formula on (Rn, δ),

Hn−1
g (∂Ωi) ≥ c′2(n,Λ)Hn−1

δ (∂Ωi) ≥ c′2(n,Λ)Hn−1
δ (∂Bri(0)) = c′′2(n,Λ)r

n−1
i ,

which together with (6.2) implies

ri ≤ c2(n,Λ) for all i = 1, 2, . . . (6.3)

For convenience, denote

r := lim inf
i→∞

ri ∈ [1,∞),

where the finiteness is a byproduct of (6.3). Pass to a subsequence that
attains the lim inf. For that subsequence, let

Ri := sup{|x| : x ∈ ∂Ωi}
and

R := lim sup
i→∞

Ri ∈ [1,∞].

Without loss of generality, R > r. We seek to estimate R from above. Pass
to yet another subsequence that attains the lim sup.

By a compactness argument, there will exist a closed Ω ⊂ Rn \ B1(0)
containing ∂B1(0) such that, by definition of r, R,

Σt := ∂Ω ∩ ∂Bt(0) 6= ∅ for al t ∈ (r,R), (6.4)

and, by (6.2),
Hn−1

g (∂Ω) ≤ c1(n,Λ). (6.5)

For each t ∈ (r,R), let h(t) denote the Hn−1
g -measure of the solution of

the Plateau problem with prescribed boundary Σt; this is guaranteed to
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be nonzero by (6.4). We do not concern ourselves with the technicalities
behind the existence of a feasible minimizer in the Plateau problem— we
are content with the existence of a competitor with Hn−1

g (·) ≤ 2h(t), which
is guaranteed, for instance, by the deformation theorem.

By (6.1) and the isoperimetric inequality on (Rn, δ),

h(t)
n−2
n−1 ≤ c3(n,Λ)Hn−2

g (Σt) for all t ∈ (r,R). (6.6)

Moreover, we claim that

2h(t) ≥ Hn−1
g (∂Ω \Bt(0)) for all t ∈ (r,R); (6.7)

indeed, if this were false for some t, then a direct replacement could produce
Ω′ ∈ C with Hn−1

g (∂Ω′) < Hn−1
g (∂Ω) = c1, violating (6.2).

The coarea formula, (6.6), and (6.7), give:

2h(t) ≥ Hn−1
g (∂Ω \Bt(0))

≥
∫ R

t

∫

Σs

|∇T distg(0; ·)|−1 dHn−2
g ds

≥
∫ R

t
Hn−2

g (Σs) ds

≥ c−1
3

∫ R

t
h(s)

n−2
n−1 ds;

the second equality follows from |∇T dist(0; ·)| ≤ 1. In other words, if H(t)
denotes the ultimate integral that appears above, we’ve shown that

|H ′(t)|
n−1
n−2 ≥ (2c3)

−1H(t) for all t ∈ (r,R).

In fact, since H ′ ≤ 0, we get

−H ′(t) ≥ c4(n,Λ)H(t)
n−2
n−1 for all t ∈ (r,R).

Integrating, we find that there exists R⋆ = R⋆(n,Λ, r) ≤ R⋆(n,Λ) such that
H(t) = 0 for all t ∈ [R⋆, R). This violates (6.4) unless R ≤ R⋆, giving us an
a priori bound on R.

Finally, the finiteness of R shows that the minimizing sequence Ωi is
trapped inside a fixed annulus, and the desired conclusion follows from stan-
dard compactness theorems in geometric measure theory. �

Proposition 6.2. Suppose n = 3, S ⊂ M is finite, g̃ is an L∞(M) ∩
C2,α
loc (M \ S) metric, α ∈ (0, 1), and R(g̃) > 0 on M \ S. Then, there exists

a C2,α(M) metric g with R(g) > 0 everywhere; i.e., σ(M) > 0.

Proof. We may assume, without loss of generality, that S 6= ∅, for else there
is nothing to do. For notational simplicity we relabel g̃ as h. Let G denote
the distributional solution of elliptic PDE

−8∆hG+ φ(R(h); 1)G = δS on M,
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where δS denotes the Dirac delta measure on S, and φ is as in Section 5.
Since h is uniformly Euclidean and φ(R(h); 1) is bounded, we know that

c−1
0,G disth(·,S)−1 ≤ G ≤ c0,G disth(·,S)−1 on M \ S, (6.8)

for c0,G = c0,G(M,h) > 0, and, therefore,

c−1
G distg(·,S)−1 ≤ G ≤ cG distg(·,S)−1 on M \ S. (6.9)

We refer the reader to [LSW63] for the existence and the aforementioned
blow up rate of Greens functions in this setting.

Consider, for small σ > 0, the conformal metric hσ = (1 + σG)4h on

M \ S, which is C2,α
loc , complete, noncompact, and whose scalar curvature

satisfies

R(hσ) = (1 + σG)−5(−8∆h(1 + σG) +R(h)(1 + σG))

= (1 + σG)−5R(h) + (1 + σG)−5σ(R(h)− φ(R(h); 1))G > 0.

Fix a family of disjoint open neighborhoods of the points in S (one for each
point) labeled {Up}p∈S , so that each Up ⊂ M is diffeomorphic to a 3-ball.

Claim. For every p ∈ S, there exists a diffeomorphism

Φp : R
3 \B1(0)

≈−→ Up \ {p}
and a constant cp,σ > 0 such that

c−1
p,σδ ≤ Φp

∗hσ ≤ cp,σδ,

where δ denotes a flat metric on R3 \B1(0).

Proof. From the manifold’s smooth structure, there exists a diffeomorphism

Ψp : (B1(0) ⊂ R3)
≈−→ (Up ⊂ T ),

such that Ψp(0) = p. We can then define

Φp := Ψp ◦ ι,
where ι(x) = |x|−2x is the inversion map on R3 \ {0}. With this definition
for Φp, we see that

Φp
∗hσ = ι∗Ψ∗

p(1 + σG)4h

= (1 + σ(G ◦Ψp ◦ ι))4(ι∗Ψp
∗h).

Next, note that Ψp
∗h is uniformly Euclidean on B1(0), and thus certainly

on B1(0) \ {0}. By the scaling nature of ι, ρ4(Ψp
∗h) is uniformly Euclidean

on R3 \B1(0), with ρ denoting the standard radial polar coordinate on R3.
The result then follows from the asymptotics in (6.9). �

Claim. For every p ∈ S, and for every sufficiently small σ > 0, there exists
a compact set Dp ⊂ Up whose boundary ∂Dp consists of a stable minimal
2-spheres in (M \ S, hσ).
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Proof. Lemma 6.1 guarantee that for each p ∈ singS there exists a compact
surface Σ = Σσ in (Up \ {p}, hσ), with least H2

hσ
-area among all surfaces

in the same region that are homologous to ∂Up. From standard regularity
theory in geometric measure theory [Sim83], Σ is regular and embedded
away from ∂Up. By a straightforward comparison argument and the smooth
convergence hσ → h away from S, we know that

lim
σ→0

H2
hσ
(Σσ) = 0. (6.10)

Next, denote
Wp,τ := {x ∈ Up : distg(x; ∂Up) < τ},

where τ > 0 is small. We will show that, for τ > 0,

Σ ∩ (Wp,2τ \Wp,τ ) = ∅,
as long as σ > 0 is sufficiently small (depending on τ).

Assume, by way of contradiction, that there exists a sequence σj ↓ 0
such that the corresponding area-minimizing surfaces Σj = Σσj are such
that Σj ∩ (Wp,2τ \ Wp,τ ) 6= ∅ for all j = 1, 2, . . . For each j, pick pj ∈
Σj ∩ (Wp,2τ \Wp,τ ), and denote Tj the connected component of Σj in Wp,2τ

containing the point pj . By the local monotonicity formula in small regions
of Riemannian manifolds, and the fact that hσj → h smoothly away from
singS, we know that

lim inf
j

H2
hσj

(Tj) > 0. (6.11)

However, (6.11) contradicts (6.10).
Thus, Σ∩ (Wp,2τ \Wp,τ ) = ∅ as long as σ is sufficiently close to zero. This

implies that

(1) Σ′ ⊂ W p,τ , or
(2) Σ′ ∩Wp,2τ = ∅,

for every connected component Σ′ ⊂ Σ. Case (1) cannot occur for arbitrar-
ily small σ > 0: there is a positive lower H2

h-area bound for all non-null-

homologous surfaces in W p,τ , in violation of (6.10). Thus, (2) holds for all
connected components Σ′ ⊂ Σ. Therefore,

Σ ∩Wp,2τ = ∅ =⇒ Σ ∩ ∂Up = ∅,
so Σ is a regular embedded minimal surface in (Up\{p}, hσ). Using R(hσ) >
0 and the main theorem of [FCS80], we conclude that Σ consists of stable
minimal 2-spheres. The fact that Σ bounds a compact region follows from
topological considerations. �

Fix σ > 0 small enough so that the previous claim applies for all p ∈
S, where the corresponding H2

hσ
-area minimizing surfaces are Σp, p ∈ S.

Denote Σ := ∪p∈SΣp.
Combining [Man17, Lemma 2.2.1] and [Man17, Corollary 2.2.13], we de-

duce that there exists a smooth manifold N3, diffeomorphic to M3, and
a metric h on N which is uniformly C2 on the complement of the image
Σ′ ⊂ N of Σ ⊂ M , Lipschitz across Σ′, and such that Σ′ is minimal from
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both sides. Since the mean curvatures of Σ′ from both sides agree, we may
use the mollification procedure in [Mia02, Proposition 4.1] to smooth out h

to h̃; the result follows by applying the conformal transformation in Lemma

4.1 to h̃, with χ = R(h̃). �

7. Proof of main theorems

Proof of Theorem 1.4. Notice that singS = ∅, so, by Proposition 5.1, either

(1) g is C2 and R(g) ≡ 0 on M , or
(2) there exists a C2 metric g̃ on M with R(g̃) > 0 everywhere.

The latter contradicts the assumption σ(M) ≤ 0, so the prior must be true.
In that case, the result follows from Theorem 1.1. �

Proof of Theorem 1.7. By Proposition 5.1, either

(1) g is L∞(M) ∩ C2,α
loc (M \ singS) with R(g) ≡ 0, or

(2) there exists an L∞(M) ∩ C2,α
loc (M \ singS) metric g̃ with

R(g̃) > 0 on M \ singS.
Proposition 6.2 rules out the second case when σ(M) ≤ 0, so the first case
holds.

Claim. Ric(g) ≡ 0 on M \ singS.
Proof of claim. We argue by contradiction. Suppose that Ric(g) 6= 0 at
some p ∈ M \ singS. Let U be some small smooth open neighborhood of p
such that U ⊂⊂ M \ singS; note that g|U ∈ C2,α(U).

Consider the Banach manifold

M2,α
g (U) := {metrics g′ ∈ C2,α(U) : g − g′ ≡ 0 on ∂U},

where g − g′ ≡ 0 on ∂U is to be interpreted as the equality of tensors on U
pointwise on the subset ∂U ⊂ U ; i.e., we aren’t pulling back to ∂U . The
scalar curvature functional

R : M2,α
g (U) → C0,α(U)

is a C1 Banach map, with Fréchet derivative δR(g′) : Tg′M2,α
g (U) → C0,α(U)

known to be given by

δR(g′){h} = −∆g′ Trg′ h+ divg′ divg′ h− 〈h,Ric(g′)〉g′ ,
for all g′ ∈ M2,α

g (U), h ∈ Tg′M2,α
g (U) ∼= (T 2,α

0 ⊗T 2,α
0 )∗(U). Here, Tg′M2,α

g (U)

denotes the tangent space at g′ to the Banach manifold M2,α
g (U), and

T 2,α
0 (U) denotes the space of contravariant C2,α tensors that vanish on ∂U .

Fix some h ∈ TgM2,α
g (U). Define γ : [0, δ) ⊂ M2,α

g (U) to be a C1 curve
with γ(0) = g, γ′(0) = −h. By definition of Fréchet derivatives, the fact
R(g) ≡ 0, and the trivial continuous embedding C0,α(U) →֒ L∞(U), we
have

lim
t↓0

‖R(γ(t))−∆g Trg th+ divg divg th− 〈th,Ric(g)〉g‖L∞(U)

t
= 0. (7.1)
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In particular, by observing that the Fréchet derivative contains two diver-
gence terms that integrate to zero with respect to dVolg, we have

lim
t↓0

1

t

∫

U
(R(γ(t))− 〈th,Ric(g)〉g) dVolg

= lim
t↓0

1

t

∫

U
(R(γ(t))−∆g Trg th+ divg divg th− 〈th,Ric(g)〉g) dVolg

= 0, (7.2)

where the last equality follows from (7.1).

Consider the map t ∈ (−ε, ε) 7→ λ1(t) = λ1(−4(n−1)
n−2 ∆gt +R(gt)). Since gt

is an smooth (in t) family of C2,α metrics, we know that t 7→ λ1(t) is C
1; the

corresponding first eigenfunctions, ut, normalized to have ‖ut‖L2(M,gt) = 1,

form a C1 path in W 1,2(M). (See, e.g., [?, Lemma A.1]). Notice that u0 is
a constant, R0 ≡ 0 on M \ singS, and λ1(0) = 0. Observe that

λ′(0) =
d

dt

∣∣∣∣
t=0

∫

M

[
4(n− 1)

n− 2
|∇gtut|2 +R(gt)u

2
t

]
dVolgt

=

∫

M

d

dt

∣∣∣∣
t=0

R(gt)dVolg

=

∫

M
〈h,Ric(g)〉 dVolg .

where we have used the fact that the only nonzero contribution of the de-
rivative is from d

dtR(gt) and (7.2).
Suppose, now, that (Ric(g))σ denotes a (tensorial) mollification of Ric(g)

away from p, such that

lim
σ→0

‖(Ric(g))σ − Ric(g)‖L∞(U) = 0. (7.3)

If ξ : M → [0, 1] is a smooth cutoff function such that ξ(p) = 1 and spt ξ ⊂ U ,
then (7.3) implies

lim
σ→0

〈ξ(Ric(g))σ,Ric(g)〉L2(U,g) > 0. (7.4)

Together, (7.2), (7.4) imply that for all sufficiently small σ > 0,

λ(t) > 0,

for all t ∈ (0, t0(σ)), when h = ξ(Ric(g))σ ∈ TgM2,α
g (U); in fact, since γ(t),

g are all uniformly equivalent for small σ, t, we have
∫

U
R(γ(t)) dVolγ(t) > 0 for t ∈ (0, t0(σ)).

Now fix a small σ. This implies that for any t ∈ (0, t0(σ)), g̃t = u
4

n−2

t gt
is a L∞(M) ∩ C2,α

loc (M \ singS) metric with positive scalar curvature on its
regular part; this contradicts Proposition 6.2 when σ(M) ≤ 0.

�
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Given the above, all that remains to be checked is that g is smooth across
singS. This follows (when n = 3) from the main theorem of Smith-Yang
[SY92] on the removability of isolated singularities of Einstein metrics. �

We now turn our attention onto asymptotically flat manifolds and prove
Theorem 1.8, 1.9. The idea is to take the smoothed metric gε in Lemma
3.1 and apply a conformal deformation to gε with small change of the ADM
mass. Assume (Mn, g) is an asymptotically flat manifold, S ⊂ M is a
compact nondegenerate (n− 2)-skeleton which is η-regular along regS.

Proof of Theorem 1.8. Notice that singS = ∅. By Lemma 3.1, for every
γ > 0, there exists constant ε1 such that for every ε ∈ (0, ε1], there is a
metric ĝε on M such that:

(1) ĝε is C2(M);
(2) ĝε = g on M \Bg

ε (regS);
(3) ‖R(ĝε)−‖Ln

2 +δ(M,g)
≤ γ;

By the maximum principle and the Poincaré-Sobolev inequality, we con-
clude that the elliptic boundary value system




∆ĝεuε + cnR(ĝε)−uε = 0

limx→∞ uε = 1
uε = 0 on ∂M





has a unique solution uε, and 0 < uε < 1. This follows as in [SY79a]. The
same argument as in [Mia02, Proposition 4.1], moreover, shows that

lim
ε→0

‖uε − 1‖L∞(M) = 0, ‖uε‖C2,α(K) ≤ CK ,

for each compact set K ⊂ M \ S, where CK = CK(g,S,Λ,K).

Now define g̃ε = u
4

n−2
ε ĝε. By the choice of uε, R(g̃ε) ≥ 0 everywhere. We

then apply the argument of [Mia02, Lemma 4.2] and conclude that

mADM (g) = lim
ε→0

mADM (g̃ε),

which is ≥ 0 by the smooth positive mass theorem [SY79a, SY81, SY].
If the cone angle along S is not identically 2π, then Lemma 3.1 addition-

ally gives the following concentration behavior of scalar curvature:

R(ĝε) ≥ C1ε
−2 on Bg

c2ε(S) \Bg
c3ε(S),

where C1 = C1(S, g,Λ), cj = cj(S, g,Λ), j = 2, 3. Then [Mia02, Proposition
4.2] implies that

lim inf
ε→0

mADM (g̃ε) > 0,

and hence mADM (g) > 0. Hence if mADM (g) = 0, then g is smooth across
S, and therefore the rigidity conclusion of the smooth positive mass theorem
in [SY] implies that g is flat everywhere. �
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Proof of Theorem 1.9. Take ĝε as in Lemma 3.1. By the maximum principle
and the Poincaré-Sobolev inequality, the weak W 1,2

loc (M) solution of



∆ĝεuε + cnR(ĝε)−uε = 0

limx→∞ uε = 1
uε = 0 on ∂M





exists and satisfies 0 < uε < 1. By standard elliptic theory and De Giorgi-
Nash-Moser theory, uε ∈ C2,α

loc (M \ singS) ∩ C0,θ(M), for some θ ∈ (0, 1).
Moreover,

inf uε ≥ c1 supuε = c1 = c1(g,S,Λ),
by Moser’s Harnack inequality.

The metric g̃ε = u4ε ĝε is asymptotically flat with only isolated singularities
and nonnegative scalar curvature away from singS. Let G(·, singS) be the
Green’s function of ∆g̃ε− 1

8φ(R(g̃ε; 1)) with poles at singS, and which decays
to zero at infinity. Apply the excision lemma (Lemma 6.1) to the blown up
metric

hε = (1 + σ(ε)G)4g̃ε

on M \singS, where σ(ε) is the constant that appears in the proof of Propo-
sition 6.2, and limε→0 σ(ε) = 0. Excise (M,hε) along each area minimizing
two-sphere in the asymptotically Euclidean end in (M,hε).

Notice that, since limε→0 σ(ε) = 0,

mADM (g) = lim
ε→0

mADM (g̃ε) = lim
ε→0

mADM (hε)

on each asymptotically flat end of M (recall that we’ve excised one end). By
the smooth positive mass theorem [SY79a, SY81], mADM (hε) ≥ 0. There-
fore mADM (g) ≥ 0. (To see the above limits on the ADM masses, we first
notice that the metrics hε and g̃ε differ by a factor which converges to zero
in C2, as x → ∞ and ε → 0. Hence from the definition of ADM mass,
limε→0m(hε) = limε→0m(g̃ε). To see that limε(g̃ε) = m(g), we just apply
[Mia02, Lemma 4.2] again on the family of conformal factors uε.)

Now we conclude the rigidity case. Assume mADM (g) = 0. If R(g) is
not identically zero on regS, or the cone angle along regS is not identically
2π, then a similar concentration behavior as in the proof of Theorem 1.8,
combined with [Mia02, Proposition 4.2], show that

lim inf
ε→0

mADM (hε) > 0;

this would contradict our rigidity assumption. Therefore g is scalar flat on
M \ S, and is C2,α across regS locally away from singS. Now we prove
Ric(g) = 0 away from singS. Consider the metrics gt = g − th, where h is
a C2,α symmetric (0, 2) tensor, compactly supported away from singS. Let
ut be the weak solution to



∆gtut + cnR(gt)−ut = 0

limx→∞ ut = 1
ut = 0 on ∂M







POSITIVE SCALAR CURVATURE WITH SKELETON SINGULARITIES 27

Then (see, e.g., the proof of Theorem 1.7 for details) the metric ĝt = u4t gt
has zero scalar curvature and isolated uniformly Euclidean point singular-
ities. Therefore mADM (ĝt) ≥ 0 by the positive mass theorem for isolated
L∞ singularities established just above. On the other hand, by a similar
calculation as in [SY79a], we see that

d

dt

∣∣∣∣
t=0

mADM (M, ĝt) = C1(n)

∫

M
〈Ric(g), h〉 .

Now if Ric(g) 6= 0 in an open neighborhood of M \ singS, we may pick
h = ξ(Ric(g))σ, where ξ is a function compactly supported in U , (Ric(g))σ
is a C2,α mollification of Ric(g), and make m′

ADM (0) 6= 0. (See the proof
of Theorem 1.7.) This is a contradiction to the positive mass theorem for
isolated L∞ singularities, which would imply that mADM (0) = 0 is a global
minimum of t 7→ mADM (M, ĝt).

Finally, being in n = 3, we conclude that g is smooth and flat across
singS by the removable singularity theorem [SY92] of Einstein metrics. �

8. Examples, counterexamples, remarks

8.1. Codimension-1 singularities and mean curvature. Question 1.2
is true when S ⊂ M is a closed, embedded, two-sided submanifold, and:

(1) g is smooth up to S from both sides,
(2) g induces the same metric gS on S from both sides, and
(3) the sum of mean curvatures of S computed with respect to the two

unit normals as outward unit normals is nonnegative.

We’d like to point out that condition (3) is imperative, as the following
counterexample clearly shows: take a flat n-torus Rn/Zn, remove a small
geodesic ball, and replace it with a constant curvature half-sphere of the
same radius. Indeed, here the sum of mean curvatures is negative (one neg-
ative, the other zero), and the resulting metric g does not have a removable
singular set.

For some intuition on (3), one may use the first variation of mean curva-
ture along a geodesic foliation of M about S, and the Gauss equation on S,
to see that

R(g)|S = R(gS)−
[
d

dt
Ht

]

t=0

− |AS |2 −H2
S . (8.1)

Heuristically, a positive sum of mean curvatures contributes a distribution-
ally positive component to the scalar curvature R(g) evaluated at S.

8.2. Codimension-2 singularities and cone angles. Allowing edge met-
rics with cone angles larger than 2π invalidates Question 1.2. We illustrate
this here with a counterexample:

The example in Figure 2 inspired by [Gro83, Example 5.6-B’]. For each
integer g ≥ 2, we describe a flat metric on a genus g Riemann surface with
isolated conical points with cone angle > 2π.
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Take a planar graph G with two nodes, p and q, and g + 1 edges. The
graph separates the plane into g+1 connected components. Excise one disk
from each bounded face and, and the exterior of a disk from the unbounded
face, as in Figure 2.

Figure 2. g = 3 construction.

Each face component is diffeomorphic to S1× [0, 1]. Endow each face with
a flat product metric via this diffeomorphism. Note that the metric now is
smooth away from p, q, and is conical at p, q, with cone angle (g + 1)π.
The g + 1 boundary components of this manifold, namely the S1 × {1}’s,
are totally geodesic. Take the doubling of this manifold across its boundary
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to obtain a genus-g surface, Σ. Now Σ has a smooth flat metric with four
isolated conical singularities, each of which has cone angle (g + 1)π.

For n ≥ 3, consider the manifold M = Σ × (S1)n−2 with the product
metric. It’s easy to see that this metric is an edge metric, flat on its regular
part, with singularities with cone angles (g+1)π. However, since M trivially
carries a smooth metric with nonpositive sectional curvature, its σ-invariant
satisfies σ(M) ≤ 0 by [GL83, Corollary A].

8.3. Codimension-3 singularities that are not uniformly Euclidean.

The “uniformly Euclidean” condition (i.e., that the metric be L∞) is imper-
ative for Conjecture 1.5 to hold true. Indeed, if g were allowed to blow up,
then the doubled Riemannian Schwarzschild metric

g =
(
1 +

m

2r

)4
δ, m > 0,

on R3 \{0} would be a counterexample: it can be viewed as a non-Einstein,
scalar-flat metric on a twice-punctured 3-sphere.

Likewise, if g were not bounded from below, then the negative-mass Rie-
mannian Schwarzschild metric

g =
(
1 +

m

2r

)4
δ, m < 0,

on R3 \ B−m/2(0) would yield a counterexample: it can be conformally
truncated near infinity to match Euclidean space, where we then identity
the opposide faces of a large cube to yield a topologically smooth 3-torus
with positive scalar curvature, which would be a counterexample since tori
are known to have σ(T 3) = 0. See [Loh99, Section 6] for more details.

8.4. Examples of edge metrics. Orbifold metrics provide an important
source of edge metrics (with angle < 2π); they can be obtained as the
quotient metric under a Zk isometry group with an (n − 2)-dimensional
fixed submanifold.

Generally speaking, the scalar curvature geometry of orbifolds can be sub-
stantially different from that of manifolds. For instance, Viaclovsky [Via10]
showed that the Yamabe problem of finding constant scalar curvature met-
rics is not generally solvable on orbifolds. (On manifolds, the problem was
shown to be completely solvable in [Tru68, Aub76, Sch84, SY88].) Theorem
1.4 nevertheless confirms that edge-type orbifold singularities along a codi-
mension two submanifold cannot go so far as to change the Yamabe type
from nonpositive to positive.

8.5. Gromov’s polyhedral comparison. We focus here on the aspect of
[Gro14] that relates most closely with our work. This regards metric aspects
of cubes in three-dimensional manifolds with nonnegative scalar curvature.

Let (M3, g) be a polyhedron of cube type, M ≈ [0, 1]3 ⊂ R3, with faces
Fj . Let ∡ij(M, g) denote the (possibly nonconstant) dihedral angle between
two adjacent faces Fi and Fj . Per Gromov’s polyhedral comparison theory
for nonnegative scalar curvature, (M3, g) cannot simultaneously satisfy:
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(1) the scalar curvature is nonnegative, R(g) ≥ 0;
(2) each Fi is mean convex;
(3) for all two adjacent faces Fi, Fj , ∡ij(M, g) < π

2 .

Gromov’s crucial observation is to argue, by contradiction, that such an
arrangement would stand in violation of σ(T3) = 0. Indeed, he proposes the
following elegant construction: “double” M three times —across the front,
right, and bottom faces— and then identify all newly created isometric faces
opposite of each other to obtain a torus, T3. Then g lifts to a metric g̃ on
T3 whose singular set stratifies as F 2 ∪ E1 ∪ V 0, and:

(1) g̃ is smooth on both sides of F 2, induces the same smooth metric on
F 2, and the sum of mean curvatures of F 2 computed with respect to
the two unit normals as outward unit normals is positive (see Section
8.1);

(2) g̃ is an edge metric along E1 with angles less than 2π;
(3) g̃ is uniformly Euclidean across V 0;

Each stratum is independently compatible with a “weak” notion of nonnega-
tive scalar curvature: see [Mia02, ST18] for codimension one, and Theorem
1.7 for codimensions two and three. However, tori shouldn’t carry such
metrics.

Using different methods altogether, the first-named author confirmed in
[Li] that such arrangements don’t exist and, moreover, that if one allows
weakly mean curvex faces and non-obtuse dihedral angles, then such ar-
rangements are rigid: they are necessarily rectangular domains in R3.

8.6. Sormani-Wenger intrinsic flat distance. For the reader’s conve-
nience, we recall the Sormani-Wenger definition:

Definition 8.1 ([SW11, Definition 1.1]). Let (Mn
1 , g1), (Mn

2 , g2) be two
closed Riemannian manifolds. Their intrinsic flat distance is defined as

dF ((M1, g1), (M2, g2)) := inf{dZF ((ϕ1)#T1, (ϕ2)#T2) : Z,ϕ1, ϕ2};
the infimum is taken over all complete metric spaces (Z, d) and all possible
isometric embeddings ϕi, i = 1, 2, of the metric spaces induced by (Mi, gi)
into (Z, d). The Ti, i = 1, 2 denote the integral n-currents Ti(ω) :=

∫
Mi

ω,

(ϕi)#Ti denote their pushforwards to Z, and dZF denotes the Ambrosio-
Kirchheim metric space flat norm [AK00]:

dZF (S, T ) := inf{M(U) +M(V ) : S − T = U + ∂V };
this infimum is taken over integral n-currents U and integral (n+1)-currents
V in (Z, d).

In this paper we have shown that the following families of singular Rie-
mannian manifolds (Mn, g) in Theorems 1.4, 1.7 will either have:

(1) σ(M) ≤ 0 and be everywhere smooth and Ricci-flat to begin with;
or

(2) σ(M) > 0 and carry smooth metrics of positive scalar curvature.
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We conjecture that, in the second case, the desingularizations we have
set up in this paper give rise to dF -Cauchy sequences of smooth closed PSC
manifolds, which, moreover, recover (Mn, g) as a metric dF -limit.

A more ambitious conjecture, that appears out of reach with today’s state
of the art, is to show that (Mn, g), n ≥ 4, with singular sets of codimension
≥ 3 and positive scalar curvature everywhere else, arise as metric dF -limits
of smooth closed PSC manifolds; cf. Conjecture 1.5.
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