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ABSTRACT The hidden Markov model (HMM) has long been one of the most commonly used probability

graph models for modeling sequential or time series data. It has been widely used in many fields ranging

from speech recognition, face recognition, anomaly detection, to gene function prediction. In this paper,

we theoretically propose a variant of the continuous HMM for modeling positive sequential data which

are naturally generated in many real-life applications. In contrast with conventional HMMs which often use

Gaussian distributions or Gaussian mixture models as the emission probability density, we adopt the inverted

Dirichlet mixture model as the emission density to build the HMM. The consideration of inverted Dirichlet

mixture model in our case is motivated by its superior modeling capability over Gaussian mixture models for

modeling positive data according to several recent studies. In addition, we develop a convergence-guaranteed

approach to learning the proposed inverted Dirichlet-based HMM through variational Bayes inference. The

effectiveness of the proposed HMM is validated through both synthetic data sets and a real-world application

regarding anomaly network intrusion detection. Based on the experimental results, the proposed inverted

Dirichlet-based HMM is able to achieve the detection accuracy rates that are about 4%∼9% higher than

those ones obtained by the compared approaches.

INDEX TERMS Hidden Markov models, inverted Dirichlet distribution, variational Bayes, mixture models,

intrusion detection.

I. INTRODUCTION

The hidden Markov model (HMM) [1], [2] is one of the most

commonly used probability graphical models for modeling

sequential or time series data, such as video, audio, text,

etc. It has been widely used in many fields ranging from

handwritten word recognition, speech recognition, speech

synthesis, face recognition, anomaly detection, to gene func-

tion prediction [3]–[8]. The HMM contains a set of hidden

states that are assumed to form a Markov chain, and each of

these states is associated with a probability distribution that

controls the emission of the observed data.

The associate editor coordinating the review of this manuscript and
approving it for publication was Pasquale De Meo.

In continuous HMMs, a common choice for the emission

density is the Gaussian distribution (or mixture of Gaussian

distributions) [2], [9]. However, by taking the nature of the

data into account, several works have shown that other dis-

tributions may become effective alternatives to Gaussian for

modeling data with non-Gaussian structure [10]–[12]. Exam-

ples of these research works include inverted Dirichlet-based

models [13]–[16], have demonstrated better performance

than Gaussian-based models in modeling semi-bounded data

(i.e. positive vectors), which naturally appear in several

pattern recognition and computer vision applications [13].

The inverted Dirichlet (ID) distribution, developed by Tiao

and Cuttman [17], is a multivariate generalization of the

inverted Beta distribution. For the Gaussian distribution,

the domain of its probability density function is not bounded,
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i.e. (−∞, +∞). However, for the ID distribution, the domain

of its probability density function is semi-bounded, i.e.

[0, +∞). This tighter bounded domain makes the ID dis-

tribution more suitable than Gaussian for modeling positive

data. Moreover, the ID distribution is a multivariate gener-

alization of the inverted Beta distribution. In contrast with

Gaussian distribution which only allows symmetric modes,

the ID distribution permits both multiple symmetric and

asymmetric modes, which results in more flexibility and bet-

ter modeling capability. Moreover, the ID distribution is also

closely related to the multivariate Student’s-t distribution as

discussed in [17]. Therefore, motivated by its advantages over

Gaussian mixture models, we consider the ID mixture model

as the emission density, to propose the ID-based continuous

HMMs for modeling positive sequential data sequences.

In order to learn HMMs, most of the approaches in the

literature adopt the EM algorithm [18], which in the case

of HMMs is known as the Baum-Welch (B-W) algorithm,

to find maximum likelihood solutions for HMMs [19], [20].

Unfortunately, the EM algorithm contains several limitations

such as its suboptimal generalization performance, depen-

dency on initialization and over-fitting. To tackle these prob-

lems, several research works [10], [21], [22] have adopted

variational Bayes inference to learn the HMMs [23], [24],

which is an effective inference algorithm based on deter-

ministic approximation. In the variational Bayes inference,

the overfitting associated with maximum likelihood can be

avoided by the incorporation of prior knowledge (or belief)

in a principled way and then marginalizing (i.e. integrating)

over the model parameters instead of making point estimates

of their values. Furthermore, in contrast with other well-

known inference approaches such as Markov chain Monte

Carlo (MCMC), variational Bayes is more computationally

efficient and can assess the convergence of the learning algo-

rithm in a systematical way. Motivated from its merits as

mentioned above, we aim to develop an effective and efficient

variational Bayes inference approach to learning the proposed

ID-based continuous HMMs.

The contributions of this work can be summarized as fol-

lows. First, we theoretically propose a variant of the HMM

based on ID mixture models. To the best of our knowledge,

this is the first work to consider the ID mixture model as the

emission density of the continuousHMMmodel formodeling

positive sequential data. Second, we derive complete infer-

ence procedures for learning the proposed ID-based HMM

model using variational Bayes. Third, the proposed ID-based

HMM model is validated through both simulated data sets

and is applied to a real-world problem of network intrusion

detection.

The rest of the paper is organized as follows: Section 2

describes the ID-based HMM model. In Section 3, an effec-

tive approach based on variational Bayes is developed

for learning the ID-based HMM model. Section 4 reports

the experimental results using both simulated data sets

and a real-world application. Conclusion is provided in

Section 5.

FIGURE 1. The proposed ID-based HMM model.

II. THE INVERTED DIRICHLET-BASED HMMS

Given a D-dimensional random vector Ex = (x1, . . . , xD)

which follows an inverted Dirichlet (ID) distribution with

parameter Eα = (α1, . . . , αD+1), its probability density func-

tion (pdf) is given by [17]:

ID(Ex|Eα)=
Ŵ(

∑D+1
d=1 αd )

∏D+1
d=1 Ŵ(αd )

D
∏

d=1

x
αd−1
d

(

1+

D
∑

d=1

xd

)−
∑D+1

d=1 αd

(1)

where Ŵ(·) is the gamma function which is defined by

Ŵ(x) =
∫ ∞
0 tx−1e−tdt , xd > 0 for d = 1, . . . ,D, and αd > 0

for d = 1, . . . ,D+ 1.

Given a HMMmodel with N states, if the hidden emission

density of each state follows a mixture of K ID distributions,

then the ID-based HMM model can be modeled by a set of

parameters 8 = {Eπ,A,C, Eα}, where Eπ = {πi}
N
i represents

the initial-state probability vector, A = {aij}
N ,N
i,j denotes the

state transition matrix, C = {cik}
N ,K
i,k denotes the mixture

coefficient matrix with cik represents the mixing proportion

of the kth mixture component under the ith state, and Eα =
{Eαik}

N ,K
i,k denotes the parameter of the kth ID component

under the i state.

Assume that we have collected a D-dimensional sequence

X = {Ex1, . . . , ExT } with T observations, the associated latent

variables of the complete-data are S = {s1, . . . , sT } and

L = {l1, . . . , lT }, where st ∈ [1,N ] is the unobserved

state sequence, and lt ∈ [1,K ] is the unobserved variable

that indicates from which mixture component that the tth

observation is generated. The graphical representation of the

proposed ID-based HMM model is shown in Figure 1.

Based on the framework the ID-based HMM model,

the probability of the complete data {X , S,L} given the set

of parameters 8 is defined by

p(X , S,L|8) = πs1

[ T−1
∏

t=1

ast st+1

][ T
∏

t=1

cst lt ID(Ext |Eαst lt )

]

. (2)

Then, the likelihood of model parameters 8 given the obser-

vation sequence X is formulated by

p(X |8) =
∑

S,L

πs1

[ T−1
∏

t=1

ast st+1

][ T
∏

t=1

cst lt ID(Ext |Eαst lt )

]

. (3)
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Sincewe are constructing a full Bayesianmodel, each random

variable of the ID-based HMM is associated with a prior.

Following [10], [21], [22], the common choice of the priors

for parameters Eπ , A and C is the Dirichlet distribution Dir(·)

p(Eπ ) = Dir(π1, . . . , πN |φπ
1 , . . . , φπ

N ), (4)

p(A) =

N
∏

i

Dir(ai1, . . . , aiN |φAi1, . . . , φ
A
iN ), (5)

p(C) =

N
∏

i

Dir(ci1, . . . , cik |φ
C
i1, . . . , φ

C
ik ). (6)

For the parameter Eα of the ID distributions, Gamma distribu-

tion Gam(·) is a reasonable choice for its prior since Eα has to

be positive. Thus, we have

p(Eα) =

N
∏

i=1

K
∏

k=1

D
∏

d=1

Gam(αikd |uikd , vikd )

=

N
∏

i=1

K
∏

k=1

D
∏

d=1

v
uikd−1
ikd

Ŵ(uikd )
α
uikd−1
ikd e−vikdαikd . (7)

III. MODEL LEARNING THROUGH

VARIATIONAL BAYES

The proposed ID-based HMM model is learnt using varia-

tional Bayes [23], [24], which is an effective inference algo-

rithm based on deterministic approximation. The main idea

of variational Bayes is to find an approximation q(S,L, 8)

for the posterior distribution p(S,L, 8|X ), where {S,L, 8}
denotes the set of all latent variables and parameters. In order

to have a tractable inference for the q(S,L, 8), we adopt

the mean-field assumption [24] such that q(S,L, 8) can be

factorized as

q(S,L, 8) = q(S)q(L)q(Eπ )q(A)q(C)q(Eα) (8)

Based on the framework of variational Bayes, the log

marginal probability of X can be written as

ln p(X ) =

∫

q(S,L, 8) ln p(X , S,L, 8)dSdLd8

−

∫

q(S,L, 8) ln p(S,L, 8|X )dSdLd8

= F(q) + KL(q||p), (9)

where KL(q||p) denotes the KL divergence between the dis-

tribution p and the approximating distribution q. F(q) is

known as the negative free energy, since the KL divergence is

nonnegative, F(q) can be also considered as the lower bound

of ln p(X ) and is given by

F(q) =

∫

q(S,L, 8) ln
p(X , S,L, 8)

q(S,L, 8)
dSdLd8

=

∫

q(S)q(L)q(Eπ )q(A)q(C)q(Eα)

×

[

lnπs1 +

T−1
∑

t=1

ln ast st+1
+

T
∑

t=1

ln cst lt

+

T
∑

t=1

ln ID(Ext |Eαst lt ) + ln p(Eπ ) + ln p(C)

+ ln p(Eα) − ln q(S) + ln p(A) − ln q(L) − ln q(Eπ )

− ln q(A) − ln q(C) − ln q(Eα)

]

dSdLd8

= F(q(Eπ )) + F(q(A)) + F(q(C)) + F(q(Eα))

+Constant. (10)

In variational Bayes learning framework, the variational pos-

teriors q(π ), q(A), q(C), q(Eα) can be updated by maximizing

the free energyF(q) with respect to each variational posterior,

holding the others fixed.

A. OPTIMIZATION OF Q(A), Q(Eπ) AND Q(C)

In this subsection, we provide detailed steps for optimizing

q(π ), q(A) and q(C). First, according to Eq. (10), we can have

a concrete expression about F(q(A)) as

F(q(A)) =

∫

q(A)
∑

S

q(S)

T−1
∑

t=1

ln ast st+1
dA

+

∫

q(A) ln p(A)dA−

∫

q(A) ln q(A)dA

=
∑

S

q(S)

T−1
∑

t=1

〈ln ast st+1
〉q(A)

+〈ln p(A)〉q(A) − 〈ln q(A)〉q(A), (11)

where the expectations 〈ln p(A)〉q(A) and 〈ln q(A)〉q(A) are

given by

〈ln p(A)〉q(A) =

N
∑

i=1

{lnŴ(

N
∑

j=1

φAij ) +

N
∑

j=1

[(φAij − 1)〈ln aij〉q(A)

− lnŴ(φAij )]}, (12)

and

〈ln q(A)〉q(A) =

N
∑

i=1

{lnŴ(

N
∑

j=1

WA
ij ) +

N
∑

j=1

[(WA
ij − 1)〈ln aij〉q(A)

− lnŴ(WA
ij )]}. (13)

In the above equation, WA
ij is defined by

WA
ij =

T−1
∑

t=1

ωA
ijt + φAij . (14)

where ωA
ijt is defined by

ωA
ijt =

∑

S

q(S)δ(st = i, st+1 = j)

= q(st = i, st+1 = j), (15)

where δ represents the transition probability from state i at

time t to state j at time t + 1. The expected value 〈ln aij〉q(A)
can be obtained by

〈ln aij〉q(A) = 9(WA
ij ) − 9

( N
∑

j=1

WA
ij

)

, (16)
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where 9(x) = ∂
∂x

lnŴ(x) is the digamma function.

Then, F(q(A)) in (11) can be rewritten as

F(q(A)) =

∫

q(A) ln

[

∏N
i=1

∏N
j=1 a

(WA
ij −1)

ij

q(A)

]

dA. (17)

Consequently, the optimized variational posterior q(A) can be

obtained based on Gibbs inequality and the maximization of

F(q(A)) as

q(A) =

N
∏

i=1

Dir(ai1, . . . , aiN |WA
i1, . . . ,W

A
iN ). (18)

Similarly, the optimized variational posteriors q(π ) and

q(C) can be obtained by maximizing F(q) with respect to

q(Eπ ) and q(C), respectively as

q(Eπ ) = Dir(π1, . . . , πN |Wπ
1 , ...,Wπ

N ), (19)

q(C) =

N
∏

i=1

Dir(ci1, ..., ciK |WC
i1 , . . . ,WC

iK ), (20)

where the associated hyperparameters are given by

Wπ
i = ωπ

i + φπ
i , (21)

ωπ
i =

∑

S

q(S)δ(s1 = i) = q(s1 = i), (22)

WC
ik =

T
∑

t=1

ωC
ikt + φCik , (23)

ωC
ikt =

∑

S,L

q(S)q(L)δ(st = i, lt = k) = q(st = i, lt = k). (24)

In our case, the forward-backward algorithm as discussed

in [2] is used to calculate ωA
ijt , ω

π
i and ωC

ikt .

B. OPTIMIZATION OF Q(Eα)

The optimization of q(Eα) is carried out by maximizing F(q).

Based on (10), F(q(Eα)) is given by

F(q(Eα)) =

∫

q(Eα)
∑

S,L

q(S)q(L)

T
∑

t=1

ln ID(Ext |Eαst ,lt )d Eα

+

∫

q(Eα) ln p(Eα)d Eα −

∫

q(Eα) ln q(Eα)d Eα

=
∑

S,L

q(S,L)

T
∑

t=1

〈ln ID(Ext |Eαst ,lt )〉q(Eα)

+〈ln p(Eα)〉q(Eα) − 〈ln q(Eα)〉q(Eα), (25)

According to (10), F(q(Eα)) can be further represented by

F(q(Eα)) =

∫

q(Eα)

× ln

∏N
i=1

∏K
k=1 p(Eαik )5

T
t=1ID(Ext |Eαik )

ωCikt

q(Eα)
d Eα. (26)

Then, bymaximizingF(q) with respect to q(Eα), the optimized

variational posterior is derived as

q(Eα) =

N
∏

i=1

K
∏

k=1

D
∏

d=1

Gam(αikd |u
∗
ikd , v

∗
ikd ), (27)

where the hyperparameters u∗
ikd and v∗ikd are given by

u∗
ikd = uikd +

T
∑

t=1

ωC
ikt ᾱikd

[

9(

D+1
∑

d=1

ᾱikd ) − 9(ᾱikd )

+

D+1
∑

s6=d

ᾱiks9
′(

D+1
∑

d=1

ᾱikd )(
〈

lnαiks
〉

− ln ᾱiks)

]

(28)

v∗ikd = vikd −

T
∑

t=1

ωC
ikt [ln xtd − ln(1 +

D
∑

d=1

xtd )] (29)

where the expected values in (28) can be obtained by

ᾱikd = 〈αikd 〉 =
u∗
ikd

v∗ikd
, (30)

〈lnαikd 〉 = 9(u∗
ikd ) − ln v∗ikd . (31)

C. OPTIMIZATION OF Q(S, L)

In this part, we provide the optimization of the joint varia-

tional posterior q(S,L) over the state indicator S and the mix-

ture component indicator L. By collecting all the quantities

related to q(S,L) from (10), F(q(S,L)) can be written as

F(q(S,L)) =
∑

S

q(S)

∫

q(Eπ ) lnπs1dπ

+
∑

S

q(S)

∫

q(A)

T−1
∑

t=1

ln ast st+1
dA

+
∑

S,L

q(S,L)

∫

q(C)

T
∑

t=1

ln cst ltdC

+
∑

S,L

q(S,L)

∫

q(θ )

T
∑

t=1

ln ID(Ext |Eαst lt )d Eα

−
∑

S,L

q(S,L) ln q(S,L) (32)

We can further represent F(q(S,L)) by

F(q(S,L)) =
∑

S,L

q(S,L)

×ln
π∗
s1

∏T−1
t=1 a

∗
st st+1

∏T
t=1 c

∗
st lt

ID∗(Ext |Eαst lt )

q(S,L)
. (33)

where we have

π∗
i = exp{

∫

q(Eπ )lnπidπ}=exp{9(Wπ
i )−9(

N
∑

i=1

Wπ
i )},

(34)

a∗
ij = exp{

∫

q(A) ln aijdA}=exp{9(WA
ij ) − 9(

N
∑

j=1

WA
ij )},

(35)

c∗ik =exp{

∫

q(C) ln cikdC}=exp{9(WC
ik )−9(

K
∑

k=1

WC
ik )}.

(36)

172344 VOLUME 7, 2019



R. Wang, W. Fan: Positive Sequential Data Modeling Using Continuous HMMs Based on ID Mixtures

ln ID∗( Ext |Eαst lt )

= 〈ln ID( Ext |Eαst lt )〉q(Eα)

= Rikd +

D
∑

d=1

(ᾱikd − 1) ln xtd

−

D+1
∑

d=1

ᾱikd ln

(

1 +

D
∑

d=1

xtd

)

, (37)

Rikd = ln
Ŵ(

∑D+1
d=1 ᾱikd )

5D+1
d=1Ŵ(ᾱikd )

+

D+1
∑

d=1

ᾱikd [9(

D+1
∑

d=1

ᾱikd )

−9(ᾱikd )][〈lnαikd 〉 − ln ᾱikd ]

+
1

2

D+1
∑

d=1

ᾱ2
ikd [9

′(

D+1
∑

d=1

ᾱikd ) − 9 ′(ᾱikd )]

×〈(lnαikd − ln ᾱikd )
2〉

+
1

2

D+1
∑

h=1

D+1
∑

g=1,h 6=g

ᾱikhᾱikg{9
′(

D+1
∑

d=1

ᾱikd )

×(〈lnαikh〉 − ln ᾱikh)(〈lnαikg〉 − ln ᾱikg)}, (38)

〈(lnαikd − ln ᾱikd )
2〉

= [9(u∗
ikd ) − ln u∗

ikd ]
2 + 9 ′(u∗

ikd ). (39)

Then, the optimized variational posterior q(S,L) can be

obtained by

q(S,L) =
1

Z
π∗
s1

T−1
∏

t=1

a∗
st st+1

T
∏

t=1

c∗st ,lt ID
∗(Ext |Eαst lt ), (40)

where the normalizing constant Z is given by

Z =
∑

S,L

π∗
s1

T−1
∏

t=1

a∗
st st+1

T
∏

t=1

c∗st ,lt ID
∗(Ext |Eαst lt )

= q(X |8∗). (41)

As we compare (41) with (3), we may notice that Z is the

approximating likelihood of the optimized model parameters

8∗, which can be calculated easily according to the forward-

backward algorithm [2].

The complete algorithm for learning the proposed HMM

based on variational Bayes inference is given in Algorithm 1.

D. CONVERGENCE

Since variational Bayes is a generalization of the conventional

EM algorithm, the convergence of the proposed variational

Bayes learning algorithm can be systematically monitored

according to the inspection of the negative free energy F(q)

in Eq. (10). Due to the convexity property of the variational

posterior distributions, at each iteration of the re-estimating

step, the value of the negative free energy is never decreased

until it converges to a local maximum.

IV. EXPERIMENTS

In this section, we validate the proposed ID-based HMM,

which is referred to as iDHMM, through both synthetic data

sets and a real-world application namely network intrusion

Algorithm 1 Variational Bayes Learning of ID-Based HMM

1: ## Initialize Hyperparameters ##

2: φπ = [1/N , ..., 1/N ]

3: φA = [1/N , ..., 1/N ]

4: φC = [1/K , ..., 1/K ]

5: vikd = 0.01, ∀i, k, d
6: uikd = 1, ∀i, k, d
7: Initialize α as: αinit = u/v

8: ## Initialize parameters of the HMM ##

9: Initialize responsibilitiesωπ , ωA, ωC from prior distribu-

tions with Eqs. (4), (5) and (6)

10: Compute Wπ , WA and WC with Eqs. (21), (14), (23)

11: Initialize π , A and C with Eqs. (34)∼(36)

12: repeat

13: ## Variational E-step ##

14: Forward: Compute the responsibilities ωπ , ωA and ωC

using π , A and C with Eqs. (15), (22), and (24)

15: Update u and v with Eqs. (28) and (29)

16: ## Variational M-step ##

17: UpdateWπ ,WA andWC using responsibilitiesωπ ,ωA

and ωC with Eqs. (21), (14), (23)

18: Update π , A and C using Wπ , WA and WC with

Eqs. (34)∼(36)

19: Backward: Compute the approximating likelihood Z

using Eq. (41)

20: until Convergence is reached

detection. In both experiments, we set the initial value of

the number of mixture components K in the iDHMM to 10.

The initial values of the hyperparameters u and v are set to

1 and 0.01, respectively. All the experiments are conducted

with 15 repetitions, and the averaged results are reported.

Our experiments were performed on MATLAB based on the

Windows platform.

A. SYNTHETIC DATA

In the experiment with synthetic data, our goal is to test

the effectiveness and accuracy of using variational Bayes

for learning the proposed iDHMM. The two simulated data

sets are randomly generated as follows. The first synthetic

data set (denoted by Data set 1) contains 2 states, where

each of the state has 200 data points. A time series of mul-

tivariate observations is then formulated based on these data.

Specifically, at state 1, the observations at time instances

t = 1 : 200 are generated according to a mixture of 2 ID

distributions ID(Ext |Eαi=1,k=1) and ID(Ext |Eαi=1,k=2). At state 2,

the observations at time instances t = 200 : 400 come

from another mixture of 2 ID distributions ID(Ext |Eαi=2,k=1)

and ID(Ext |Eα2=1,k=2). The second synthetic data set (denoted

by Data set 2) includes 1,600 data points in total with also

2 states, where each state contains 400 instances. The corre-

sponding time series of multivariate observations is formu-

lated as follows. The observations at time instances t = 1 :
800 are generated according to a mixture of 2 ID distributions
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TABLE 1. The true parameters for generating the synthetic data sets.

TABLE 2. The estimated parameters of the synthetic data sets by
variational Bayes.

TABLE 3. The estimated initial state probabilities and state transition
matrix of each synthetic data set by variational Bayes.

with different parameters at state 1. At state 2, the observa-

tions at time instances t = 800 : 1600 are drawn from another

mixture of 2 ID distributions. The detailed parameters that

were used to generate the two synthetic data sets are given

in Table 1.

The parameters of these two synthetic data sets are esti-

mated using variational Bayes as described in Section III. The

results of the estimated parameters and the estimated initial

state probabilities and state transitionmatrix of each synthetic

data set are demonstrated in Tables 2 and 3. According to

these two tables, it is clear that the estimated results obtained

by using variational Bayes is very close to the true ones

(as shown in Table 1) that were used to generated the data

sets, which indicates that the developed variational Bayes

approach is able to accurately learn the iDHMM.

It is noteworthy that our variational Bayes learning

approach is able to correctly detect the number of mixture

models in the synthetic data sets. This is done through the

estimation of the mixing coefficients in each state. Although

the mixture model in each state was initialized with 10 mix-

ture components, by removing those ones with mixing coef-

ficients that are close to 0 (i.e., than 10−5 in our case

less) after the convergence, we obtain the optimal number

of components for each mixture model with the estimated

values of mixing coefficients {ĉk} are shown in Table 2.

We can observe that the estimated mixture coefficients {ĉk}
in Table 2 are close to those true values {ck} in Table 1.

Thus, we can conclude that the mixture coefficients can be

accurately estimated through the proposed variational Bayes

learning approach.

B. NETWORK INTRUSION DETECTION

During the last decade, a serious risk to the internet and

computer networks has been brought by various security

threats. An effective approach to detecting different types

of attacks is through Intrusion Detection Systems (IDSs).

In this experiment, we develop an unsupervised intrusion

detection approach to detecting network-based attacks based

on the proposed iDHMM. In our approach, the iDHMMwith

variational Bayes is used to model patterns of normal and

intrusive activities.

To validate our intrusion detection approach, we con-

duct experiments on subsets of the well-known KDD Cup

1999 data set [25]. The original KDD Cup 1999 data set

contains about 5million connection records that was gathered

at MIT Lincoln laboratory for the 1998 DARPA intrusion

detection evaluation program by simulating attacks on a typ-

ical U.S. Air Force LAN. Each data instance of this data

set represents an attack or a normal connection that were

obtained from the simulated intrusions with 41 features (such

as duration, dst bytes, etc.), and each connection denotes a

sequence of TCP packets that were acquired from a source

IP address to a target IP address under some well-defined

protocol. Since the KDD Cup 1999 data set contains connec-

tion records that were collected from seven weeks of network

traffic, it is considered as time series data in our case, and

therefore the HMM is an appropriate choice in this applica-

tion. In our experiments, we removed the discrete and sparse

features (such as protocol_type, service, land, logged_in, etc.)

in the data preprocessing stage, and adopted 24 continuous

feature attributes.

Five classes of connections are included in the data sets.

Except for the Normal connections, there are four differ-

ent attack types including DOS: denial-of-service (e.g. syn

flood); R2L: unauthorized access from a remote machine

(e.g. guessing password); U2R: unauthorized access to local

superuser (root) privileges (e.g. buffer overflow attack) and

Probing: surveillance and other probing (e.g. port scanning).

Two subsets of the KDD Cup 1999 data set were used to

test our intrusion detection approach. Both of the two subsets

of the KDD Cup 1999 data set were randomly sampled

from the original KDD Cup 1999 data set. In Data set 1,

the training set contains 7050 connection records, whereas the

test set includes 20000 records. The training set of Data set
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FIGURE 2. The confusion matrices obtained by DHMM on the KDD Cup 1999 data set. (a) KDD Data 1;
(b) KDD Data 2.

FIGURE 3. The confusion matrices obtained by GHMM on the KDD Cup 1999 data set. (a) KDD Data 1;
(b) KDD Data 2.

FIGURE 4. The confusion matrices obtained by iDHMM on the KDD Cup 1999 data set. (a) KDD Data 1;
(b) KDD Data 2.

TABLE 4. The description of the data sets used in
our experiments.

2 has 19178 connection records, whereas the test set contains

100000 records. The detailed information regarding our data

sets are shown in Table 4.

To demonstrate the advantages of the proposed unsuper-

vised intrusion detection approach, we compare it with two

other well-defined HMMs with mixture model that are con-

sidered as their emission densities: the HMM with Gaussian

mixture model [22] (which is referred to as GHMM) and the

HMM with Dirichlet mixture models [21] (which is referred

to as DHMM). Both of these two tested HMMs are learnt

using variational Bayes. For the GHMM, we use the same

settings of the parameters as described in the original paper.
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TABLE 5. Classification accuracy of KDD data by different approaches.

For the DHMM, the initial value of the mixing component K

is set to 10, the initial values of the hyperparameters u and

v are set to 1 and 0.01, respectively. It is also noteworthy

that since our approach is unsupervised, class labels of data

instances are not included in the training process, but are used

for evaluating the accuracy of each approach.

The performance of different intrusion detection

approaches on the two tested data set are illustrated in Table 5.

Based on the results shown in this table, the proposed

iDHMM is able to outperform both DHMM and GHMM

for the two data sets, which demonstrated the advantages

of using the ID-based HMM for intrusion detection. These

results also verify that the ID-based HMM is more suitable

than the Dirichlet-based or Gaussian-based HMMs for mod-

eling positive data. Figures 2∼4 demonstrate the confusion

matrices obtained by different approaches on the KDD Cup

1999 data set.

V. CONCLUSION

In this work, a variant of the continuous hidden Markov

model was proposed for modeling positive sequential data.

In contrast with conventional HMMs which often use Gaus-

sian distributions or Gaussian mixture models as the emission

probability density, we adopted the ID mixture model as the

emission density in our HMM model. This choice was moti-

vated by the better performance of ID mixture model than

Gaussian mixture models for modeling positive data. In addi-

tion, a convergence-guaranteed approach was developed to

learn the proposed ID-based HMM through variational Bayes

inference. The effectiveness of the proposed HMM model

was verified through both synthetic data sets and a chal-

lenging real-world application regarding network intrusion

detection. One limitation of the proposed ID-based HMM is

that the number of states have to be set manually. In order

to tackle this issue, one possible future work is to extend

the current HMM with hierarchical Bayesian nonparametric

frameworks (such as the hierarchical Dirichlet process [26]),

such that the number of states of the HMM will be infinite

initially andwill be inferred automatically during the learning

process.
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