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1. Introduction. Positive self ad joint extensions of a symmetric operator 

have been investigated by many mathematicians : J.von Neumann, K.Friedrichs, 

M. Krein, M. Birman and others. Especially M. Krein [3] observed the class of 

all positive selfadjoint extensions of a given positive symmetric operator, and 

proved among others that, in case of a densely defined operator, the greatest 

and the smallest positive selfadjoint extension exist. The greatest extension is 

shown to coincide with the extension, established by Friedrichs, while the 

smallest one coincides with the extension, considered by von Neumann in case 

of a strongly positive operator. 

In this paper, starting with the well known theorem of Friedrichs, we shall 

investigate the structure of the greatest extension (Friedrichs extension) TƒÊ and 

the smallest one (von Neumann extension) TM of a given positive symmetric 

operator T from various points of view. Theorem 1 gives a necessary and 

sufficient condition for T with non-dense domain to admit positive self ad joint 

extensions. If any one of such extensions exists, the von Neumann extension is 

shown to exist, and its domain is explicitly determined. Among many consequences 

of this theorem is a simple description of the von Neumann extension, when it 

is bounded (Theorem 2). In contrast with the identity : (T+a)ƒÊ-a=TƒÊ for all 

positive number a, (T+a)M-a varies largely according to a. Theorem 3 shows 

that (T+a)M-a converges, in a natural sense, to the von Neumann extension TM 

or to the Friedrichs extension TƒÊ according as a0 or •‡. This theorem 

permits us to determine the spectrum of TM or TƒÊ, when TM is compact or TƒÊ 

has compact resolvent. 

2. Preliminaries. A linear operator T on a Hilbert space is, by definition, 

symmetric if

here the domain D(T) is not assumed to be dense. T is called positive (resp. 

strongly positive), if (Tf,f)•†0 (resp.•†ƒÃ(f, f) for a constant ƒÃ>0). 

A positive selfadjoint operator S1 is called greater than another S2, or the
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latter is smaller than the former, in symbol S1•†S2, if

For bounded positive self ad joint operators, this definition is reduced to the usual 

order relation. S1•†S2 implies S1+a•†S2+a for all a•„0. If S2 is invertible 

and S1•†S2, then S1 is also invertible and S1-1•†S2-1. 

The greatest (resp. smallest) of all positive self ad joint extensions of a given 

positive symmetric operator T, if exists, will be called the Friedrichs (resp. 

von Neumann) extension and denoted by TƒÊ(resp.TM). Remark that M. Krein 

[3] used the terminology "hard (resp. soft) extension" instead of the Friedrichs 

(resp, von Neumann) one. The basic tool for our development is the well known 

result of Friedrichs (see [4] n0 124) : 

FRIEDRICHS THEOREM. A densely defined, positive symmetric operator 

T admits the Friedrichs extension TƒÊ, The domain of its square root T1/2ƒÊ 

consists of all vectors f, for which there exists a sequence {fn}•¼D(T) such 

that

TƒÊ, is just the restriction of the adjoint T* on D(T*)•¿D(T1/2ƒÊ). 

An immediate consequence is the relation

That T is densely defined is also a necessary condition for the existence of the 
Friedrichs extension. K. Friedrichs proved only that the above mentioned 
restriction of T* is a positive selfadjoint extension. However, for any positive 
self ad joint extension T and {fn} in the Friedrichs theorem,{T1/2fn} Tnis a Cauch

y sequence, so that f belongs to D(1/2) because of the closedness of T1/2 and

showing that the extension by Friedrichs is the greatest one (cf.[3] and [1] 

n0 109). 

3, von Neumann extension. Throughout this section T will denote a 

closed positive symmetric operator on a Hilbert space H. On account of the 

index theorem of Krasnoselskii [2•˜3] T admits a selfadjoint extension, but
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not necessarily a positive one. To formulate a condition for the existence of 

positive selfadjoint extensions, let us introduce a notion. T is called positively 
closable if

implies g=0. If T is densely defined, it is positively closable ; in fact, the 

inequality

shows that (g,h)=0 for h in the dense set D(T), hence g=0. If T is strongly 

positive, it is positively closable ; in fact, implies, 
hence g=0 because of the closedness of T. 

THEOREM 1. A closed positive symmetric operator T admits a positive 
selfadjoint extension if and only if it is positively closable. When this 
requirement is fulfilled, T has the von Neumann extension T M such that

and D(T1/2M) consists of all vectors h, for which the above right side is finite. 

PROOF. If T admits a positive selfadjoint extension, it is positively closable, 
because a positive self ad joint operator is always positively closable. Suppose, 
conversely, that T is positively closable. Consider the operator S, defined on the 
space PH by

where P is the orthogonal projection onto the closure of the range of T. This 

definition causes no ambiguity, for Tf=0 implies (f,Th)=0(h•¸D(T)), hence 

Pf=0. Since

S is a densely defined, positive symmetric operator on PH. Consider the Friedrichs 

extension SƒÊ on PH, then it has inverse ; in fact, SƒÊg=0 implies S1/2ƒÊg=0, 

hence on account of the Friedrichs theorem there exists a sequence {gn}•¼D(S) 

such that



68 T.ANDO AND K.NISHIO

It follows, with gn=Tfn, that

hence g=0 by assumption. Consider the positive selfadjoint operator T=S-lƒÊ•EP 

on H.Since Pf=S(Tf) implies, T is an extension of T.It 

follows from that

and the domain D(T1/2) consists of all vectors h, for which the above right side 
is finite. On the other hand, on account of the Friedrichs theorem, for any 

g•¸D(S1/2ƒÊ) there exists a sequence {gn}•¼D(S) such that

consequently

It remains to show that T is really the smallest extension. Take an arbitrary 

positive self ad joint extension T, then

hence

This completes the proof.

COROLLARY 1. T admits a positive selfadjoint extension if and only 
if the functional
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is finite on a dense set. 

PROOF. If T admits a positive self ad joint extension, the set of h with 

finite ƒÆ(h) is just the domain of T1/2M by Theorem 1, hence it is a dense set. 

Suppose, conversely, that the functional is finite on a dense set D. Since

T is shown to be positively closable. 

COROLLARY 2. If T is densely defined, its von Neumann extension is 

the restriction of T* on the set of vectors f, for which there exists a sequence 

{fn}•¼D(T) such that

PROOF. With the notations in the proof of Theorem 1,f•¸D(TM) is 

equivalent to Pf•¸R(SƒÊ). On account of the Friedrichs theorem the last condition 

means that there exists a sequence {fn}•¼D(T) such that

The assertion follows now immediately. 

COROLLARY 3. If T is positively closable with closed range, then its 
von Neumann extension TM is given by the formula :

PROOF. Consider the positive symmetric operator T, defined by

Since the range R(T) is closed by assumption, the orthogonal complement of 

D(T)+R(T)•Û consists of vectors Tf with (Tf,f)=0, so that it is reduced to 

{0} because of the positive closableness of T. Now that D(T) is dense, R(T) is 

closed and D(T)•½DR(T)•Û, T is a self ad joint operator. Finally by Theorem 1 

R(T)•Û is contained in the kernel of T1/2M, hence of TM, consequently D(T)•¼D(TM). 

This completes the proof.
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M.Krein [3] proved this corollary in quite a different manner. That the 

operator T in the above proof is a positive selfadjoint extension was firstly 

proved by J.von Neumann for a strongly positive operator (see [1] n°107). 

COROLLARY 4. Let T be a densely defined operator with inverse. Then 

T-1 admits a positive selfadjoint extension if and only if the Friedrichs 

extension TƒÊ. has inverse. When this requirement is fulfilled, it results

PROOF. The inverse of TƒÊ, if exists, is a positive selfadjoint extension of 

T-1. On the other hand, any positive self ad joint extension S of T-1 has dense 

range because of R(S)•½D(T), hence has inverse. S-1 is a positive self ad joint 

extension of T, consequently S-1•…TƒÊ by definition. But this means that (TƒÊ)-1 

is the von Neumann extension of T-1. 

COROLLARY 5. T admits a positive selfadjoint extension, which is 

smaller than a given positive selfadjotni operator S, if and only if

PROOF. On account of Theorem 1, Corollary 1 and the Friedrichs theorem 

the above inequality is equivalent to that TM exists and TM•…S. 

THEOREM 2. A closed positive symmetric operator T admits a bounded 

positive selfadjoint extension of norm•…r if and only if

When this inequality is fulfilled, the von Neumann extension TM is represented 
in the form:

where T* is the adjoint of T as a bounded operator from the Hilbert space 
D(T) to H, T0 is the compression of T on D(T) and T0-1 is the inverse of 
the restriction of T0 to the closure of R(T0). 

PROOF. The first assertion follows from Corollary 5 with S=r. The last 
assertion results from Theorem 1;
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The first part of Theorem 2 is a variant of the Krein theorem (see [3], [1] 

n•‹108 or [4] n•‹125) that a symmetric operator S with •aSf•a•…•af•a (f•¸D(S)) 

admits a selfadjoint extension of norm < 1. 

COROLLARY 6. T admits a compact selfadjoint extension if and only 

if the set {Tf:(Tf,f)•…1} has compact closure. Under the closure compactness 

of the set, every positive selfadjoint extension is compact if and only if 

D(T) has finite codimension. 

PROOF. If the set has compact closure, then

so that TM exists as a bounded operator by Theorem 2. It follows with T0 and 

T* in Theorem 2 that

This implies that the image of the unit ball under the operator (T0-1/2T*)* is 

contained in the closure of the set in question, so that TM is compact by 

Theorem 2. The converse assertion follows from the fact that for any positive 

self adjoint extension T the set is contained in the image of the unit ball under 

T1/2 and that the compactness of T implies that of T1/2. A bounded positive 

self ad joint operator S is an extension of T if and only if 

for some ƒ¿•†0, where Q is the orthogonal projection onto D(T)•Û. The last 

assertion of the theorem is now immediate. 

COROLLARY 7. A densely defined operator T admits a positive selfad-

joint extension with compact resolvent if and only if the set

 has compact closure. Every positive selfadjoint extension of T has 

compact resolvent if and only if the range R(T) has finite codimension and 

the set {Pf:(Tf,f)•…1} has compact closure, where P is the orthogonal 

projection onto the closure of R(T).
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PROOF. T admits a positive self adjoint extension with compact resolvent 

if and only if (TƒÊ+1)-1 is compact. Thus the first assertion follows from 

Corollary 4 and Corollary 6. Since R(T)•Û coincides with the kernel of the von 

Neumann extension TM, the compactness of (TM+1)-1 is equivalent to the finite 

dimensionality of R(T)•Û together with the closure compactness of the set 

{Pf:(Tf,f)•…1}. 

4. Limit representation. T is again a closed positive symmetric operator. 

For any a•„0, the von Neumann extension of T+a is formed according to 

Corollary 3. For simplicity, let us use the notation:

T(a) is obviously a self ad joint extension of T, though not positive ; in fact, it is 

given by the formula :

When T is positively closable, T (o) will have the meaning of TM. 

To formulate the asymptotic behaviour of T(a) as a0 or •‡, let us 

introduce a notion of convergence for a sequence of unbounded self ad joint 

operators. A sequence {Tn} of self ad joint operators is said to converge to a 

selfadjoint operator T in resolvent if

(strong convergence)

for a complex number , uniformly apart from the spectrum of all Tn and also 

of T. It is easy to see that this definition does not depend on the choice of ƒÌ. 

For a uniformly bounded sequence, convergence in resolvent is equivalent to 

strong convergence. 

LEMMA. If T is positively closable, then

PROOF. Consider first the case a=0. Since (TM+1)-1 is a positive 
selfadjoint extension of (T+1)-1, it follows from definition that
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This inequality implies that 1-(1-(T+1)-1)M is a positive selfad joint operator 
with inverse, and that

is a positive self ad joint extension of T. Since T•…TM, it follows from definition 

that T coincides with TM. This proves the assertion for the case a=0. The 

case 0•ƒa•ƒ1 can be reduced to the above, by considering instead 

of T.If a•„1, the operator (T(a)+1)-1 is given by the formula :

On the other hand, since

the subspace coincides with R(T+a), so that (T+1)-1,(1/a-1)) 

is determined by the same formula as that for (T(a)+1)-1. 

THEOREM 3. If T is a closed, positively closable, positive symmetric 

operator, then T(a) converges to TM in resolvent as a0. If, in addition, T 

is densely defined, then T(a) converges to TƒÊ in resolvent as a•‡. 

PROOF. Consider first the case TM is bounded. Since, for 0•…a•…b, 

(T+a)M+b-a is a positive self ad joint extension of T+b, it follows from 

definition that

so that T(a) converges strongly to TM. The assertion for a general case is 

reduced to the above; in fact, by Lemma and the above arguments

If T is densely defined, it follows from Corollary 4 and Lemma that
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COROLLARY 8. If the von Neumann extension TM is compact, T(a) 

converges uniformly to TM as a0. If the Friedrichs extension TƒÊ has 

compact resolvent, (T(a)+1)-1 converges uniformly to (TƒÊ+1)-1 as a•‡. 

PROOF. If TM is compact, for any ƒÃ•„0 there exists an orthogonal 

projection QƒÃ of finite rank such that

Then the inequality

implies

On the other hand, it follows from Theorem 3 that for sufficiently small a•„0

so that T(a) converges uniformly to TM as a0 Similar arguments for (TƒÊ+1)-1 

instead of TM yield the second assertion.

COROLLARY 9. Let the set have compact closure. 

Then a positive number t is a regular point of the von Neumann extension 

TM if and only if, for some ƒÂ•„0 and all sufficiently small a•„0,

where Pa is the orthogonal projection onto R(T+a).

PROOF. TM is compact by Corollary 6 and T(a) converges uniformly to 

TM as a0 by Corollary 8. Then t is a regular point of T M if and only if 

(T(a)-t)-1 is uniformly bounded for sufficiently small a•„0. On the other hand, 

on account of Corollary 3, T(a)-t is reduced by the subspace R(T+a)•Û, on 

which it coincides with -(t+a), so that T(a)-t t has inverse of norm•…ƒÂ-1,ƒÂ 

being small, if and only if

The orthogonal sum representation
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shows that the uniform boundedness of (T(a)-t)-1 is equivalent to the 

inequality of the assertion. 

COROLLARY 10. Let the set have compact 

closure. Then a positive number t is a regular point of the Friedrichs 

extension TƒÊ if and only if, for some ƒÂ•„0 and all sufficiently large a•„0,

where Pa is the orthogonal projection onto R(T+a). 

PROOF. As in the proof of Corollary 9, the inequality of the assertion is 

equivalent to the uniform boundedness of (T(a) -t)-1 for sufficiently large a•„0. 

On the other hand, (TƒÊ+1)-1 is compact by Corollary 7 and (T(a)+1)-1 converges 

uniformly to (TƒÊ+1)-1 by Corollary 8. Now the assertion follows from the 

relation:
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