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Positive sensitivity analysis (PSA) is a sensitivity analysis method for linear program-
ming that finds the range of perturbations within which positive value components of
a given optimal solution remain positive. Its main advantage is that it is applicable to
both an optimal basic and nonbasic optimal solution.

The first purpose of this paper is to present some properties of PSA that are use-
ful for establishing the relationship between PSA and sensitivity analysis using optimal
bases, and between PSA and sensitivity analysis using the optimal partition. We examine
how the range of PSA varies according to the optimal solution used for PSA, and discuss
the relationship between the ranges of PSA using different optimal solutions. The second
purpose is to clarify the relationship between PSA and sensitivity analysis using an opti-
mal basis, and the relationship between PSA and sensitivity analysis using the optimal
partition. We show that sensitivity analysis using the optimal partition is a special case
of PSA, and its properties can be derived from the properties of PSA. The comparison
among the three sensitivity analysis methods will lead to a better understanding of the
difference among sensitivity analysis methods.

Keywords: Linear programming; sensitivity analysis; positive sensitivity analysis; optimal
basis; optimal partition.

1. Introduction

Sensitivity analysis in linear programming is used to acquire information about how
decisions are affected as the input data are varied. For instance, when the cost of an
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activity or the available amount of resources is changed, we often need information
about how the total cost of the current decision is altered, in order to obtain a
new optimal decision for the new situation. In this case, sensitivity analysis can be
applied. Moreover, when a new constraint or a new activity is added, sensitivity
analysis is also performed to analyze the effects on the current decisions.

The method of sensitivity analysis in simplex method is well developed on the
foundation of optimal basis. It requires little computational effort. This method has
been introduced in numerous papers and textbooks so far (see, for example: Dantzig,
1963; Gal, 1979), and has been used in many linear programming codes. However, in
case of degeneracy, it may yield incomplete information due to alternative optimal
bases (Evans and Baker, 1982; Knolmayer, 1984; Jansen et al., 1997).

On the other hand, most interior-point methods produce a solution which con-
verges to an optimal solution relatively interior to the optimal face. Some additional
computation enables us to get an exact optimal basic or nonbasic solution (Tapia
and Zhang, 1991; Mehrotra and Ye, 1993; Bixby and Salzman, 1994). However,
since sensitivity analysis using an optimal basis cannot be applied to an optimal
nonbasic solution, other methods for sensitivity analysis have been suggested: posi-
tive sensitivity analysis (PSA), sensitivity analysis using the optimal partition, and
ε-sensitivity analysis (Yang, 1990; Adler and Monteiro, 1992; Kim et al., 1999).

Yang (1990) introduced PSA for optimal solutions including optimal nonbasic
solutions. Yang (1990) defined two types of sensitivity analysis based on Sung and
Park’s (1988) definition. The first type of sensitivity analysis is defined to find
the characteristic region within which an optimal basis still remains optimal for a
perturbed problem. The second type, called PSA, is defined to find the characteristic
region within which variables having a zero and having a positive value in an optimal
solution remain zero and positive in the perturbed problem, respectively. Adler and
Monteiro (1992) developed a method of parametric analysis on the right-hand side
by introducing the optimal partition. Monteiro and Mehrotra (1996) presented a
parametric analysis by generalizing Adler and Monteiro’s method, and Greenberg
(2000) developed a method of sensitivity analysis using the optimal partition when
cost coefficients and right-hand sides change simultaneously. To use Yang’s and
Adler and Monteiro’s methods, we need an optimal solution or the optimal partition,
which requires additional computation for interior-point methods. Kim et al. (1999)
developed a practical sensitivity analysis method, ε-sensitivity analysis, which can
be directly applied to interior-point solutions produced by interior-point methods.

Although PSA and sensitivity analysis using the optimal partition were devel-
oped several years ago, there have been very few studies on the relationship between
the three methods: sensitivity analysis using an optimal basis, PSA, and sensitivity
analysis using the optimal partition. The first purpose of this paper is to clar-
ify the relationship between PSA and sensitivity analysis using an optimal basis,
and the relationship between PSA and sensitivity analysis using the optimal par-
tition. The comparison between the three sensitivity analysis methods will lead
to a better understanding of the differences between them and will be helpful in
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making a choice of sensitivity analysis methods. The second purpose is to present
some properties of PSA. We examine how the range of PSA varies according to the
optimal solution used for PSA, and study the relationship between the ranges of
PSA using different optimal solutions. In fact, the relationship between PSA and
the other sensitivity analysis methods is based on these properties of PSA.

This paper is organized as follows: In Section 2, we introduce three kinds of
sensitivity analyses for linear programming, and some basic results about the rela-
tionship between PSA and other sensitivity analysis methods are presented. In
Section 3, we discuss the relationship between the ranges of PSA using different
optimal solutions, and present a sufficient and necessary condition that the range
of PSA includes a positive or negative value. In Section 4, we study the relation-
ship between PSA using an optimal basic solution and sensitivity analysis using an
optimal basis when a given optimal basic solution is degenerate. In Section 5, some
concluding remarks are given.

2. Definition of the Three Sensitivity Analysis Methods

Consider the linear programming problem (LP ):

min cTx

(P ) : s.t. Ax = b

x ≥ 0,

max bTy

(D) : s.t. ATy + s = c

s ≥ 0,

where c ∈ �n, b ∈ �m, and A ∈ �m×n with Rank(A) = m. Throughout this paper,
it is assumed that both (P ) and (D) are feasible. For sensitivity analysis on the
cost coefficient ck that is perturbed by an amount θ, we consider another linear
programming problem (LPθ):

min (c + θek)Tx

(Pθ) : s.t. Ax = b

x ≥ 0,

max bTy

(Dθ) : s.t. ATy + s = c + θek

s ≥ 0,

where ek ∈ �n is the vector such that the kth element is one and the others are
zero. Also, for the right-hand side bh that is perturbed by the amount γ, we consider
the linear programming problem (LPγ):

min cTx

(Pγ) : s.t. Ax = (b + γeh)
x ≥ 0,

max (b + γeh)Ty

(Dγ) : s.t. ATy + s = c

s ≥ 0,

where eh ∈ �m is the vector such that the hth element is one and the others are
zero.

Given an index set σ of variables, let Aσ denote the submatrix of A with columns
that correspond to indices in σ. Similarly, we use zσ to denote the subvector of a
vector z with components that correspond to indices in σ. For any vector x, let xj

denote the jth element of x.



February 24, 2004 11:7 WSPC/APJOR 00005.tex

56 C.-K. Park et al.

Let B and N be the index sets of the basic and nonbasic variables of a basis,
respectively. If (xT

B , xT
N )T = ((A−1

B b)T, 0)T is an optimal solution to (P ), AB is called
a primal-optimal basis. Also, if y = A−T

B cB and (sT
B , sT

N )T = (0, cT
N − yTAN )T is

an optimal solution to (D), then AB is called a dual-optimal basis. If AB is both a
primal-optimal and dual-optimal basis, it is called an optimal basis. For a primal-
optimal basis AB , let Tck(AB) denote the following range of θ:

Tck(AB) =
{

θ|
[

AT
B

AT
N

]
y +

[
sB

sN

]
=

[
cB + (θek)B

cN + (θek)N

]
, sB = 0, sN ≥ 0

}
. (2.1)

That is, Tck(AB) represents the range of θ within which a primal-optimal basis
AB is an optimal basis. Note that Tck(AB) may be the empty set. Similarly, for a
dual-optimal basis AB , let Tbh(AB) denote the following range of γ:

Tbh(AB) = {γ|xB = A−1
B (b + γeh) ≥ 0, xN = 0}. (2.2)

Also, Tbh(AB) represents the range of γ within which a dual-optimal basis AB is
an optimal basis. Note that Tbh(AB) may also be the empty set.

The traditional sensitivity analysis using an optimal basis, which is called basic
sensitivity analysis later on, is defined as the following:

Definition 2.1. (Basic Sensitivity Analysis, BSA) Let B be the index set of
the basic variables of an optimal basis. BSA using AB on a cost coefficient ck is to
find the range of θ within which AB remains an optimal basis to (LPθ). Similarly,
BSA using AB on a right-hand side bh is to find the range of γ within which AB

remains an optimal basis to (LPγ).

By the definition of Tck(AB) and Tbh(AB), the ranges found by BSA using
AB on ck and bh are represented as Tck(AB) and Tbh(AB), respectively. To perform
BSA, we need an optimal basis associated with an optimal basic solution. In fact,
BSA can be applied only to an optimal basic solution.

Before defining PSA, some notation is introduced. For an arbitrary vector x

whose components are nonnegative, let η(x) and η̄(x) denote the sets of indices of
variables as follows:

η(x) = {j|xj > 0}, η̄(x) = {j|xj = 0}.

In addition, π(x) = (η(x), η̄(x)) is called the induced partition of x.

Definition 2.2. (Positive Sensitivity Analysis, PSA) Let x∗ be an optimal
solution to (P ). The PSA using x∗ on ck is to find the range of θ within which
there exists an optimal solution to (Pθ) whose induced partition is equal to π(x∗).
Similarly, the PSA using x∗ on bh is to find the range of γ within which there exists
an optimal solution to (Pγ) whose induced partition is equal to π(x∗).
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Given an optimal solution x∗ to (P ), the range of PSA using x∗ is calculated
using the following (Yang, 1990):

Y ck(x∗) =

{
θ

∣∣∣∣
[

AT
σ

AT
σ̄

]
y +

[
sσ

sσ̄

]
=

[
cσ + (θek)σ

cσ̄ + (θek)σ̄

]
, sσ = 0, sσ̄ ≥ 0

}
, (2.3)

Y bh(x∗) = {γ | Aσxσ = b + γeh, xσ ≥ 0, xσ̄ = 0}, (2.4)

where σ = η(x∗) and σ̄ = η̄(x∗). Note that in equation (2.4), xσ ≥ 0 is used instead
of xσ > 0 so that Y bh(x∗) can include boundary values and consequently the com-
parison of PSA with other sensitivity analysis methods will be more convenient.
In addition, we can find that it is the induced partition, not the values of an opti-
mal solution, that determines the range of the PSA on ck. PSA using a different
optimal solution, which has the same induced partition with x∗, produces the same
range of θ.

The main advantage of PSA is that it can be applied to any optimal solution
including optimal nonbasic solutions. Most interior-point methods produce a final
interior solution close to the optimal face, and some additional computation is
needed to obtain an optimal solution from it. Moreover, the optimal solution may
be a nonbasic solution. In this case, PSA can be applied to the nonbasic optimal
solution. Furthermore, there are some cases where PSA is useful. For example, when
the cost or the supply of a certain material is changed, we need to determine the
optimal output of each product with the constraint that the production of products
that have not been produced under the current policy should be avoided. For that
case, PSA can be used to find the amount of the change as long as the constraint
is satisfied.

On the other hand, sensitivity analysis using the optimal partition was sug-
gested by Adler and Monteiro (1992). According to Goldman and Tucker (1956),
there exists at least one optimal solution (x∗, y∗, s∗) to (LP ) which is strictly com-
plementary, that is,

x∗
j + s∗

j > 0, ∀j.

Let B∗ = η(x∗) and N∗ = η(s∗). The partition π∗ = (B∗, N∗) of indices of variables
is called the optimal partition of (LP ). (Throughout this paper, π∗ = (B∗, N∗)
denotes the optimal partition of (LP ).) The definition of sensitivity analysis using
the optimal partition is as follows.

Definition 2.3. (Optimal Partition Sensitivity Analysis, OSA) Let
π∗ = (B∗, N∗) be the optimal partition of (LP ). The sensitivity analysis using
the optimal partition on ck is to find the range of θ within which the optimal par-
tition of (LPθ) is equal to π∗. Similarly, the sensitivity analysis using the optimal
partition on bh is to find the range of γ within which the optimal partition of (LPγ)
is equal to π∗.
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The range of OSA is calculated using the following (Roos et al., 1997):

Ock(B∗, N∗) =
{

θ

∣∣∣∣
[

AT
B∗

AT
N∗

]
y +

[
sB∗

sN∗

]
=

[
cB∗ + (θek)B∗

cN∗ + (θek)N∗

]
,

sB∗ = 0, sN∗ ≥ 0
}

, (2.5)

Obh(B∗, N∗) = {γ | AB∗xB∗ = b + γeh, xB∗ ≥ 0, xN∗ = 0}. (2.6)

Note that Ock(B∗, N∗) and Obh(B∗, N∗) include the boundary values where the
optimal partition of the perturbed problem differs from π∗ = (B∗, N∗).

We have defined so far three kinds of sensitivity analysis for linear programming.
It is trivial that if x∗ is a nondegenerate optimal basic solution to (P ), then the
range of PSA using x∗ is equal to that of BSA. However, if x∗ is a degenerate
optimal basic solution, the range of PSA may differ from that of BSA. The case will
be discussed in Section 4. In addition, we know easily by definition that the range of
PSA using a strictly complementary optimal solution is equal to that of OSA. Since
the range of PSA using an optimal solution x∗ is equal to the range of perturbations
within which the partition (η(x∗), η̄(x∗)) of indices of variables remains invariant,
OSA can be regarded as a special case of PSA.

3. The Range of PSA Using Different Optimal Solutions

Let z(θ) denote the optimal value of the objective function of (LPθ). Also, for any
optimal solution x∗ to (P ), let Lk(x∗) denote the range of θ such that z(θ) =
z(0) + θx∗

k. That is, Lk(x∗) = {θ|z(θ) = z(0) + θx∗
k}. By the definition of PSA and

Jansen et al.’s (1992) result, it is obvious that Y ck(x∗) = Lk(x∗) for an optimal
basic solution x∗ to (P ). In the next lemma, we show that Jansen et al.’s (1992)
result holds for any optimal solution.

Lemma 3.1. For an arbitrary optimal solution x∗ to (P ), Y ck(x∗) = Lk(x∗).

Proof. If θ ∈ Y ck(x∗), then x∗ is an optimal solution to (Pθ). Hence,

z(θ) = (c + θek)Tx∗ = cTx∗ + θx∗
k = z(0) + θx∗

k.

Therefore, θ ∈ Lk(x∗). Conversely, if θ ∈ Lk(x∗), then

z(θ) = z(0) + θx∗
k = (c + θek)Tx∗,

which implies that x∗ is an optimal solution to (Pθ). Therefore, θ ∈ Y ck(x∗).

Theorem 3.1. Let x̄ and x̃ be two different optimal solutions to (P ). If
Y ck(x̄) ∩ Y ck(x̃) �= {0}, then Y ck(x̄) = Y ck(x̃).

Proof. Suppose that Y ck(x̄) ∩ Y ck(x̃) �= {0}. Then, there exist θ1 and θ2 such
that θ1 ∈ Y ck(x̄) ∩ Y ck(x̃) − {0} and θ2 ∈ Y ck(x̄) − {0}. Since

z(θ1) = z(0) + θ1x̄k = z(0) + θ1x̃k,
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it follows that x̄k = x̃k. Since

z(θ2) = z(0) + θ2x̄k = z(0) + θ2x̃k = (c + θ2ek)Tx̃,

x̃ is also an optimal solution to (Pθ2). Therefore, θ2 ∈ Y ck(x̃), which implies that
Y ck(x̄) ⊂ Y ck(x̃). (Note that for any optimal solution x∗, 0 ∈ Y ck(x∗).) By similar
arguments, we can show that Y ck(x̃) ⊂ Y ck(x̄). Therefore, Y ck(x̃) = Y ck(x̄).

Jansen et al. (1992) presented a theorem, similar to Theorem 3.1, but considered
only basic solutions. By Theorem 3.1, we come to a conclusion that if x̄ and x̃ are
two distinct optimal solutions to (P ), either 1 or 2, not both, is satisfied:

1. Y ck(x̄) = Y ck(x̃).
2. (Y ck(x̄) − {0}) ∩ (Y ck(x̃) − {0}) = ∅.

Another important result about the relationship among the ranges of PSA using
different optimal solutions is described in the next theorem.

Theorem 3.2. Let x∗, x1, and x2 be distinct optimal solutions to (P ) such that
x∗ = λx1 + (1 − λ)x2 for some λ with 0 < λ < 1. Then, Y ck(x∗) = Y ck(x1) ∩
Y ck(x2).

Proof. Let σ1 = η(x1), σ2 = η(x2), and σ∗ = η(x∗). Suppose that x∗ = λx1

+ (1 − λ)x2 for 0 < λ < 1. First, we claim that Y ck(x1) ∩ Y ck(x2) ⊂ Y ck(x∗). If
θ ∈ Y ck(x1) ∩ Y ck(x2), then both x1 and x2 are optimal solutions to (Pθ). Since
the following equation holds,

z(θ) = λ(c + θek)Tx1 + (1 − λ)(c + θek)Tx2

= (c + θek)T(λx1 + (1 − λ)x2)

= (c + θek)Tx∗,

x∗ is also an optimal solution to (Pθ). Consequently, θ ∈ Y ck(x∗).
Next, we show that Y ck(x∗) ⊂ Y ck(x1) ∩ Y ck(x2). For any θ ∈ Y ck(x∗), we get

that

z(θ) = (c + θek)Tx∗ = λ(c + θek)Tx1 + (1 − λ)(c + θek)Tx2. (3.1)

Since x∗ is an optimal solution to (Pθ), the following inequalities are satisfied:

(c + θek)Tx1 ≥ (c + θek)Tx∗, (c + θek)Tx2 ≥ (c + θek)Tx∗. (3.2)

By Eq. (3.1) and inequalities (3.2), we find that (c+θek)Tx1 = (c+θek)Tx2 = z(θ).
Consequently, θ ∈ Y ck(x1) and θ ∈ Y ck(x2).
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Corollary 3.1. Let x∗, x1, . . . , xr be optimal solutions to (P ) such that for some
λi (i = 1, . . . , r)

x∗ = λ1x
1 + · · · + λrx

r,

r∑
i=1

λi = 1, λi > 0, ∀i.

Then,

Y ck(x∗) =
⋂

1≤i≤r

Y ck(xi).

Moreover, if Y ck(x∗) �= {0}, then Y ck(x1) = · · · = Y ck(xr).

Proof. By applying Theorem 3.2 repeatedly, it is easily shown that Y ck(x∗) =⋂
1≤i≤r Y ck(xi). Moreover, if Y ck(x∗) �= {0}, let θ ∈ Y ck(x∗) − {0}. Then,

θ ∈ Y ck(xi) for each i. This, together with Theorem 3.1, implies that
Y ck(x1) = · · · = Y ck(xr).

If x∗ in Corollary 3.1 is a strictly complementary solution, then we find that
Ock(B, N) =

⋂
1≤i≤r Y ck(xi) because Ock(B, N) = Y ck(x∗). That is, the range of

OSA is the intersection of the ranges of PSA using optimal solutions whose convex
combination leads to a strictly complementary solution.

Next, consider the case when bh is perturbed. For an arbitrary matrix E ∈ �m×r

with r being a positive integer, let Pos(E) denote a set of vectors as follows:

Pos(E) =


x ∈ �m

∣∣∣∣∣ x =
∑

1≤j≤r

λjE·j , λj ≥ 0


 ,

where E·j is the jth column vector of E. In the next theorem, the relationship
between the ranges of PSA using different optimal solutions is presented when bh

is changed.

Theorem 3.3. Let x∗, x1, x2 be optimal solutions to (P ) such that x∗ = λx1 +
(1 − λ)x2 for λ with 0 < λ < 1. Then, Y bh(xi) ⊂ Y bh(x∗) for i = 1, 2.

Proof. Let σ = η(x∗) and σi = η(xi) for i = 1, 2. Since σi ⊂ σ by the assumption
of the theorem, Pos(Aσi) ⊂ Pos(Aσ). This, together with Eq. (2.4), implies that
Y bh(xi) ⊂ Y bh(x∗) for each i = 1, 2.

From the above theorem, we may conjecture that Y bh(x∗) =
⋃

1≤i≤r Y bh(xi)
where x∗ and xi are defined in the same way with Corollary 3.1. However, from
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the following example (LP1), we find that, in general, Y bh(x∗) is not equal to⋃
1≤i≤r Y bh(xi):

(P1) :

min −x1 − x2

s.t. x1 + x2 +x3 = 1
x1 + +x4 = 1

x2 +x5 = 1,

xj ≥ 0, j = 1, . . . , 5,

(D1) :

max y1 + y2 + y3

s.t. y1 + y2 −s1 = 1
y1 + y3 −s2 = 1
y1 −s3 = 0

y2 −s4 = 0
y3 −s5 = 0,

sj ≥ 0, j = 1, . . . , 5,

The problem (P1) has two optimal basic solutions, x1 and x2:

x1 = (1, 0, 0, 0, 1)T, x2 = (0, 1, 0, 1, 0)T.

When b1 is changed, the ranges of PSA using x1 and x2 are both [0, 0]. However, the
range of PSA using an optimal nonbasic solution x∗ is [−1, 1] where x∗ = (x1+x2)/2.

In addition, if x∗ is a strictly complementary solution in Theorem 3.3, then we
find that Obh(B∗, N∗) ⊃

⋃
1≤i≤r Y bh(xi) because Obh(B∗, N∗) = Y bh(x∗).

On the other hand, under what condition does the range of PSA on ck include
a nonzero value? In the rest of this section, we present a necessary and sufficient
condition that ck can be perturbed while an optimal solution to (P ) remains optimal
to the perturbed problem. Let P∗ denote the set of all optimal solutions to (P ).

Theorem 3.4. Let x∗ be an optimal solution to (P ). Then, θ ∈ Y ck(x∗) for some
θ > 0 if and only if x∗

k ≤ xk for all x ∈ P∗.

Proof. First, we will show that the “only if” part holds. Suppose that θ ∈ Y ck(x∗)
for some θ > 0. In addition, suppose that xk < x∗

k for some x ∈ P∗. Then,

(c + θek)Tx = cTx + θxk < cTx∗ + θx∗
k = (c + θek)Tx∗.

This contradicts the assertion that x∗ is an optimal solution to (Pθ). Therefore,
x∗

k ≤ xk for all x ∈ P∗.
Next, we will show that the “if” part holds. Let σ = η(x∗) and σ̄ = η̄(x∗).

Also, let π∗ = (B∗, N∗) be the optimal partition of (LP ). Note that B∗ ⊃ σ and
σ̄ = (B∗ − σ) ∪ N∗.
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(i) In the case k ∈ N∗: If (y∗, s∗) is an optimal solution to (D), then (y∗, s∗+θek)
with θ > 0 is a feasible solution to the following linear equation system:

AT
σ y = cσ + (θek)σ, sσ = 0,

AT
B∗−σy + sB∗−σ = cB∗−σ + (θek)B∗−σ, sB∗−σ ≥ 0,

AT
N∗y + sN∗ = cN∗ + (θek)N∗ , sN∗ ≥ 0.

(3.3)

Since (x∗, y∗, s∗ + θek) is an optimal solution to (LPθ), we get that [0, θ] ⊂ Y ck(x∗)
where θ > 0.

(ii) In the case k ∈ B∗: Consider the following linear programming:

min (ek)TB∗xB∗

(P ′) : s.t. AB∗xB∗ = b

xB∗ ≥ 0.

max bTy

(D′) : s.t. AT
σ y + sσ = (ek)σ

AT
B∗−σy + sB∗−σ = (ek)B∗−σ

sσ ≥ 0, sB∗−σ ≥ 0.

(3.4)

By the assumption, x∗ is an optimal solution to (P ′), and the optimal value of the
object function of (P ′) is x∗

k. This implies that (D′), the dual problem of (P ′), has
at least one optimal solution. Let (∆y, ∆sB∗) be an optimal solution to (D′) which
satisfies the following:

AT
σ ∆y = (ek)σ,

AT
B∗−σ∆y + ∆sB∗−σ = (ek)B∗−σ,

∆sσ = 0, ∆sB∗−σ ≥ 0.

(3.5)

In addition, let ∆sN∗ = (ek)N∗ − AT
N∗∆y and let (y∗, s∗) be a strictly comple-

mentary solution to (D). We set θ̂ as the following:

θ̂ = min
j∈N∗

{
−

s∗
j

∆sj

∣∣∣∣ ∆sj < 0
}

.

Note that θ̂ is positive. Let θ̄ be a real number such that 0 < θ̄ ≤ θ̂. Then, we get
a solution (ỹ, s̃) that satisfies the linear systems (3.3) where

ỹ = y∗ + θ̄∆y,

s̃ = s∗ + θ̄(∆sT
B∗ , ∆sT

N∗)T.

Since (x∗, ỹ, s̃) is an optimal solution to (LPθ̄), we find that θ̄ ∈ Y ck(x∗).

Similarly, we obtain a sufficient and necessary condition under which the range
of PSA on ck includes a negative value as follows:

Theorem 3.5. Let x∗ be an optimal solution to (P ). Then, θ ∈ Y ck(x∗) for some
θ < 0 if and only if x∗

k ≥ xk for all x ∈ P∗.

Proof. First, we will show that the “only if” part holds. Suppose that θ ∈ Y ck(x∗)
for some θ < 0. In addition, suppose that xk > x∗

k for some x ∈ P∗. Then,

(c + θek)Tx = cTx + θxk < cTx∗ + θx∗
k = (c + θek)Tx∗.
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This contradicts the assertion that x∗ is an optimal solution to (Pθ). Therefore,
x∗

k ≥ xk for all x ∈ P∗.
Next, we show that the “if” part holds. Let σ = η(x∗) and σ̄ = η̄(x∗). Also, let

π∗ = (B∗, N∗) be the optimal partition to (LP ).

(i) In the case k ∈ N∗: Let (y∗, s∗) be a strictly complementary optimal solution
to (D). (Note that s∗

k > 0.) Then, (y∗, s∗ +θek) satisfies the linear systems (3.3)
where −s∗

k ≤ θ < 0. Consequently, [θ, 0] ∈ Y ck(x∗) for any −s∗
k ≤ θ ≤ 0.

(ii) In the case k ∈ B∗: We easily show that θ ∈ Y ck(x∗) for some θ by replacing
vector ek in (10) and (11) with vector −ek and applying the same technique in
Theorem 3.4.

By Theorems 3.4 and 3.5, we know that the range of PSA using x∗ on ck includes
both a positive and a negative value if and only if for any optimal solution x the
kth element xk has the same value. In addition, we arrive at another interesting
result about the range of OSA as follows:

Corollary 3.2. Let π∗ = (B∗, N∗) be the optimal partition to (LP ). Then,
Ock(B∗, N∗) �= [0, 0] if and only if x∗

k = α for all x∗ ∈ P∗, where α is a non-
negative constant.

Proof. First, suppose that Ock(B∗, N∗) �= [0, 0]. Let x̄ be a strictly complementary
optimal solution. Since Y ck(x̄) = Ock(B∗, N∗), Y ck(x̄) �= [0, 0]. If x̄ is a unique opti-
mal solution to (P ), the corollary trivially holds. Otherwise, let x1 be an arbitrary
optimal solution to (P ) such that x1 �= x̄. Then, there exists an optimal solution x2

such that

x̄ = λx1 + (1 − λ)x2, for some λ > 0. (3.6)

By Theorems 3.4 and 3.5, Y ck(x̄) �= [0, 0] implies that x̄k ≤ xi
k or x̄k ≥ xi

k for
i = 1, 2. This, together with equation (3.6), implies that x̄k = x1

k = x2
k. Since x1 is

chosen arbitrarily, x∗
k = α for all x∗ ∈ P∗ where α is a nonnegative constant.

Next, we will show that the reverse holds. Suppose that x∗
k = α for all x∗ ∈ P∗.

Then, by Theorems 3.4 and 3.5, there exist θ and θ̄ such that [θ, θ̄] ⊂ Ock(B∗, N∗),
θ < 0, and θ̄ > 0.

4. The Relationship between PSA and BSA Under Degeneracy

In this section, we discuss the relationship between PSA and BSA by comparing
PSA with BSA under degeneracy. Let x∗ be an optimal basic solution to (LP ).
If x∗ is degenerate, there can be more than one optimal basis associated with x∗.
BSA using each optimal basis may produce a different range of perturbation θ. For
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example, consider the following linear programming problem (LP2):

(P2) :

min 4x1 + 5x2

s.t. 4x1 + 3x2 −x3 = 12
2x1 + 5x2 −x4 = 10
3x1 + 4x2 −x5 = 11,

xj ≥ 0, j = 1, . . . , 5,

(D2) :

max 12y1 + 10y2 + 11y3

s.t. 4y1 + 2y2 + 3y3 +s1 = 4
3y1 + 5y2 + 4y3 +s2 = 5
−y1 +s3 = 0

−y2 +s4 = 0
−y3 +s5 = 0,

sj ≥ 0, j = 1, . . . , 5.

The unique optimal solution x∗ to (P2) is (15/7, 8/7, 0, 0, 0)T, that is a degenerate
basic solution. There are three primal-optimal bases, AB1 , AB2 , AB3 where B1 =
{1, 2, 3}, B2 = {1, 2, 4}, and B3 = {1, 2, 5}. Both AB2 and AB3 are optimal bases,
but AB1 is a primal-optimal basis, not an optimal basis. When c2 is changed, the
range of BSA using AB2 and AB3 are [−2, 1/3] and [−2, 5], respectively. On the
other hand, the range of PSA using x∗ is [−2, 5].

Ward et al. (1990) showed that when a cost coefficient is changed, the range of
θ within which an optimal basic solution x∗ remains optimal to (Pθ) is the union
of the ranges of sensitivity analysis using all primal-optimal bases associated with
x∗. Since Y ck(x∗) is the range within which x∗ remains optimal to (Pθ), we obtain
the following theorem:

Theorem 4.1. Let x∗ be an optimal degenerate basic solution. Let B1, B2, . . . , Br

be the index set of basic variables of all the primal-optimal bases associated with x∗.
Then,

Y ck(x∗) =
⋃

1≤i≤r

Tck(ABi).

Proof. Since the range of PSA using x∗ on ck is equal to the range of θ within
which x∗ remains optimal to (Pθ), we get that Y ck(x∗) =

⋃
1≤i≤r Tck(ABi).

On the other hand, the relationship between PSA and BSA when a right-hand
side bh is changed differs from the case when a cost coefficient is changed. The
following theorem implies that the range of PSA using x∗ on bh is included in the
range of BSA using any optimal basis associated with x∗.
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Theorem 4.2. Let x∗ be an optimal degenerate basic solution to (P ). Let
B1, B2, . . . , Br be the index sets of basic variables of all the optimal bases asso-
ciated with x∗. Then,

Y bh(x∗) ⊂
⋂

1≤i≤r

Tbh(ABi)

Moreover, if Y bh(x∗) �= {0}, then Y bh(x∗) = Tbh(ABi) for 1 ≤ i ≤ r.

Proof. Let σ = η(x∗). For each Bi, Pos(Aσ) ⊂ Pos(ABi) because σ ⊂ Bi. This,
together with Eqs. (2.2) and (2.4), implies that Y bh(x∗) ⊂ Tbh(ABi) for each i.
Therefore, Y bh(x∗) ⊂

⋂
1≤i≤r Tbh(ABi).

Suppose that Y bh(x∗) includes any nonzero value. Then, b ∈ Pos(Aσ) and eh ∈
Pos(Aσ). For an arbitrary optimal basis Bi, σ ⊂ Bi and each column in Aσ is
linearly independent from all columns in ABi−σ. Therefore, the range of γ such that

[Aσ, ABi−σ]
[

xσ

xBi−σ

]
= b + γeh, xσ ≥ 0, xBi−σ ≥ 0

is the same with the range of γ such that

Aσxσ = b + γeh, xσ ≥ 0, xBi−σ = 0.

This implies that Tbh(ABi) = Y bh(x∗).

That is, if Y bh(x∗) includes any nonzero value, we know that Y bh(x∗) =⋂
1≤i≤r Tbh(ABi), which is similar to Theorem 4.1. However, when Y bh(x∗)

includes no nonzero value, i.e., Y bh(x∗) = {0}, Y bh(x∗) may not be equal
to

⋂
1≤i≤r Tbh(ABi), which is illustrated by the following linear programming

(LP3):

(P3) :

min x1

s.t. x1 + x2 + x3 = 1
x1 + 2x2 + 2x3 = 1,

xj ≥ 0, j = 1, 2, 3,

(D3) :

max y1 + y2

s.t. y1 + y2 −s1 = 1
y1 + 2y2 −s2 = 0
y1 + 2y2 −s3 = 0,

sj ≥ 0, j = 1, 2, 3.

The unique optimal solution to (P3) is x∗ = (1, 0, 0)T, and there are two optimal
bases associated with x∗:

AB1 =
[

1 1
1 2

]
, AB2 =

[
1 1
1 2

]
,
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Table 1. Comparison between the three sensitivity analysis methods.

Features BSA PSA OSA

Prerequisite
information

An optimal basis An arbitrary optimal
solution

The optimal partition

Range found The range where
an optimal basis
remains optimal

The range where the
induced partition of
an optimal solution
remains invariant

The range where the optimal
partition remains invariant

Usage Usually used for
simplex method,
and can be applied
only to an optimal
basic solution

Can be used for
interior-point methods
after finding any
optimal solution

Can be used for interior-point
methods after finding the
optimal partition

Relationship
with other
methods

Y ck(x∗) =
⋃

i Tck(ABi ), Y bh(x∗) ⊂⋂
j Tbh(ABj ), where x∗ is an optimal

basic solution, and Bi and Bj are a
primal-optimal and an optimal basis
associated with x∗, respectively

A special case of PSA

where B1 = {1, 2} and B2 = {1, 3}. When b1 is perturbed, the ranges of BSA using
AB1 and AB2 are Tb1(AB1) = [−1/2, 0] and Tb1(AB2) = [−1/2, 0], respectively.
However, the range of PSA using x∗ is Y bh(x∗) = [0, 0] by the following equation:

Y b1(x∗) =
{

γ

∣∣∣∣
[

1
1

]
x1 =

[
1 + γ

1

]
, x1 ≥ 0, x2 = x3 = 0

}

Consequently, we find that Y b1(x∗) �= Tb1(AB1) ∩ Tb1(AB2).
The features of the three sensitivity analysis methods are summarized in Table 1.

5. Concluding Remarks

In this paper, we study the properties of PSA and its relationship with two other
sensitivity analysis methods, BSA and OSA. The main advantage of PSA is that it
can be performed with any optimal solution which is a nonbasic or basic solution.
PSA finds the range within which there exists an optimal solution to the perturbed
problem whose induced partition is equal to the induced partition of a given optimal
solution. PSA focuses only on the induced partition of primal-optimal solutions.
That is why the properties of PSA on a cost coefficient differs from those of PSA
on a right-hand side.

We presented some properties of PSA that are useful for comparing PSA with
the other two sensitivity analysis methods. When a cost coefficient is perturbed,
the range of PSA is equal to the interval where a given optimal solution remains
optimal to the perturbed problem. On the other hand, when a right-hand side
is changed, the range of PSA finds the interval where the induced partition of a
given optimal solution remains the induced partition of some optimal solution to
the perturbed problem. Another important property of PSA on a cost coefficient is
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that the range of PSA using an optimal nonbasic solution is the intersection of the
ranges of PSA using optimal basic solutions whose convex combination leads to the
optimal nonbasic solution.

Finally, further studies will be needed, which deal with the computational perfor-
mance and numerical experience of sensitivity analysis methods. Given an optimal
basis, BSA is obviously the most efficient where the computational time concerned.
However, most codes using interior-point methods often produce an optimal non-
basic solution, and in this case PSA is expected to be a good alternative because
PSA can be applied without obtaining an optimal basis or the optimal partition,
which may require much computational time if a problem is ill-conditioned.

Acknowledgment

We thank anonymous referees for many helpful suggestions. This work was sup-
ported by Grant Number 2000-1-31500-001-02 and R01-2002-000-00168-0 from
the Basic Research Program of the Korea Science and Engineering Foundation
(KOSEF).

References

Adler, I and RDC Monteiro (1992). A geometric view of parametric linear programming.
Algorithmica, 8, 161–176.

Bixby, RE and MJ Saltzman (1994). Recovering an optimal LP basis from an interior
point solution. Operations Research Letters, 15, 169–178.

Dantzig, GB (1963). Linear Programming and Extension. Princeton, New Jersey:
Princeton University Press.

Evans, JR and NR Baker (1982). Degeneracy and the (mis)interpretation of sensitivity
analysis in linear programming. Decision Sciences, 13, 348–354.

Gal, T (1979). Postoptimal Analyses, Parametric Programming, and Related Topics,
New York: MacGraw-Hill.

Goldman, AJ and AW Tucker (1956). Theory of linear programming. In Inequalities
and Related Systems (Annals of Mathematical Studies, No. 38), HW Kuhn and
AW Tucker (eds.), 53–97. Princeton, New Jersey: Princeton University Press.

Greenberg, HJ (2000). Simultaneous primal-dual right-hand-side sensitivity analysis from a
strictly complementary solution of a linear program. SIAM Journal of Optimization,
10, 427–442.

Jansen, B, C Roos and T Terlaky (1992). An interior point approach to postoptimal and
parametric analysis in linear programming. Technical Report 92–21, Mathematics
and Computer Science, Delft University of Technology, Netherlands.

Jansen, B, JJ de Jong, C Roos and T Terlaky (1997). Sensitivity analysis in linear
programming: just be careful! European Journal of Operational Research, 101,
15–28.

Knolmayer, G (1984). The effects of degeneracy on cost-coefficient ranges and an algorithm
to resolve interpretation problems. Decision Sciences, 15, 14–21.

Kim, WJ, CK Park and S Park (1999). An ε-sensitivity analysis in the primal-dual interior
point method. European Journal of Operational Research, 116, 629–639.

Mehrotra, S and Y Ye (1993). Finding an interior point in the optimal face of linear
programs. Mathematical Programming, 62, 497–515.



February 24, 2004 11:7 WSPC/APJOR 00005.tex

68 C.-K. Park et al.

Monteiro, RD and S Mehrotra (1996). A general parametric analysis approach and
its implications to sensitivity analysis in interior point methods. Mathematical
Programming, 92, 65–82.

Roos, CT, T Terlaky and JPh Vial (1997). Theory and Algorithms for Linear Optimization.
New York: John Wiley & Sons.

Sung, K and S Park (1988). Postoptimality analysis in matrix game, programming
algorithms. Linear Algebra and Its Applications. 152, 343–363.

Ward, JE and RE Wendell (1990). Approaches to sensitivity analysis in linear
programming. Journal of the Korean Operations Research and Management
Science Society, 13(1), 1–9.

Tapia, RA and Y Zhang (1991). An optimal-basis identification technique for interior-point
linear. Annals of Operations Research, 27, 3–38.

Yang, BH (1990). A study on sensitivity analysis for a non-extreme optimal solution in
linear programming, PhD Thesis, Seoul National University, Republic of Korea.

Chan-Kyoo Park currently works in Department of IT Audit and Supervision
at National Computerization Agency, Korea. He received his PhD in operations
research from Seoul National University. His research interests are in mathematical
programming and its applications to data mining.

Woo-Je Kim is a Professor at the Department of Industrial Engineering at
Daejin University, Korea. He received his PhD in operations research from Seoul
National University. His research interests include linear programming and logistics
management.

Sangwook Lee is a PhD candidate in Department of Industrial Engineering at
Seoul National University, Korea. His research areas include linear, nonlinear and
integer programming, network theory, and computer applications.

Soondal Park is a Professor at the Department of Industrial Engineering at Seoul
National University, Korea. He received his PhD in Mathematics from the University
of Cincinnati. His research interests include deterministic operations research and
its computer applications. He is the author of LP programs, LPAKO, LPABO, and
LPASO, and of 25 books on various fields, including operations research.




