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Vocal learning, the ability to imitate sounds from conspecifics and the environment, is a key component of human spoken

language and learned song in three independently evolved avian groups—oscine songbirds, parrots, and hummingbirds.

Humans and each of these three bird clades exhibit specialized behavioral, neuroanatomical, and brain gene expression con-

vergence related to vocal learning, speech, and song. To understand the evolutionary basis of vocal learning gene special-

izations and convergence, we searched for and identified accelerated genomic regions (ARs), a marker of positive selection,

specific to vocal learning birds. We found avian vocal learner-specific ARs, and they were enriched in noncoding regions

near genes with known speech functions or brain gene expression specializations in humans and vocal learning birds, includ-

ing FOXP2, NEUROD6, ZEB2, and MEF2C, and near genes with major neurodevelopmental functions, including NR2F1, NRP2,

and BCL11B. We also found enrichment near the SFARI class S genes associated with syndromic vocal communication forms

of autism spectrum disorders. These findings reveal strong candidate noncoding regions near genes for the evolutionary

adaptations that distinguish vocal learning species from their close vocal nonlearning relatives and provide further evidence

of molecular convergence between birdsong and human spoken language.

[Supplemental material is available for this article.]

Vocal learning is a critical component of spoken language in hu-

mans, but understanding of the molecular mechanisms underly-

ing vocal learning and human speech development remains

incomplete. Vocal learning evolved independently in humans

and at least four nonhuman mammalian lineages (cetaceans,

bats, elephants, and pinnipeds) and three avian lineages (oscine

songbirds, parrots, and hummingbirds) (Petkov and Jarvis 2012).

Vocal learning species share a number of characteristic traits not

found in vocal nonlearning species including: critical periods for

learned imitation of new sounds; infant babbling; deafness in-

duced deterioration of vocalization; dialects (Doupe and Kuhl

1999; Bolhuis et al. 2010; Petkov and Jarvis 2012); specialized neu-

ral pathways that control the vocal organs (syrinx in birds, larynx

in mammals) (Wild et al. 1997; Petkov and Jarvis 2012); and spe-

cialized gene expression in the brain regions comprising the neural

pathways (Hara et al. 2012; Pfenning et al. 2014; Lovell et al. 2018).

The shared neural pathways consist of a cortico-striato-thalamo-

cortical loop essential for learning and a motor cortex direct pro-

jection from the forebrain vocal motor control regions to the

brainstem vocal motor neurons (Fig. 1A; Doupe and Kuhl 1999;

Bolhuis et al. 2010; Arriaga et al. 2012). These neural pathways

are either absent in vocal nonlearning species or rudimentary in

many species according to a continuum hypothesis of vocal learn-

ing (Wild et al. 1997; Arriaga et al. 2012; Petkov and Jarvis 2012;

Liu et al. 2013; Pfenning et al. 2014; Jarvis 2019).

This convergence of advanced vocal learning suggests that

nonhuman vocal learning species may be used as models for the

study of human speech disorders, which affect about 6% of chil-

dren (Law et al. 2000). Early intervention in speech development

disorders, including some autism spectrum disorders (ASDs), can

improve patient outcomes (Dawson et al. 2010). Prenatal and early

childhood genetic screening are therefore potentially powerful

therapeutic tools, but they require known causal genetic mecha-

nisms to screen. A more complete understanding of the genetic

basis of vocal learning may provide valuable candidates for such

screenings.

Genomic markers of positive selection can be a powerful

guide to elucidating the molecular pathways underlying traits rel-

evant to human phenotypes and diseases as demonstrated by re-

cent studies of longevity (Keane et al. 2015), immunity (Zhang

et al. 2013), and obesity (Liu et al. 2014). In humans, positively se-

lected accelerated regions (ARs), characterized by DNA sequence

conservation in nonhuman species and faster than neutral DNA

sequence evolution in humans, are enriched for neurological func-

tions, potentially related to our evolution of larger brains and lan-

guage (Kamm et al. 2013; Oksenberg et al. 2013; Boyd et al. 2015).

Here, we conducted an AR analysis on a genome alignment of

33 bird species including 12 vocal learners (seven oscine songbirds,

four parrots, and one hummingbird) and their nearest vocal non-

learning relatives (three suboscine songbirds, one falcon, one

swift, and one nightjar) (Figure 1B; Supplemental Table S1). We

identified ARs specific to one or more of the three vocal learning
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clades, identified candidate associated genes, and tested for con-

vergent acceleration across lineages.

Results

Accelerated region discovery and quality assessment

We aligned all 33 draft avian genomes, representing most

major clades of birds, vocal learners, and their nearest nonlearning

relatives (Fig. 1B; Supplemental Table S1) using Progressive Cactus

(commit 95f1c43c9740201aec52844c085cc3bb92 fb5757) (Paten

et al. 2011). We found that Cactus was

able to align an average of ∼70% of the

best annotated genome, the chicken, to

most other species (28 of the remaining

32 species) (Fig. 2A,B). This is a more

than twofold improvementover previous

avian whole-genome comparative stud-

ies (Zhang et al. 2014) that recovered

31.6% of the chicken genome in the

alignment with the same proportion of

species.

In keeping with previous AR studies

(Pollard et al. 2006; Hubisz et al. 2011), to

identify ARs specific to vocal learning

birds, we first identified evolutionarily

conserved elements (ECEs) in vocal non-

learning birds using phastCons (most-

conserved criterion; PHAST v1.4) (Siepel

et al. 2005). After filtering regions with

ambiguous orthology between chicken

and vocal learners, we retained 276,412

ECEs of at least 100 bp, spanning a com-

bined 51 Mb. We further excluded any

conserved element with an insufficient

number of aligned species both in total

and in the clade being tested for acceler-

ation (see Methods), as well as any

conserved element exhibiting evidence

of recombination driven by GC-biased

gene conversion, which can create

acceleration without positive selection

(Katzman et al. 2010), in the lineage be-

ing tested for selection (Supplemental

Fig. S1). We found that the GC-biased re-

gions tended to be at the ends of the

chromosomes (Supplemental Fig. S2),

which are known to be enriched for re-

combination in birds (Groenen et al.

2009; Backström et al. 2010), indicating

that the filtration is appropriate.

We tested these ECEs in vocal non-

learners for ARs in each of the vocal learn-

ing clades using phyloP ACC (PHAST

v1.4) (Pollard et al. 2006), which tests

whether the rate of nucleotide substitu-

tion in a foreground group (a vocal learn-

ing clade) is substantially greater than the

background group (all nonlearners)

(Siepel et al. 2005; Hubisz et al. 2011). As

a biological control set, we tested for ARs

in another convergent group of avian

lineages, waterbirds (ducks [mallard, Anseriformes], flamingos

[American flamingo, Phoenicopteriformes], plovers [killdeer,

Charadrifromes], and corewaterbirds [emperor penguin and crested

ibis, Aequornithia]) following the same pipeline as above, by ascer-

taining ECEs in all nonwaterbirds, including vocal learners.

We found 3608 oscine songbird, 3400 parrot, and 1795 hum-

mingbird ARs, as well as 858 mallard, 105 flamingo, 133 killdeer,

and 147 core waterbird ARs (Supplemental Tables S2–S4). Most vo-

cal learning bird ARs were noncoding (91%–95%), with the largest

subset being intergenic, more than 10 kb from a gene body (51%–

62%) (Fig. 2C). Rates of acceleration varied among ARs within

B
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Figure 1. Convergent lineages. (A) Diagram of the vocal learning–related brain regions and circuits in
oscine songbirds and human. Both species are characterized by anterior learning (white arrows) and pos-
terior production (solid black arrows) pathways, including a direct neuronal projection (red arrow) from
the forebrain to the brain stem. (B) A phylogeny of the taxa in this study using the topology of Jarvis et al.
(2014) with branch lengths inferred from fourfold degenerate sites. Branches are colored by convergent
phenotype: Red: vocal learners; blue: waterbirds, which are used as a biological control for some analy-
ses; black: species that do not belong to either of these groups. Abbreviations: Songbird brain: Area X,
Area X of the striatum; AV, nucleus avalanche; DLM, dorsolateral nucleus of the medial thalamus; DM,
dorsal medial nucleus of the midbrain; HVC, high vocal center; LMAN, lateral magnocellular nucleus
of the anterior nidopallium; LMO, lateral oval nucleus of the mesopallium; Nif, interfacial nucleus of
the nidopallium; RA, robust arcopallium; XII, bird twelfth nerve nucleus. Human brain: Am, nucleus am-
biguous; ASt, anterior striatum; aT, anterior thalamus; LMC, laryngeal motor cortex; LSC, laryngeal
somatosenosry cortex; PAG, periaqueductal gray.
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lineages and to a lesser degree between lineages (Supplemental Fig.

S3). The total number of accelerated regions observed varied

34-fold between the most AR-rich lineages (oscines) and the least

AR-rich lineage (flamingo). To explore the reason behind this,

we conducted additional acceleration tests on each terminal

branch of the phylogeny leading to a nonlearner. We found a lin-

ear correlation (R2=0.63) between the number of ARs and branch

length, inferred from fourfold degenerate sites by phyloFit (PHAST

v1.4) (Fig. 3; Siepel et al. 2005; Hubisz et al. 2011). This relation-

ship suggests that selection acting in a clocklike fashion is primar-

ily responsible for the variation in the number of ARs observed in

tests for acceleration on a single branch of the phylogeny.

To test for a possible effect of also having greater numbers of

species represented in a clade, we conducted down-sampling ex-

periments in the vocal learning clade with the most species se-

quenced (oscine songbirds), which happens to also be the clade

with the most bird species (5000 of the

∼10,500 species). We repeated the oscine

clade AR analysis with one to seven spe-

cies and identified the number of ARs ob-

servedper lineage.We found increasingly

larger number of ARs with more species,

although there was a decrease when

moving from one to two species (Supple-

mental Fig. S4, black). This included

emergence of ARs not identified when

anyof the lineages are tested individually

(Supplemental Fig. S4, red), indicating

that the inclusion of multiple species

yields an increase in statistical power. As

we added taxa from one to four oscines,

we observed an increasing ability to iden-

tify ARs as accelerated, but statistical

significance continued to increase as ad-

ditional taxa were added beyond the

fourth species (Supplemental Fig. S5A,

B). This indicates that beyond the num-

ber of ARs detected, the pattern of

selection on an individual conserved ele-

ment tended to converge toward the full

data set result as we added more species

to the analysis.

To further investigatewhether vocal

learning bird ARs were driven by a single

taxon or by selection relevant to all spe-

cies in the clade, which wewould predict

to be more likely related to vocal learn-

ing, we tested for acceleration in each os-

cine songbird species using with phyloP

-CONACC (Pollard et al. 2006). Only

two ARs were the result of acceleration

specific to a single oscine songbird spe-

cies, and only five ARs were the result of

acceleration in <50% of oscine songbirds

(Supplemental Fig. S6; Supplemental

Table S5). This gives us confidence that

most of the ARs we identified result

from selection impacting most or all of

the tested clade.

We also tested the influence of non-

learning taxa on AR discovery. We hy-

pothesized that near relatives of vocal

learners would exert a greater influence on AR ascertainment

than distant relatives. To test this hypothesis, we compared the re-

moval of oscine songbirds near vocal nonlearning relatives (e.g.,

suboscines) with the removal of randomly selected neoaves, the

clade comprising all species except chickens and ducks (chicken,

greater prairie chicken, mallard) and ratites (ostrich and white

throated tinamous). In both cases, we observed decreases in power,

but the effect wasmuch larger when removing near relatives of os-

cines (Supplemental Fig. S5C). For example, whereas removing five

distantly related background species resulted in a loss of <5% of os-

cine songbird ARs, removing just the three suboscines resulted in a

loss of >30% of oscine songbird ARs. This indicates that the inclu-

sion of these close outgroup species is important, even though

they were not directly tested for acceleration.

Some ARs may be the result of loss of constraint rather than

positive selection. However, over the ∼30–100 million lineage

B
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Figure 2. Alignment and AR distribution information. (A) The fraction of each species genome aligned
to the chicken, the genomewith themost complete annotation in this study. (B) The fraction of the chick-
en genomewith at leastN species aligned to chicken (including chicken). (C) Distributions of ARs among
the vocal learning acceleration tests in this study. In all three clades, the majority of ARs are intergenic
(purple).
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divergence timespans being considered in this analysis (Jarvis

et al. 2014), one or more episodes of positive selection or an over-

arching loss of constraint might produce similar signatures of ac-

celeration. In either case, it would represent a probable deviation

in the function of the conserved element so that even a loss of con-

straint would still be indicative a likely evolutionarily relevant

event.

Accelerated regions in vocal learning birds

The distribution of both ARs and ECEs varied across the genome

and include regions of high AR density, that is, acceleration hot-

spots, which in past studies have been found to be major targets

of adaptive evolution (Booker et al. 2016). To ascertain whether

the AR hotspots we found in this study are indeed areas of AR en-

richment independent of ECE density, we tested for a correlation

between AR and ECE density. Consistent with AR studies in hu-

mans (Pollard et al. 2006; Capra et al. 2013; Hubisz and Pollard

2014), we found that AR densities in vocal learning birds were

not strongly correlated with the number of ECEs in a region

(Supplemental Fig. S7). These findings suggest that ARs in vocal

learners are not randomly distributed among ECEs in their ge-

nomes but in specific regions of the genome.

To identify potential acceleration hotspots in vocal learners,

we randomly sampled ECEs equal to the number of ARs observed

and calculated the genome-wide maximum density. AR densities

in a lineage that exceeded the genome-wide maximum density in

at least 95 of 100 (95%) resamplings were considered acceleration

hotspots.We found between six and 14ARhotspots in all three vo-

cal learning bird lineages (Fig. 4A–C) as well as five less dense ones

in the mallard but no AR hotspots in the other waterbirds

(Supplemental Fig. S8A–D).MostARhotspotswerenot foundwith-

in gene bodies but in noncoding regions (Fig. 4D; Supplemental

Figs. S9–S11). Some of the nearby genes to the AR hotspots of vocal

learners included those with previously implicated roles in vocal

learning. This notably included the transcription factors FOXP2,

NEUROD6, and MEF2C among the six oscine AR hotspots (Fig.

4A; Supplemental Fig. S9A–F; Haesler et al. 2004; Vargha-Khadem

et al. 2005; Schulz et al. 2010; Pfenning et al. 2014; Chen et al.

2016; Torres-Ruiz et al. 2019). FOXP2 is among the most widely

studied human language-associated gene, with strong evidence

fora role in thedevelopmentandproductionofhumanspoken lan-

guage and learned avian song (Enard et al. 2002; Vargha-Khadem

et al. 2005; Maricic et al. 2013; Becker et al. 2015; Torres-Ruiz et

al. 2019). The majority of ARs in the FOXP2-containing hotspot

were located between the FOXP2 and TFEC transcription factors

(Fig. 4D), a region known to contain FOXP2 regulatory elements

(Becker et al. 2015; Torres-Ruiz et al. 2019). NEUROD6 is one of

themost robust specialized down-regulated genes in the RA analog

of all vocal learning bird lineages and the human laryngeal motor

cortex (LMC) (Pfenning et al. 2014), and the ARs in this region

are highly concentrated in the regulatory regions around the

gene (Supplemental Fig. 9C). The ARs associated with MEF2C was

particularly dense upstream of the transcription start site

(Supplemental Fig. S9F). In development, MEF2C is down-reg-

ulated by FOXP2, allowing the formation of cortico-striatal con-

nections (Chen et al. 2016). Knockdown of FOXP2 reduces

cortico-striatal connectivity and ultrasonic vocalization sequence

complexity in mice (Chabout et al. 2015; Castellucci et al. 2016;

Chen et al. 2016). However, knockdown of both FOXP2 and

MEF2C together partially rescues cortical-striatal connectivity

and ultrasonic vocalization behavior (Chen et al. 2016). A second

AR hotspot in the territory of MEF2C has the highest AR density,

concentrated around the neurodevelopment-regulating transcrip-

tion factor NR2F1 (Supplemental Fig. S9F; Armentano et al. 2007).

In the parrots, the highest AR density was in a region canon-

ically disrupted in Mowat-Wilson syndrome, a developmental dis-

order characterized by a range of phenotypes, including speech

delay (Mowat et al. 1998, 2003), and included the ZEB2 and

ARHGAP15 genes (Fig. 4C; Supplemental Fig. 10L). The N2RF1

region that was the most accelerated region in oscines had the sec-

ond highest AR density in parrots (Fig. 4C; Supplemental Fig. 10R).

Other AR parrot hotspots encompass the transcription factors

SOX6 and BCL11B (aka CTIP-2), and the transmembrane protein

TENM2 (Fig. 4B; Supplemental Fig. S10I,K,Q). In the humming-

bird, the same region containing TENM2 was found to have the

second highest AR density (Fig. 4D); the greatest AR density was

found near the NR2P and PARD3B genes. Another hummingbird

AR hotspot included EFNA5 (Fig. 4C; Supplemental Fig. S11J). Hot-

spots in mallard include one hotspot overlapping a hummingbird

hotspot on Chromosome 14 that includes RBFOX1 (Supplemental

Fig. S8A).

In addition to testing for acceleration at the terminal branch-

es of the vocal learning clades, we also tested for acceleration on

the internal branches of the phylogeny where vocal learning is hy-

pothesized to have arisen. These are the basal branches of parrots

and of oscines, but we were unable to conduct a distinct test for

hummingbirds because, with only one species, the branch of vocal

learning origin is not distinctly captured. We also note that this

data set is lacking some oscine stem lineages and so the branch

of oscine origin could be further constrained by a more compre-

hensive sampling of genomes. We found 200 oscine branch of or-

igin ARs and 152 parrot branch of origin ARs, and these include

four ARhotspots in oscines, including a hotspot in theNR2F1-con-

taining region observed in the clade-specific test and one hotspot

in parrots (Supplemental Figs. S12, S13).

Integrating AR analysis with coexpression data to identify

novel candidate genes

Our analyses above identified genes with known function in

speech and vocal learning behavior, as would be expected if the

analysis were recovering substantial signals of selection for vocal

learning. However, we also sought to identify novel candidates

Figure 3. Relationship between branch length as inferred from fourfold
degenerate sites in our 33-way bird alignment and the number of ARs
found in each nonlearning bird. Therewas a broadly linear relationship be-
tween branch length and number of ARs ascertained, regardless of lineage,
consistent with a clocklike accumulation of ARs.
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for vocal learning–related selection.We therefore sought quantita-

tive criteria to identify genes that were both significantly accelerat-

ed in vocal learning birds and shared biological features supporting

a role invocalization.We selectedcoexpressionas theadditional bi-

ological information supporting a vocalization role, as it has been

hypothesized that genes that share functions tend to be expressed

together (Stuart et al. 2003; Lachmann et al. 2018). We used

ARCHS4, which integrates >180,000 human and mouse RNA-seq

samples from the Gene Expression Omnibus (GEO; https://www

.ncbi.nlm.nih.gov/geo/) to predict gene function. We obtained

the ARCHS4 (Lachmann et al. 2018) (accessed Nov. 20, 2019)

functional predictions for all annotated protein coding genes in

the chicken reference (galGal5). We searched for the possibility of

strong vocal learning candidates as those genes with significant

overrepresentation in ARs of one ormore vocal learners (Bonferroni

corrected,P<0.05) and strongpredicted vocalizationbehavior func-

tionbyARCHS4 coexpression (Z>5.0) (SupplementalTableS4).This

analysis identified several strong candidates, including the afore-

mentioned known vocal learning candi-

dates of NEUROD6 and MEF2C, as well as

novel candidates NR2F1 and TENM2 (Ta-

ble 1).

If our underlying hypothesis that

vocal learning birds are enriched for ARs

associated with vocal learning is true, we

should expect to see an excess of highly

accelerated genes (118 genes) among the

ARCHS4 genes with strong vocalization

behaviorcoexpression scores (845genes).

We used the 12,894 galGal5 annotated

genes with ARCHS4 score information

as a background gene set. Using a hyper-

geometric test, we found significant en-

richment (P=0.0043), indicating that

AR enriched genes are disproportionately

likely to be enriched for vocalization

behavior coexpression, consistent with a

net boosting of confidence by combining

the two criteria.

Convergent acceleration between vocal

learning birds

In each vocal learning lineage, we expect

that only a subset of the ARs we identify

will be involved in vocal learning evolu-

tion, whereas the remainder will be

involved in other adaptations. We hy-

pothesize that convergent ARs in vocal

learners, defined here as ARs that are ac-

celerated inmore thanonevocal learning

lineage, may prove to be greatly enriched

for vocal learning related selection,

because vocal learning is a shared adapta-

tion between the lineages. Using a hyper-

geometric test, we found significant

overrepresentation of convergent ARs

across all pairwise comparisons of vocal

learning bird lineages: Oscines and Par-

rots (observed 131, expected 50.13, P[X

≥131] < 1×10−14), Oscines and Hum-

mingbirds (observed 44, expected 23.78,

P[X≥44] = 1.07×10−4), and Parrots and Hummingbirds (observed

50, expected 23.34, P[X≥50] = 8.02×10−7) (Fig. 5A). One AR was

shared across all three vocal learning lineages, but this did not con-

stitute a significant enrichment over random expectation (ob-

served 1, expected 0.90, P[X≥1] = 0.59). However, this AR resides

upstream of the key neurodevelopmental regulator FEZF2 (Chen

et al. 2008; Rouaux and Arlotta 2010) in an intron of CADPS. Dele-

tionsencompassingthehumanorthologous region for thisARresult

in significant language deficits (de la Hoz et al. 2015; Parmeggiani

et al. 2018).Additionally, bothFEZF2 (rank6th,Z=5.19) andCADPS

(rank 6th,Z=5.22) have strongARCHS4predictions for vocalization

behavior functionality. So, although convergence shared between

all three vocal learning lineages is not significantly enriched, this

specific locus is a promising candidate. Across all pairwise compari-

sons ofwaterbirds,we found four convergentARs, onebetweenmal-

lard and each of the other waterbird lineages and one between core

waterbirds and plovers (Supplemental Table S6). None of the water-

bird convergences were significant (hypergeometric P<0.05), but

B
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Chr 1

Figure 4. Accelerated region distributions. (A–C) AR hotspot plots in genomes for the three vocal learn-
ing lineages using chicken as the reference for chromosome location and annotations. Each dot indicates
the number of ARs in a 1-Mb window. Windows overlap and are offset from one another by 100 kb.
Regions with AR density higher than random are “hotspots” and labeled in red dots. Gray vertical lines
demark chromosome boundaries; chromosomes are arranged 1–28, W, Z. Genes in acceleration hot-
spots with known speech or neurodevelopmental functions and/or associated with convergent hotspots
in vocal learners are indicated in each plot. (D) An enlarged view of the distribution of ARs per 100 kb in
the FOXP2 containing acceleration hotspot. Genes in the hotspot are arrayed by strand (+ or −). FOXP2 is
the only gene in this region with predicted vocalization behavior function based on coexpression (Z =
3.48). Silhouettes by Anthony Caravaggi and Ferran Sayol.
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this may be due to the smaller number total ARs observed in water-

birds reducing statistical power rather than a genuine absence of

convergent AR evolution in waterbirds.

In total, 42 of 223 vocal learner convergent ARs come from

two AR hotspots on Chromosomes 13 and Z (Fig. 5B; Supplemen-

tal Fig. S14A,B). The Chromosome 13 hotspot is predominantly

composed of convergence between hummingbirds and parrots

(eight of 10 ARs), located between TENM2 and MAT2B genes.

TENM2 is amember of a gene familywith important roles inmotor

neuron guidance (Zheng et al. 2011) and, in addition to its strong

vocalization behavior coexpression discussed earlier (rank 3rd, Z=

5.56), it has been implicated in learning behavior in mice (Del-

prato et al. 2015). TENM2 is also associated with a cluster of great

ape ARs (Kostka et al. 2018). The Chromosome Z hotspot is pre-

dominantly composed of convergent AR nucleotide sites between

oscines and parrots (31 of 32 ARs) upstream of the NR2F1 tran-

scription factor (Fig. 5C; Supplemental Fig. S14B). NR2F1 also

exhibits strong vocalization behavior

coexpression (rank 1st, Z=5.83) and

plays a key role in the arealization of

the brain; cortical deletion of NR2F1 in

mice results in major expansion of the

M1 motor region to occupy most of the

cortex (Armentano et al. 2007).

At the broader level of affected re-

gions and genes, 903 genes were en-

riched for AR associations relative to

a random background expectation in at

least one of the three vocal learning line-

ages (hypergeometric test, P<0.05).

Eighty-two genes were enriched in two

lineages and NDST3 was enriched in all

three lineages (Supplemental Table S7).

NDST3, which is found in a parrot AR

hotspot on Chromosome 4 (Fig. 4B), is

predicted to have a vocalization behavior

function by ARCHS4 (Table 1). NDST3

has also been associatedwith schizophre-

nia and bipolar disorder (Zhang et al.

2016), suggesting a neurological func-

tion for the gene.

Amino acid sequence convergence

has been shown to occur at higher rates

in closely related species than in more

distantly related species, possibly as a

consequence of pleiotropy (Goldstein et al. 2015). To explore the

dynamics of AR nucleotide convergence, we tested for conver-

gence between all pairs of vocal nonlearning species. We observed

significant increases in convergence of ARs over chance between

closely related species relative to more distantly related species

across the phylogeny (Supplemental Table S8; Supplemental Fig.

S15). These results indicate that the AR distributions of closely re-

lated species are nonindependent, but more distantly related spe-

cies are increasingly well modeled by independence. This

phenomenon occurs in all three major avian lineages

(Paleognathes, Galloanseres, and Neoaves), indicating it is com-

mon across birds and not related to vocal learning

(Supplemental Fig. S15).

In light of this observation, we conducted an additional anal-

ysis to explore whether vocal learners are convergent at a higher

rate than would be expected given their relatedness. We tested

whether ARs from a vocal learning species (V1) were more likely

Table 1. Strong candidate genes for vocal learning–related selection inferred from AR enrichment and coexpression data

Gene Significant AR enrichment ARCHS4 rank and Z-score Gene Significant AR enrichment ARCHS4 rank and Z-score

NR2F1 VL Convergent, Oscine, Parrot 1 (Z =5.8) CDH8 Parrot 2 (Z =5.2)
NEUROD6 Oscine 3 (Z =5.6) LRFN2 Parrot 22 (Z =6.0)
PCDH10 Oscine 3 (Z =5.3) GABRQ Hummingbird 2 (Z =5.5)
MEF2C Oscine 5 (Z =6.3) RBFOX1 Hummingbird, Mallard 3 (Z =5.4)
NDST3 Parrot 3 (Z =5.4) SYT1 Hummingbird 2 (Z =5.9)
TENM2 Parrot, Hummingbird 3 (Z =5.6) SLITRK4 Hummingbird 1 (Z =6.0)
KLHL29 Parrot 5 (Z =5.4) KCNC2 Hummingbird 3 (Z =5.8)
KLHL1 Parrot 13 (Z =5.6) TRHDE Hummingbird 1 (Z =5.9)

Here, we list the genes exhibiting significant AR enrichment (Bonferroni corrected, P<0.05) in one or more vocal learning bird lineages and strong (Z>
5.0) predicted vocalization behavior function by ARCHS4. We also provide ARCHS4-predicted function ranks indicating where vocalization behavior
ranked among Gene Ontology biological process terms. For example, vocalization behavior is the most supported function of NR2F1 and the third
most supported function of NEUROD6. Because rankings are in terms of functions per gene, vocalization behavior can have the same ranking for multi-
ple genes (i.e., first for NR2F1, SLITRK4, and TRHDE).

BA

C
Chr 1 (Mb)

Figure 5. Vocal learning bird AR convergence. (A) Venn diagram of convergent acceleration between
vocal learning bird clades. All pairwise overlaps are significantly enriched compared to random overlap
(hypergeometric P<0.05). (B) Genomic distribution of ARs convergent between two ormore vocal learn-
ing bird groups. Two hotspots of acceleration (red) exceed the 95th percentile of permutation tests (hor-
izontal line at 5 ARs/Mb) indicating significant enrichment of convergent ARs. Listed in these peaks are
two candidate convergent vocal learning genes. (C ) Expanded viewof the highest density convergent AR
hotspot, which is on the Z sex chromosome (present in both males and females). The distribution of all
genes is shown in blue bars, genes with ARCHS4 Z-scores greater than 5.0 (NR2F1 andMEF2C) are high-
lighted on the lower gene track in red bars. Below are densities of ARs within the hotspot for each vocal
learning bird lineage (single species): oscines (green), parrots (orange), and hummingbird (pink;
because there is only one hummingbird AR in this region, the pink is not visible at lower resolutions).
Convergent ARs are shown on a lower track in blue.
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to be convergent with another vocal learner (V2) or with that vocal

learner’s nonlearning closest relative (N); for simplicity, we denote

this test as (V1 [V2, N]). For example, a test assessingwhether parrot

ARs are more likely to be convergent with oscine ARs or rifleman

ARs is denoted (Parrot [Oscine, Rifleman]). Vocal learners shared

convergent ARs at higher rates with other vocal learners than

with their nearest vocal nonlearning relatives (Supplemental Fig.

S16); a paired t-test (n=5) indicates statistical support for vocal

learning convergence across tests (P=0.009).When analyzed as in-

dividual comparisons, two of the five comparisons (Parrot [Oscine,

Rifleman]) (P=0.0052) and (Hummingbird [Parrot, Rifleman]) (P=

0.017) were also statistically significant; other tests favored vocal

learning convergence but with less support, (Parrot [Humming-

bird, Swift]) (P= 0.34), (Oscine, [Hummingbird, Swift]) (P=0.31),

and (Hummingbird, [Oscine, Rifleman]) (P= 0.12). For the remain-

ing tests, we lack sufficient statistical power to reject the back-

ground rate of convergence.

We then tested whether vocal learner convergence remained

significant if we excluded ARs that are also shared with close non-

learning relatives of the vocal learning species. For the oscine and

parrot comparison, we excluded ARs observed either in rifleman

or in the manakin. For comparisons in-

cluding the hummingbird, we excluded

Chimney Sift ARs. Following this filtra-

tion, we found 97 Oscine-Parrot

exclusive ARs (expected 41.09, filtered

34, P[X≥97] = 2.89×10−14), 38 Oscine-

Hummingbird exclusive ARs (expected

18.59, filtered 6, P[X≥38] = 4.16×

10−5), and 43 Parrot-Hummingbird

exclusive ARs (expected 20.59, filtered

7, P[X≥43] = 8.32× 10−6) (Supplemen-

tal Table S6). These results are compara-

ble in significance to the unfiltered

results and continue to support greater

convergence than expected under inde-

pendence. Both convergent accelera-

tion hotspots remained significant,

and the convergent AR shared between

all three vocal learning lineage was not

filtered.

Convergent acceleration between vocal

learning birds and humans

Avian vocal learning is often studied as a

convergent model system for human

speech. To explore this hypothesis at

the level of targets of selection, we test-

ed for AR convergence between vocal

learning birds and humans. We com-

piled human ARs from five studies

(Lindblad-Toh et al. 2005; Pollard et al.

2006; Prabhakar et al. 2006; Bird et al.

2007; Gittelman et al. 2015), for a total

of 3134 human ARs ascertained from a

variety of background conserved ele-

ment criteria. Then, we converted the

accelerated regions in human genome

coordinates to the avian coordinates

with liftOver (Supplemental Table S9;

Kent et al. 2002) and calculated the

number of avian ARs that were orthologous with human

ARs. We found 64 convergent ARs between humans and at least

one vocal learning bird lineage, constituting a significant

enrichment for convergence between humans and each vocal

learning bird lineage: oscine songbirds (observed=23, expected=

10.15, P=0.00031); parrots (observed=23, expect = 11.33, P=

0.0013); and hummingbirds (observed=18, expected= 5.52, P=

0.000017). The greatest enrichment observed in the study was be-

tween ARs convergent between two vocal learning bird lineages

and humans (observed=7, expected=0.79, P=1.64×10−5) (Fig.

6A; Supplemental Table S10). Among these 64 ARs were those

near FOXP2, MEF2C, NR2F1, and EFNA5 mentioned earlier.

Next, we tested whether there were convergent ARs in vocal

learning birds and humans near the same gene locus, but not re-

quiring the ARs to be orthologous; not all selection must be on

the same genetic locus to be considered convergent. To do this,

we calculated the number of vocal learning bird or waterbird ARs

associated with a gene whose human ortholog is associated with

a human AR. To quantify the background rate of random associa-

tions with ARs for each bird lineage, we conducted 1000 permuta-

tions, sampling conserved elements equal to the number of ARs in

E

BA

C D

Figure 6. Tests for human convergence and vocalization enrichment. (A) Venn diagram of conver-
gence between avian and human ARs that are mappable between birds and humans. (B–E) Tests for en-
richment of ARs associated with gene lists of strong relevance to human-avian convergence and vocal
learning. Vocal learning bird (red) and waterbird (blue) dots indicate the observed association between
ARs and genes in the list; black bars give the distribution of values expected by chance under 95% (thick)
and 99.9% (thin) of cases; expected value ranges are inversely proportional to the number of ARs and to
the size of the gene list. Gene lists include: (B) genes associated with one or more human accelerated re-
gions; (C) genes identified as convergently differentially expressed between vocal learning birds’ RA song
nucleus and the human laryngeal motor cortex by Pfenning et al. (2014); (D) SFARI class S genes asso-
ciated with syndromic forms of autism spectrum disorders; and (E) genes identified as coexpressed with
vocalization behavior GO-term genes to Z >5.0.
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each acceleration test. We found significant enrichments of

association between human and vocal learning bird conver-

gent ARs (P<0.0001, Z=8.75), oscine songbird ARs (P<0.0001,

Z =19.86), parrot ARs (P<0.0001, Z=22.57), hummingbird ARs

(P<0.0001, Z=12.12), and the mallard ARs (P< 0.0001, Z= 5.01)

(Fig. 6B), albeit a smaller enrichment than we observe with avian

vocal learners. Further assessment of the terminal branches leading

to vocal nonlearners revealed 15 additional bird lineages with ARs

convergentwith human (Supplemental Fig. S17A). However, none

of these attained the fold enrichment observed in vocal learner

convergent ARs, oscine ARs, or Parrot ARs with humans, and

only 1 of the 22 tests (Hoatzin) exceeded the fold enrichment ob-

served in hummingbirds (Supplemental Fig. S17A).

To test whether the differences in enrichment might be a

product of the number of ARs found in each lineage, we down-

sampled vocal learner ARs to the same numbers observed in water-

birds. Across 1000 replicates per vocal learner, the vocal learners

were consistently enriched with ARs also specific to human rela-

tive to the waterbirds (Supplemental Fig. S18). This indicates that

our results are not the product of a bias caused by the greater num-

ber of ARs found in vocal learners.

Previous studies have demonstrated convergent gene expres-

sion specializations (up- or down-regulated) in avian song and hu-

man speech brain regions (Pfenning et al. 2014).We compared the

list of 52 convergent differentially expressed genes in the RA song

nucleus analog of oscine songbirds, parrots, and/or hummingbird

and the human LMC. We found significant enrichment (>95% of

permutations) in four tests: the oscine clade, parrot clade, vocal

learning convergent regions, and mallard (Fig. 6C). The oscine (P

<0.0001, Z=4.55) and parrot (P<0.0001, Z=4.27) clades fell out-

side the range of permutation tests, but vocal learner convergent

ARs (P=0.02, Z=2.28) and mallard ARs (P=0.01, Z=2.87) did

not. Among nonlearner terminal branch tests, only Hoatzin and

Ostrich fell outside the range of permutation tests (Supplemental

Fig. S17B). The lack of enrichment of hummingbird ARs may be

due to the lower ascertainment of genes differentially expressed

due to cross species hybridization of the arrays in the Pfenning

et al. (2014) study, the presence of only a single hummingbird in

our alignment, or different selective patterns in hummingbirds rel-

ative to oscine songbirds and parrots.

Association between vocal learning bird ARs and autism

spectrum disorders

ASDs are diverse in both pathology and cause, but a substantial

subset of ASDs are characterized by developmental speech and lan-

guage disabilities. Speech delay is one of the earliest clinical mark-

ers of ASD, and fMRI in early childhood reveals differences in

speech-related brain activity between ASD probands and develop-

mentally typical children (Redcay and Courchesne 2008). These

deficits are presumed to be controlled by genetic changes in genes

associated with speech development and function. Therefore, we

hypothesized an enrichment of ASD genes implicated in speech

in our vocal learning bird AR data sets. We compared avian genes

associated with ARs to the Simons Foundation Autism Research

Initiative (SFARI) category S “syndromic” in autism genes that

have been shown to be associated with at least one etiology of

ASD in humans, many of which involve language deficits

(Mowat et al. 2003; Wang et al. 2011; Phelan and McDermid

2012; Sarasua et al. 2014). We tested both for enrichment relative

to random chance by permutation of the conserved elements and

found that SFARI category S genes were highly enriched for

genes associated with ARs in songbirds (P< 0.0001, Z=26.61), par-

rot (P<0.0001, Z=4.99), and the vocal learner convergent set (P<

0.0001, Z=12.60) (Fig. 6D). There was no enrichment for SFARI

class S genes in waterbirds (Fig. 6D) nor in the terminal branches

of vocal nonlearners, except for the Crested Ibis and the two sub-

oscine lineages, rifleman and two manakins (although not each

manakin alone) (Supplemental Fig. S17C). The latter result is indic-

ative of a general enrichment across the terminal branches of

Passerines (both oscine and suboscine), although the fold enrich-

ment is greater in the convergent vocal learning group than the

manakin clade (Supplemental Fig. S17C).

We also tested whether the top candidate genes identified in

this study supported by both strong AR enrichment and signifi-

cant ARCHS4 vocalizationbehavior support (Table 1) aremore like-

ly to be associated with SFARI class S genes (<1% of all genes) than

those predicted by ARCHS4 vocalization behavior alone.We found

that two of the 16 (12.5%) best candidate genes identified in this

study (Table 1) were SFARI class S genes (NR2F1 and SYT1). We fur-

ther found that 23 of the 845 (2.7%) genes with an ARCHS4 vocal-

ization behavior Z-score>5.0 were SFARI class S genes. A Fisher’s

exact test to determinewhether these results are from the same dis-

tribution produced a P-value=0.07, a trend toward significance.

This result suggests that the introduction of avian ARs might

lead to an increase in enrichment for ASD-associated genes over

ARCHS4 data alone, but the small number of best candidate genes

limits our statistical power and confidence.

Association between vocal learning bird ARs and vocalization

behavior–coexpressed genes

We also performed a permutation test for enrichment of ARs asso-

ciated with genes that were highly coexpressed with vocalization

behavior Gene Ontology (GO) term genes (Z>5) in the ARCHS4

analysis. We found all three vocal learning lineages and their con-

vergent groupingwere strongly enriched for associationwith these

genes in vocalization behavior (Fig. 6E). Among waterbirds, only

the mallard was significantly enriched but to a lower degree than

the vocal learners (Fig. 6E). Among the nonlearner terminal

branches, besides the mallard, the rifleman and chimney swift

also showed enrichment, but all still with lower fold enrichments

than any of the vocal learners (Supplemental Fig. S17D). These

findings support coexpression with vocalization-associated genes

as a criterion for novel candidate discovery.

Discussion

The identification and functional interrogation of ARs has great

potential for biological and therapeutic insight. Human ARs

have been shown to be a valuable tool for identifying the molecu-

lar basis of key human adaptations, potentially including in-

creased brain size and language development (Kamm et al. 2013;

Oksenberg et al. 2013; Boyd et al. 2015). Our finding of elevated

convergence of ARs both among vocal learning birds and between

vocal learning birds and humans further support the hypothesis

that vocal learning arose through convergent mechanisms. It is

also the first identification of specific candidate nucleotide regula-

tory regions of genes with specialized brain regulation or function

in vocal learning behavior. Moreover, our findings identify such

regions in avian vocal learners and in humans, loci relevant to hu-

man speech and associated disorders.

A key example in the highest density AR hotspot in parrots

encompasses the ZEB2 gene known to be involved in Mowat-
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Wilson syndrome, a neurodevelopmental disorder that causes

severe speech impairment or speech absence (speech absence in

>67% of patients) but hasmuch less impact on receptive language,

allowing many patients to communicate nonverbally (Ivanovski

et al. 2018). Another example is FOXP2, in which a heterozygous

mutation that inactivates one copy of the gene, causing an apraxia

of speech (Lai et al. 2001). In addition to these genes, we identified

hotspots that include other genes found in vocal learning studies,

notably MEF2C and NEUROD6. FOXP2 and MEF2C play mutual

regulatory and antagonistic roles in the development of vocaliza-

tion systems in mammals (Chen et al. 2016). The presence of

both genes in acceleration hotspots in oscine songbirds is strongly

suggestive that the same pathwaywas a key target of vocal learning

evolution in oscines as well as humans. Finding a candidate AR for

NUEROD6, we could have identified the region responsible for the

convergent down-regulation of NEUROD6 in the RA analog of all

three avian vocal learners and the human LMC (Pfenning et al.

2014), a regulation of a transcription factor that may underlie

downstream regulatory impacts. These findings are important

because they allow us to link some but not all of the known vocal

learning candidate genes with associated ARs that might be re-

sponsible for their specialized regulation and thus serve as key tar-

gets for future interrogation. They also serve as a valuable source of

support for the viability of our method overall.

Our findings also reveal novel candidate genes and their asso-

ciated ARs, including within the list of 16 of the 12,908 genes

scored in ARCHS4 analysis. These novel candidates include repre-

sentatives from both of the convergent acceleration hotspots

(NR2F1 andTENM2) andNDST3, the only gene enriched for AR as-

sociation in all three vocal learning bird groups. Perhaps NR2F1 is

the most notable novel candidate gene identified. NR2F1 is a neu-

rodevelopment regulating transcription factor and had the stron-

gest coexpression predicted function in vocalization behavior,

the highest density AR hotspot specific to vocal learning birds,

and it is a SFARI class S gene for ASD (Abrahams et al. 2013).

NR2F1’s role in the arealization of the brain (Armentano et al.

2007) makes it a good candidate for the expansion of forebrain

size and increased pallium (i.e., cortical) neuron density in song-

birds’ and parrots’ brains (Olkowicz et al. 2016), which in turn

may have accommodated their extra vocal learning brain pathway

(Feenders et al. 2008; Chakraborty and Jarvis 2015; Chakraborty

et al. 2015).

The finding that NR2F1 and some other candidate genes are

located at the edge of a gene desert is consistent with human-spe-

cific AR studies that have noted a similar pattern of enrichment of

ARs in gene deserts near developmental transcription factors

(Hubisz and Pollard 2014). Indeed, this is described as the “typical”

human accelerated region by the originator of themethod (Hubisz

and Pollard 2014). It is hypothesized that these regions harbor ex-

tensive regulatory elements responsible formodulating the expres-

sion of major developmental regulators that border the gene

deserts (Nobrega et al. 2003; Touceda-Suárez et al. 2020). The ob-

served tendency for accelerated regions, both in humans and

now in vocal learning birds, to occur in gene deserts lends addi-

tional support to the hypothesis that these structures may be par-

ticularly important venues for adaptive evolution.

Prior to this study, an analysis of vocal learning bird ARs was

conducted on an alignment of 15 species including six vocal learn-

ing species as part of a larger comparative genomics study (Zhang

et al. 2014). However, a number of technical shortcomings limited

the utility of the findings of that study, including a lack ofmultiple

test correction and lack of filtering GC-biased gene conversion, a

common nonselection source of acceleration that occurs nonran-

domly in the avian genome (Groenen et al. 2009; Backström et al.

2010). As a consequence of these shortcomings, any signal in the

previous studywas likely overwhelmed by false positive results.We

controlled for all these factors. Additionally, the advances in non-

reference genome alignment we used allowed us to analyze a sub-

stantially greater portion of the genome than previous studies.

Though significant progress has been made, conceptual

challenges remain in extracting the most valuable and error-free

possible set of ARs. A long-standing interpretive limitation of ac-

celeration studies is the difficulty of distinguishing positive selec-

tion from loss of evolutionary constraint, as both phenomena

increase the rate of substitution above the conserved rate of other

taxa at the locus. For a given AR, it is difficult to exclude the possi-

bility that the observed pattern of acceleration is the result of loss

of constraint. For shorter divergence time spans (∼<10 million

years), a test of whether the rate of acceleration exceeds the neutral

rate is often applied (Nei and Gojobori 1986; Pollard et al. 2010).

However, such a test assumes a single uniform selective regime,

which may be inappropriate over the time spans being assessed

in this study (30–50million years), where an adaptive event might

lead the rate of molecular evolution to shift from conservation to

acceleration and back to conservation. Further, loss of function

would be consistent with some of the findings on gene expression,

where vocal learning bird RA and human LMChave loss of expres-

sion of NEUROD6 and other neural development genes.

Another conceptual challenge we encountered was our find-

ing that the number of ARs in a lineage was positively correlated

with branch length and the number of species in the clade being

assessed. The branch length finding is consistent with a relatively

stable rate of positive selection events within each lineage. It is

broadly consistent with the finding that most human ARs are

shared with Neanderthals (Hubisz and Pollard 2014). The effect

of the number of species in the clade is more complex where, in

from one to four species, we see an increase in the correct identifi-

cation of regions as accelerated, and an increase in power beyond

four species. There also appears to be a shift toward ascertaining se-

lection events shared across the clade, meaning they either took

place early in the clade’s evolution or were convergently evolved

in multiple lineages within the clade. For this study, the skew in

AR ascertainment toward the base of the clade is desirable because

we are interested in a trait shared across all members of the clade.

Looking forward, technical advances will almost certainly be

a major source of improvement in acceleration studies. This in-

cludes higher throughput sequencing of many more species per

lineage and improvements in genome sequencing and assembly

allowing for more complete and error-free assemblies (Rhie et al.

2021). Likewise, the proliferation of tissue-specific epigenomic

methods for identifying functional elements, such as ChIP-seq

and ATAC-seq, present great potential for further targeting the

most relevant ARs in this study.

The ascertainment of convergent ARs has been a topic of great

interest in the recent literature because of their potential to reveal

selection underlying trait evolution (Hu et al. 2019; Kowalczyk

et al. 2019; Partha et al. 2019; Sackton et al. 2019). These have great

potential to further expand this work andpotentially reveal greater

patterns of convergence through improved statistical power.

Although there have not yet been rigorous comparisons of these

methods to ascertain which are most useful and reliable, the new

methods represent an important potential area for growth in the

field. One recent method proposes a novel Bayesian approach to

identify both convergent and nonconvergent ARs from a
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convergently evolving trait group in a single analysis (Hu et al.

2019). However, this implementation of phyloP would not be ap-

propriate for our analyses as it measures the unweighted average of

acceleration across all of the convergent lineages (Pollard et al.

2006) and could recover acceleration in the lineage with the

most mutations on average (Hu et al. 2019). To avoid such a

bias, we ran phyloP independently on each convergent lineage

and then intersected the results to identify convergent ARs.

A further consideration for studies that attempt to compare

between AR identification methods should consider our observa-

tion that closely related lineages aremore likely to be convergently

accelerated than more distantly related lineages. Greater amino

acid convergence (Goldstein et al. 2015) and AR convergence

(this study) presents an interpretive challenge: true positive con-

vergence events occurring at a rate greater than chance might still

be, in some sense, expected.

Although convergent acceleration between all pairs of vocal

learners occurred at higher than expected rates, we did not find

any ARs shared between all three vocal learning bird lineages

and humans. This is consistent with other notable examples of

convergence at the DNA level, such as pigmentation regulation

by themelanocortin 1 receptor (MC1R).MC1R variants are respon-

sible for pale pigmentation in a range of species, including birds

(Mundy et al. 2004), lizards (Rosenblum et al. 2004), white “spirit

bear”American black bears (Ursus americanus) (Ritland et al. 2001),

and Florida Gulf Coast beach mice (Peromyscus polionotus) (Hoek-

stra et al. 2006). However, similarly light-coated Florida Atlantic

Coast beach mice (Peromyscus polionotus) and polar bears (Ursus

maritimus) both lack derived MC1R variants and are thought to

have evolved their light coats through non-MC1R-related mecha-

nisms (Hoekstra et al. 2006; Miller et al. 2012). So, whereas molec-

ular convergence on the same gene and sometimes same

nucleotide sites does occur, it is not universal. This nonuniversal-

ity highlights the value of comparisons extending across many

species and analyses that look at both types of convergences. By in-

cluding many lineages in our analyses, we can identify more can-

didate component genes underlying a complex trait.

Another consideration for all studies on evolution of avian

vocal learning is that, given the tree topology (Fig. 1B), whether vo-

cal learning evolved three times in birds, as assumed in this study,

or twice—once in hummingbirds and once in the ancestor of par-

rots and songbirds—and then subsequently was lost twice in sub-

oscines (once in the rifleman clade and once in the larger clade

includingmanakins) (Jarvis et al. 2014).Whereas both hypotheses

havemerits, the three-origins hypothesis is more parsimonious, as

the branch ancestral to parrots and all songbirds (oscine and sub-

oscine) is very short, allowing only a very narrow time span where

vocal learning could have evolved substantially, and the parrot vo-

cal learning brain pathway has two parallel vocal learning systems

whereas songbirds and hummingbirds have just one, indicating

that there had to be at least further independent evolution in par-

rots (Chakraborty and Jarvis 2015; Chakraborty et al. 2015).

Nevertheless, both three- or two-origin hypotheses are consistent

with the convergent ARs in parrots and songbirds with humming-

birds and humans; and if two losses occurred in rifleman and sub-

oscines, this is still consistent with the presence of ARs in

songbirds and parrots associated with the presence of vocal learn-

ing. Our findings are also consistent with the continuum hypoth-

esis of vocal learning (Arriaga et al. 2012; Petkov and Jarvis 2012;

Jarvis 2019), where the advanced vocal learners have more ad-

vanced ARs not found inmore limited vocal learners. Future inves-

tigations with more genomes and phenotypic vocalization

characterization across species would inform whether there are

more continuous AR changes across species with a continuous vo-

cal learning trait.

In conclusion, this study provides an extensive collection of

positively selected loci and specific nucleotide changes in avian

andhuman vocal learning lineages to bemined and assessed by fu-

ture studies. The discovery of acceleration hotspots, encompassing

both widely recognized genes such as FOXP2 and functionally

plausible novel and convergent candidates such as NR2F1 and

NEUROD6 in vocal learning behavior, point to new evolutionarily

informed avenues for experimental testing. Our finding that some

AR hotspots in vocal learning birds are in the same genomic re-

gions implicated in human speech pathologies, including

Mowat-Wilson disorder and verbal ASD, also serve of candidate ge-

nomic regions to study such speech deficits.

Methods

Sample selection

We selected 33 published avian genomes generated using short

reads or Sanger sequencing for this analysis (Supplemental Table

S1), except for zebra finch (Korlach et al. 2017), Anna’s humming-

bird (Korlach et al. 2017), and chicken v5 (International Chicken

Genome Sequencing Consortium 2004), which used long

reads and thereby had fewer gaps and were more complete. We

prioritized the inclusion of species in vocal learning clades (oscine

songbirds, parrots, and hummingbirds) and their near vocal non-

learning relatives (suboscine songbirds, nonhummingbird Capri-

mulgiformes, and falcons) (Jarvis et al. 2014). We selected the

remaining samples to provide a diverse representation of themajor

avian clades prioritizing published genomes with greater assembly

contiguity (Supplemental Table S1) (Romanov et al. 2011; Cai et al.

2013; Seabury et al. 2013; Shapiro et al. 2013; Doyle et al. 2014; Jar-

vis et al. 2014; Zhang et al. 2014; Koepfli et al. 2015).

Whole-genome alignment

To reduce the risk of false alignments and reduce the compu-

tational work required for genome alignment, we soft-masked re-

peats in the genomes with RepeatMasker (Smit et al. 2013). We

aligned the genomes using a reference-free approach, Cactus

(https://github.com/ComparativeGenomicsToolkit/cactus/), com-

mit 95f1c43c9740201aec52844c085cc3bb92fb5757 (Paten et al.

2011), on the AWS cloud platform. Progressive Cactus alignments

require a guide tree to establish the relationships between taxa. To

generate this guide tree, we used the phylogeny of Jarvis et al.

(2014) as a backbone and added species not present in that align-

ment on the basis of their location in the Prumet al. (2015) phylog-

eny with estimated branch lengths. Although a guide tree is

required for Progressive Cactus alignments, minor deviations

from realistic phylogenies do not result in substantially different

alignments (Armstrong et al. 2020).

Conserved element identification

Wegenerated a neutralmodel of sequence evolution using a prede-

fined tree topology and estimated branch lengths and substitution

rates from fourfold degenerate sites using PHAST phyloFit (version

1.4) (Supplemental File S1; Siepel et al. 2005; Hubisz et al. 2011).

We identified fourfold degenerate sites using the chicken reference

(galGal5) genome annotation (International Chicken Genome

Sequencing Consortium 2004). Previous studies have shown

anomalous tree topologies inferred from coding sequences

in birds, most likely as a result of nonhomogeneous rates of
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GC-biased gene conversion across the avian genome (Jarvis

et al. 2014; Reddy et al. 2017). However, our use of a predefined to-

pology inferred frommore typical loci shouldminimize the risk of

error due to misinterpreting sequence homoplasy as sequence

homology.

Having established a null hypothesis for neutral evolution in

this data set, we identified conserved elements in the 21 vocal non-

learning birds using PHAST phastCons (version 1.4) (Siepel et al.

2005; Hubisz et al. 2011). We set the –target-coverage flag to

0.25, adjusted from Hubisz et al. (2011) to account for the smaller

genome size of birds relative to mammals and the –expected-

length flag to 20 (Siepel et al. 2005; Hubisz et al. 2011).We exclud-

ed: conserved elements <100 bp in keeping with previous AR stud-

ies (Pollard et al. 2006; Hubisz et al. 2011; Hubisz and Pollard

2014); conserved elements with fewer than 15 vocal nonlearning

species; and vocal learning tests with less than either five oscines,

three parrots, or one hummingbird.

In a biological control analysis, we also tested for acceleration

in four independent gains in waterbirds (mallard; crested ibis and

emperor penguin; American flamingo; killdeer). We followed the

same methods as used for vocal learners, identifying conserved el-

ements from all 28 nonwaterbird species with phastCons (version

1.4) (Siepel et al. 2005; Hubisz et al. 2011). The only difference

from the vocal learner grouping is that we increased theminimum

number of nontrait species of interest (nonwaterbird) individuals

present in the alignment at a given region from 15 to 20. We did

this because there were more nonwaterbird species (28) than vocal

nonlearner (21) species. Thus, we required a similar fraction of spe-

cies without the trait of interest to be included in the alignment

rather than the same absolute number of species.

Filtering paralogous alignments

To ensure that our analysis used 1-to-1 orthologous sequences, we

masked regions of the alignment where any of the species being

tested for acceleration included multiple sequences aligned to

the same position in the chicken genome. Thus, for all vocal learn-

ing species, except the zebra finch, wemasked any regionwith two

or more aligned sequences. The zebra finch assembly we used

(Tgut_diploid_1.0) includes a large fraction of the genome where

the maternal and paternal haplotypes are both included as sepa-

rate scaffolds (Korlach et al. 2017). In those regions, the zebra finch

assembly is expected to have two sequences that are true 1-to-1

orthologs of the chicken assembly. To accommodate this idiosyn-

crasy of the zebra finch assembly, we masked sites where the zebra

finch assembly had three or more aligned sequences.

In addition to cases where both an ortholog and a paralog are

present in the vocal learner’s assembly, it is possible that only a

paralog of the chicken sequencemay be present in a vocal learning

species. To detect and filter this second type of potential paralo-

gous alignment, we developed a genome-wide scan for alignment

blocks composed of two highly divergent groups of sequences. In a

typical orthologous alignment, the pairwise differences between

samples had a unimodal distribution. However, in paralogous

alignments we expect a bimodal distribution with one mode for

pairwise differences between orthologous sequences and a second

mode for pairwise differences between paralogous sequences

(Supplemental Fig. S19). To identify such alignments, we calculat-

ed the pairwise sequence divergence between all samples in 1-kb

windows across the alignment. To distinguish between unimodal

and bimodal distributions, we sorted the distribution of pairwise

differences between the samples and identified the maximum dif-

ference between sequential comparisons. We restricted our analy-

sis to the 15th to 85th percentile of the pairwise differences to

prevent a single outlier sample from producing a false paralog

identification.We define strong evidence of a bimodal distribution

as cases where the largest difference between sequential pairwise

differences was more than 50% of the median pairwise difference

and exclude those regions from the analysis.

GC-biased gene conversion

GC-biased gene conversion (gBGC) is a recombination-drivenmu-

tation process that can lead to locally high substitution rates in a

lineage without positive selection. These sites represent a major

source of ARs that are not under positive selection (Katzman

et al. 2010; Capra et al. 2013). We used PHAST phastBias (version

1.4) (Hubisz et al. 2011; Capra et al. 2013) to identify gBGC events

in each branch of the phylogeny. In keeping with the recommen-

dation of the authors of the program, we consider any region with

a score >0.5 to be impacted by gBGC (Hubisz et al. 2011). In our

tests for positive selection, we exclude any region identified as im-

pacted by gBGC on a branch being tested for acceleration.

Accelerated region identification

Weused PHASTphyloP -ACCwith the likelihood ratio testmethod

(version 1.4) (Pollard et al. 2006; Hubisz et al. 2011) to test for ac-

celeration in each of the three vocal learning clades. Each analysis

was conducted with a single clade of vocal learning birds as the

foreground group and the nonlearning birds as the background

group. The other two vocal learning groups were excluded from

the analysis to avoid biasing against detecting convergent acceler-

ation specific to a vocal learning clade.We conductedmultiple test

corrections using a Benjamini–Hochberg resamplingwith RPHAST

(Hubisz et al. 2011).We generated 100,000 100-bp resamplings per

genome from the nonlearner conserved regions. Each individual

resampling was conducted within a single chromosome (using

chicken chromosome designation) due to computational limita-

tions; the number of resamplings per chromosome was propor-

tional to the size of the chromosome, so larger chromosomes

were sampled more frequently. We considered significant acceler-

ation to be regions with a Benjamini–Hochberg false discovery rate

≤0.05.

AR hotspot density analysis

We scanned the distribution of conserved elements and ARs

across the genome in 1-Mb overlapping windows separated by a

100-kb step. To test whether ARs and conserved elements were cor-

related, we generated a scatterplot of conserved elements versus

ARs for each window and calculated the linear regression R2

(Supplemental Fig. S7). To identify outlier regions of AR density,

that is, “acceleration hotspots,” we employed a strict uniform cut-

off inferred through permutation testing for each AR analysis (os-

cine, parrot, hummingbird, and vocal learning convergent) (Figs.

4A–C, 5B). For each AR analysis, we conducted 100 permutation

tests: we randomly assigned N conserved elements to be accelerat-

ed, where N is the number of ARs observed in the data. Then, we

scanned the genome with a -Mb sliding window in 100-kb steps

to determine the genome-wide maximum AR density per Mb. If

a region had an AR density >95% of the genome-wide maxima ob-

served in the permutation tests, we considered it to be in an accel-

eration hotspot.

Associating ARs with genes

To assess the potential biological impacts of ARs and test for en-

richments of certain categories of traits among the ARs, we predict-

ed the genes most likely to be impacted by each AR. To achieve

this, we first filtered the chicken reference genome annotation
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(GCF_000002315.4) (International Chicken Genome Sequencing

Consortium 2004) to include genes labeled as protein-, tRNA-,

and rRNA-coding to mitigate the potential impact of incorrect an-

notations. Then, we classified ARs based on their proximity to the

annotated genes: (1) First, we identified all coding ARs, defined

here as ARs that at least partly overlap an exon, and considered

them associated with the gene coded for; (2) we classified the re-

maining ARs as noncoding, and applied GREAT’s “basal plus ex-

tension” criteria (McLean et al. 2010) using custom scripts. This

criterion predicts a regulatory region for each gene. First, for each

gene we define a basal region from 5 kb upstream of to 1 kb down-

stream from each gene’s transcription start site that is automatical-

ly associated with that gene regardless of the proximity of other

genes. Then, we extended the predicted regulatory region to the

nearest upstream and downstream basal regions or to a maximum

distance of 1 Mb in each direction. Each noncoding AR was as-

signed to all genes whose regulatory regions it overlapped. In

most cases, this means a noncoding AR is associated with two

genes, one upstream and one downstream, but ARs in a gene’s

basal region (defined above) or in very low gene density regions

of the genome may be associated with one or zero genes

(Supplemental Fig. S20).

Candidate gene identification using predicted ontology

We used ARCHS4 (Lachmann et al. 2018) to identify genes that

had gene coexpression patterns consistent with different behavior

functions. ARCHS4 compiles publicly available human andmouse

RNA-seq data fromawide range of tissue types and uses this data to

identify coexpression between genes. Because greater coexpression

can be indicative of shared function (Stuart et al. 2003), this coex-

pression information is leveraged to predict novel functions of

genes by identifying the Gene Ontology terms with coexpression

patterns similar to the gene of interest (Lachmann et al. 2018).

First, we downloaded ARCHS4 predicted GO term data for all

genes in the ARCHS4 database (12,963 genes) and identified genes

with vocalization behavior coexpression Z-scores>5. Second, we

calculated per gene AR overrepresentation for each acceleration

test by conducting a hypergeometric test for enrichment of AR as-

sociation with the gene relative to the number of conserved ele-

ments associated with the gene. We considered a gene strongly

enriched if it had a Bonferroni-corrected P< 0.05. We took the in-

tersection of these two criteria, ARCHS4 Vocalization Behavior Z >

5 and AR association enrichment P<0.05 corrected, to be a strong

candidate gene list.

Enrichment of ARs in biologically relevant gene lists

To test for enrichment of ARs associated with a list of genes (e.g.,

SFARI class S genes [Abrahams et al. 2013]) we first compared the

number of observed associations with genes in the gene list across

all ARs in a lineage (see Methods, “Associating ARs with genes”).

Then, we conducted 1000 permutation tests, each of which ran-

domly sample N post-quality filtering conserved elements (see

Methods, “Conserved element identification,” “Filtering paralo-

gous alignments,” “GC-biased gene Conversion”), where N is the

number of observed ARs across the genome. Then, we calculated

the number of associations with the gene list in each permutation

test and used that data to estimate expected rates of association.

The expected value given in Figure 6 is themedian value of the per-

mutation tests. Fold enrichments are given relative to the median

of the permutation test to allow joint visualization across tests with

differing numbers of ARs and hence differing expected values.

Single tailed P-values were calculated as the fraction of permuta-

tions with fewer AR associations than the observed value in the

real data.

Increasing numbers of ARs in the observed data tend to re-

sult in proportionally smaller differences between permutation

tests and hence have greater statistical power, which is expected.

However, we also wanted to test whether having more ARs might

introduce a bias that would lead to more AR-rich vocal learners

being more enriched for AR associations than control groups.

To test this hypothesis, we randomly sampled without replace-

ment from the AR-rich vocal learning lineages until we had ascer-

tained a number of ARs equal to the total number ARs found in

the AR-poor waterbird lineages. Then, we calculated the number

of gene associations for the down-sampling. We conducted

1000 resamplings per vocal learning lineage and compared the

results to the waterbird observed and expected values (Supple-

mental Fig. S18).

Testing for enrichment in the rate of convergence

between lineages

We conducted two tests for enrichment of convergent acceleration

between lineages, one which assumes independence and a second

that attempts to ascertainwhether convergence exceeds the degree

expected given the phylogenetic relationship between the pheno-

typically convergent species. When assuming independence, we

filtered to only include conserved elements that passed all quality

criteria (described above) for the lineage being compared and con-

ducted hypergeometric tests for enrichment of convergent ARs on

the remaining loci using the SciPy package in Python version

2.7.3.

However, because we observed that closely related species fre-

quently shared convergent ARs at a greater rate than would be ex-

pected under an assumption of independence, we conducted an

additional more stringent three-lineage test. We tested for conver-

gence between an outgroup vocal learner and an ingroup vocal

learner, relative to the convergence between the outgroup vocal

learner and an ingroup nonlearner. To insure uniform sampling,

we first filtered to include the sites that pass filtering criteria for

all three lineages being tested. Then, we calculate the rate of con-

vergence between the outgroup and each of the ingroups.

Finally, we applied a Fisher’s exact test to determine whether the

rate of convergence between the outgroup and each of the

ingroups was significantly different.

Software availability

All scripts used for data processing and analysis are available

at GitHub (https://github.com/jacahill/AR_Tools) and as Supple-

mental Code.
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