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Abstract

In this paper, we study the nonlocal fractional differential equation:

{

Dα
0+u(t) + f (t,u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = ηu(ξ ),

where 1 < α < 2, 0 < ξ < 1, ηξα–1 = 1, Dα
0+ is the standard Riemann-Liouville

derivative, f : [0, 1]× [0, +∞) →R is continuous. The existence and uniqueness of

positive solutions are obtained by means of the fixed point index theory and iterative

technique.

Keywords: fractional differential equation; positive solution; resonance; fixed point

index

1 Introduction

In this paper, we consider the following fractional differential equation:

{

Dα
+u(t) + f (t,u(t)) = ,  < t < ,

u() = , u() = ηu(ξ ),
(.)

where  < α < ,  < ξ < , ηξα– = , Dα
+ is the standard Riemann-Liouville derivative,

f : [, ] × [, +∞) → R is continuous. Problem (.) happens to be at resonance, since

λ =  is an eigenvalue of the linear problem

{

–Dα
+u = λu,  < t < ,

u() = , u() = ηu(ξ ),
(.)

and ctα–, c ∈ R, is the corresponding eigenfunction.

Fractional differential equations occur frequently in various fields such as physics, chem-

istry, engineering and control of dynamical systems, etc. During the last few decades,

many papers and books on fractional calculus and fractional differential equations have

appeared (see [–] and the references therein).
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When  < ηξα– < , problem (.) is non-resonant. In [], the author studied the exis-

tence of positive solutions for the non-resonant case by means of the fixed point index

theory under sublinear conditions.

In [], the authors investigated the existence and multiplicity results of positive solu-

tions by using of the fixed point theorem for the fractional differential equation given by

{

Dα
+u(t) = f (t,u(t)),  < t < ,

u() = , D
β
+u() = aD

β
+u(ξ ),

(.)

where  < α ≤ ,  ≤ β ≤ ,  < ξ < ,  ≤ a≤  with aξα–β– <  – β ,  ≤ α – β – .

Recently, there are some papers dealing with the existence of solutions of fractional

boundary value problem at resonance by using the coincidence degree theory due to

Mawhin (see [–]). In [], the authors investigated the following fractional three-

point boundary value problem (BVP for short) at resonance:

{

Dα
+u(t) + f (t,u(t),Dα–

+ u(t)) = ,  < t < ,

u() = , u() = ηu(ξ ),
(.)

where  < α ≤ ,  < ξ < , ηξα– = , Dα
+ is the standard Riemann-Liouville derivative,

f : [, ]×R
 →R is continuous. By using the coincidence degree theory, the existence of

solutions for BVP (.) are obtained under certain growth conditions.

To the best of our knowledge, there are only very few papers dealing with the exis-

tence of positive solutions for resonant boundary value problems since the corresponding

linear operator is non-reversible. For the case that α is an integer, some work has been

done dealing with the existence of positive solutions for resonant boundary value prob-

lems by using Leggett-Williams norm-type theorem for coincidence (see [–]). Webb

[] established existence of positive solutions for second order boundary value problems

at resonance by considering equivalent non-resonant perturbed problems with the same

boundary conditions.

Inspired by the work mentioned above, in this paper we aim to establish the existence of

positive solutions for resonant problem (.). The paper is organized as follows. Firstly, we

reduce non-perturbed boundary value problems at resonance to equivalent non-resonant

perturbed problems with the same boundary conditions. Then we derive the correspond-

ing Green’s function and argue its properties. Finally, the existence and uniqueness results

of positive solutions are obtained by using of the fixed point index and iterative technique.

2 Basic definitions and preliminaries

In this section, we present some preliminaries and lemmas. The definitions and properties

of fractional derivative can be found in the literature [–].

Definition . The fractional integral of order α >  of a function u : (, +∞)→ R is given

by

Iα+u(t) =


Ŵ(α)

∫ t



(t – s)α–u(s)ds

provided that the right-hand side is point-wise defined on (,+∞).
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Definition . The Riemann-Liouville fractional derivative of order α >  of a function

u : (, +∞) → R is given by

Dα
+u(t) =



Ŵ(n – α)

(

d

dt

)n ∫ t



(t – s)n–α–u(s)ds,

where n = [α] + , [α]denotes the integer part of number α, provided that the right-hand

side is point-wise defined on (,+∞).

Denote

g(t) =
α – 

Ŵ(α – )
+

+∞
∑

k=

tk

Ŵ((k + )α – )
. (.)

It is easy to check that g ′(t) >  on (,+∞), and

g() =
α – 

Ŵ(α – )
< , lim

t→+∞
g(t) = +∞.

Therefore, there exists a unique b∗ >  such that

g
(

b∗) = . (.)

For the convenience in presentation, we here list the assumptions to be used throughout

the paper.

(H) b ∈ (,b∗] is a constant.

(H) f : [, ]× [, +∞)→R is continuous and

f (t,x) + bx≥ . (.)

Set

Gb(t) = tα–Eα,α

(

btα
)

, (.)

where

Eα,α(x) =

+∞
∑

k=

xk

Ŵ((k + )α)
(.)

is the Mittag-Leffler function (see [, ]).

Next we consider the following boundary value problem:

{

–Dα
+u(t) + bu(t) = f (t,u(t)) + bu(t),  < t < ,

u() = , u() = ηu(ξ ).
(.)

It is clear that (.) is equivalent to (.).
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Set

K(t, s) =


Gb()

{

Gb(t)Gb( – s), ≤ t ≤ s ≤ ,

Gb(t)Gb( – s) –Gb(t – s)Gb(), ≤ s ≤ t ≤ ;
(.)

q(s) =
ηK(ξ , s)

Gb() – ηGb(ξ )
; (.)

K(t, s) = K(t, s) +Gb(t)q(s). (.)

Lemma . Suppose that (H) holds, and y ∈ L[, ]. Then the unique solution of the prob-

lem

{

–Dα
+u(t) + bu(t) = y(t),  < t < ,

u() = , u() = ηu(ξ ),
(.)

is

u(t) =

∫ 



K(t, s)y(s)ds.

Proof By [, ], we know that the solution of (.) can be expressed by

u(t) = –

∫ t



Gb(t – s)y(s)ds + cGb(t) + cG
′
b(t).

By u() = , we have c = .

On the other hand, we have

u() = –

∫ 



Gb( – s)y(s)ds + cGb(), (.)

u(ξ ) = –

∫ ξ



Gb(ξ – s)y(s)ds + cGb(ξ ). (.)

Noting that ηξα– = , and  < ξ < , we have

Gb() – ηGb(ξ ) =

+∞
∑

k=

bk[ – ηξ (k+)α–]

Ŵ((k + )α)
=

+∞
∑

k=

bk( – ξ kα)

Ŵ((k + )α)
> . (.)

Equations (.) and (.) yield

c =

∫ 


Gb( – s)y(s)ds – η

∫ ξ


Gb(ξ – s)y(s)ds

Gb() – ηGb(ξ )
.

Therefore, the solution of (.) is

u(t) = –

∫ t



Gb(t – s)y(s)ds +

∫ 


Gb( – s)y(s)ds – η

∫ ξ


Gb(ξ – s)y(s)ds

Gb() – ηGb(ξ )
Gb(t)

=

∫ 


Gb(t)Gb( – s)y(s)ds –

∫ t


Gb()Gb(t – s)y(s)ds

Gb()
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–

∫ 


Gb( – s)y(s)ds

Gb()
Gb(t) +

∫ 


Gb( – s)y(s)ds

Gb() – ηGb(ξ )
Gb(t)

–
η

∫ ξ


Gb(ξ – s)y(s)ds

Gb() – ηGb(ξ )
Gb(t)

=

∫ 



K(t, s)y(s)ds +
η

∫ 


Gb(ξ )Gb( – s)y(s)ds

Gb()[Gb() – ηGb(ξ )]
Gb(t)

–
η

∫ ξ


Gb()Gb(ξ – s)y(s)ds

Gb()[Gb() – ηGb(ξ )]
Gb(t)

=

∫ 



K(t, s)y(s)ds.

This completes the proof. �

Lemma . Suppose that (H) holds. The function K (t, s) has the following properties:

() K(t, s) > ,∀t, s ∈ (, );

() ω(s)t
α– ≤ K(t, s)≤ ω(s)t

α–,∀t, s ∈ [, ], where

ω(s) =Gb( – s) +Gb()q(s), ω(s) =
q(s)

Ŵ(α)
. (.)

Proof It is clear that we just need to prove that () holds.

By (.), we can get

tα–

Ŵ(α)
≤ Gb(t) = tα–

+∞
∑

k=

bktαk

Ŵ((k + )α)
≤ tα–Gb(), t ∈ [, ], (.)

G′
b(t) =

+∞
∑

k=

bkt(k+)α–

Ŵ((k + )α – )
> , t ∈ (, ], (.)

and

G′′
b(t) = tα–

[

α – 

Ŵ(α – )
+

+∞
∑

k=

bktkα

Ŵ((k + )α – )

]

= tα–g
(

btα
)

< tα–g(b) ≤ tα–g
(

b∗) = , t ∈ (, ), (.)

which impliesGb(t) is strictly increasing on [, ], andG′
b(t) is strictly decreasing on (, ].

By (.), we have

K(t, s) = K(t, s) +Gb(t)q(s)≤
Gb(t)Gb( – s)

Gb()
+Gb(t)q(s)

≤ Gb( – s)tα– + tα–Gb()q(s) = ω(s)t
α–. (.)

On the other hand, when  < t ≤ s < , noticingGb() = , and themonotonicity ofGb(t),

it is clear that

Gb(t)Gb( – s) > . (.)
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When  < s < t < , we have

∂

∂s

[

Gb(t)Gb( – s) –Gb(t – s)Gb()
]

=G′
b(t – s)Gb() –Gb(t)G

′
b( – s)

≥
[

Gb() –Gb(t)
]

G′
b( – s). (.)

Integrating (.) with respect to s, we obtain

Gb(t)Gb( – s) –Gb(t – s)Gb()

≥
∫ s



[

Gb() –Gb(t)
]

G′
b( – τ )dτ

=
[

Gb() –Gb(t)
][

Gb() –Gb( – s)
]

> . (.)

By (.), (.), and (.), we get K(t, s) > ,∀t, s ∈ (, ). Then

K(t, s) = K(t, s) +Gb(t)q(s)≥ Gb(t)q(s)

≥
tα–

Ŵ(α)
q(s) = ω(s)t

α– > , ∀t, s ∈ (, ).

This completes the proof. �

Let E = C[, ] be endowed with the maximum norm ‖u‖ = max≤t≤ |u(t)|, θ is the zero

element of E, Br = {u ∈ E : ‖u‖ < r}. Define a cone P by

P =
{

u ∈ E : u(t) ≥ , t ∈ [, ]
}

.

Let

Au(t) =

∫ 



K(t, s)
[

f
(

s,u(s)
)

+ bu(s)
]

ds. (.)

Tu(t) =

∫ 



K(t, s)u(s)ds. (.)

By means of Lemma . and the Arzela-Ascoli theorem, we can get A : P → P is com-

pletely continuous, T : P → P is completely continuous linear operator. By virtue of the

Krein-Rutmann theorem and Lemma ., we have the spectral radius r(T) >  and T has

a positive eigenfunction corresponding to its first eigenvalue λ = (r(T))–. Since λ =  is

the eigenvalue of the linear problems (.), and tα– is the corresponding eigenfunction,

we have the following lemma.

Lemma. Suppose that (H) holds, then the first eigenvalue of T is λ = b, and ϕ(t) = tα–

is the positive eigenfunction corresponding to λ, that is, ϕ = bTϕ.

Lemma . ([]) Let P be a cone in a Banach space E, and  be a bounded open set in E.

Suppose that A:  ∩ P → P is a completely continuous operator. If there exists u ∈ P with
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u �= θ such that

u –Au �= λu, ∀λ ≥ ,x ∈ ∂ ∩ P,

then i(A, ∩ P,P) = .

Lemma . ([]) Let P be a cone in a Banach space E, and  be a bounded open set in E.

Suppose that A:  ∩ P → P is a completely continuous operator. If

Au �= λu, ∀λ ≥ ,u ∈ ∂ ∩ P,

then i(A, ∩ P,P) = .

3 The uniqueness result

Theorem . Assume that there exists λ ∈ (,b) such that

∣

∣f (t,u) + bu – f (t, v) – bv
∣

∣ ≤ λ|u – v|, for t ∈ [, ],u, v ∈ [,∞),

then (.) has a unique nonnegative solution.

Proof Firstly, we will prove A has fixed point in P.

Set

Q =
{

u ∈ P : ∃l, l >  such that lt
α– ≤ u(t)≤ lt

α–
}

. (.)

For any u ∈ P \ {θ}, let

li(u) =

∫ 



ωi(s)u(s)ds, i = , . (.)

By Lemma ., it is obvious that l(u), l(u) > , and

l(u)t
α– ≤ (Tu)(t) ≤ l(u)t

α–, (.)

that is,

T : P \ {θ} →Q.

For any u ∈ P \ {θ}, let

un = A(un–), n = , , . . . . (.)

We may suppose that u – u �= θ (otherwise, the proof is finished). Then there exists

l(|u – u|) > , such that

T
(

|u – u|
)

≤ l
(

|u – u|
)

tα– = l
(

|u – u|
)

ϕ. (.)
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Thus

|u – u| =
∣

∣

∣

∣

∫ 



K(t, s)
[

f
(

s,u(s)
)

+ bu(s) – f
(

s,u(s)
)

– bu(s)
]

ds

∣

∣

∣

∣

≤
∫ 



K(t, s)
∣

∣f
(

s,u(s)
)

+ bu(s) – f
(

s,u(s)
)

– bu(s)
∣

∣ds

≤ λ

∫ 



K(t, s)
∣

∣u(s) – u(s)
∣

∣ds

= λT
(

|u – u|
)

≤ λl
(

|u – u|
)

ϕ, (.)

|u – u| =
∣

∣

∣

∣

∫ 



K(t, s)
[

f
(

s,u(s)
)

+ bu(s) – f
(

s,u(s)
)

– bu(s)
]

ds

∣

∣

∣

∣

≤
∫ 



K(t, s)
∣

∣f
(

s,u(s)
)

+ bu(s) – f
(

s,u(s)
)

– bu(s)
∣

∣ds

≤ λ

∫ 



K(t, s)
∣

∣u(s) – u(s)
∣

∣ds

≤ λl
(

|u – u|
)

Tϕ =
λ

b
l

(

|u – u|
)

ϕ, (.)

· · · .

By induction, we can get

|un+ – un| ≤
(

λ

b

)n–

λl
(

|u – u|
)

ϕ. (.)

Then, for any n,m ∈N, we have

|un+m – um| ≤ |un+m – un+m–| + · · · + |un+ – un|

≤
[(

λ

b

)n+m–

+ · · · +
(

λ

b

)n]

λl
(

|u – u|
)

ϕ

≤
( λ
b
)n

 – λ
b

λl
(

|u – u|
)

ϕ =
λn+l(|u – u|)

bn–(b – λ)
ϕ. (.)

So,

‖un+m – um‖ ≤
λn+l(|u – u|)

bn–(b – λ)
→ , n → ∞, (.)

which implies {un} is a Cauchy sequence. Therefore, there exists a u∗ ∈ P, such that {un}
converges to u∗. Clearly, u∗ is a fixed point of A.

In the following, we will prove the fixed point of A is unique.

Suppose v �= u∗ is a fixed point of A. Then there exists l(|u∗ – v|) > , such that

T
(
∣

∣u∗ – v
∣

∣

)

≤ l
(
∣

∣u∗ – v
∣

∣

)

ϕ. (.)
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Then

∣

∣Au∗ –Av
∣

∣ =

∣

∣

∣

∣

∫ 



K(t, s)
[

f
(

s,u∗(s)
)

+ bu∗(s) – f
(

s, v(s)
)

– bv(s)
]

ds

∣

∣

∣

∣

≤
∫ 



K(t, s)
∣

∣f
(

s,u∗(s)
)

+ bu∗(s) – f
(

s, v(s)
)

– bv(s)
∣

∣ds

≤ λ

∫ 



K(t, s)
∣

∣u∗(s) – v(s)
∣

∣ds

= λT
(
∣

∣u∗ – v
∣

∣

)

≤ λl
(
∣

∣u∗ – v
∣

∣

)

ϕ. (.)

By induction, we can get

∣

∣Anu∗ –Anv
∣

∣ ≤
(

λ

b

)n–

λl
(
∣

∣u∗ – v
∣

∣

)

ϕ. (.)

So,

∥

∥u∗ – v
∥

∥ =
∥

∥Anu∗ –Anv
∥

∥ ≤
(

λ

b

)n–

λl
(
∣

∣u∗ – v
∣

∣

)

→ , n→ ∞. (.)

Consequently, the fixed point of A is unique.

This completes the proof. �

Remark . The unique nonnegative solution u∗ of (.) can be approximated by the it-

erative schemes: for any u ∈ P \ {θ}, let

un = A(un–), n = , , . . . ,

then un → u∗.

Remark . If f (t, )≡  on [, ], then θ is the unique solution of (.) in P; If f (t, ) �≡ 

on [, ], then the unique solution u∗ is a positive solution.

4 Existence of positive solutions

Theorem . Assume that (H), (H), and the following assumptions hold:

lim inf
x→+

min
t∈[,]

f (t,x)

x
> , (.)

lim sup
x→+∞

max
t∈[,]

f (t,x)

x
< . (.)

Then (.) has at least one positive solution.

Proof It follows from (.) that there exists r >  such that

f (t,x)≥ , ∀(t,x) ∈ [, ]× [, r]. (.)
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Thus, for any u ∈ ∂Br ∩ P, we have

Au(t) =

∫ 



K(t, s)
[

f
(

s,u(s)
)

+ bu(s)
]

ds≥ bTu(t). (.)

We may suppose that A has no fixed points on ∂Br ∩ P (otherwise, the proof is finished).

Now we show that

u –Au �= μϕ, ∀u ∈ ∂Br ∩ P,μ > . (.)

If otherwise, there exist u ∈ ∂Br ∩ P and μ >  such that

u –Au = μϕ.

Then

u = Au +μϕ ≥ μϕ.

Denote

μ∗ = sup{μ : u ≥ μϕ}. (.)

It is clear that μ∗ ≥ μ and u ≥ μ∗ϕ. Since T(P) ⊂ P, we have bTu ≥ μ∗bTϕ = μ∗ϕ.

Then

u = Au +μϕ ≥ bTu +μϕ ≥
(

μ∗ +μ

)

ϕ,

contradicts the definition of μ∗. Hence (.) holds and we see from Lemma . that

i(A,Br ∩ P,P) = . (.)

On the other hand, it follows from (.) that there exist  < σ <  and r > r such that

f (t,x)≤ (σ – )bx, ∀t ∈ [, ],x≥ r. (.)

Let Tu = σbTu. Then T is a bounded linear operator and T(P) ⊂ P. Set

W = {u ∈ P | u = μAu,  ≤ μ ≤ }. (.)

In the following, we will prove thatW is bounded.

For any u ∈W , set ũ(t) = min{u(t), r}. Then

f
(

t,u(t)
)

+ bu(t)≤ σbu(t) + f
(

t, ũ(t)
)

+ bũ(t).

Therefore,

u(t) = μAu(t) ≤ Au(t) ≤ σbTu(t) +Aũ(t) ≤ Tu(t) +M,
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where

M = max
(t,x)∈[,]×[,r]

{

f (t,x) + bx
}

∫ 



ω(s)ds. (.)

Thus (I – T)u(t) ≤ M, t ∈ [, ]. Noticing b is the first eigenvalue of T and  < σ < , we

have (r(T))
– = σ – > . So the inverse operator of I – T exists, and

(I – T)
– = I + T + T

 + · · · + Tn
 + · · · .

It follows from T(P) ⊂ P that (I – T)
–(P) ⊂ P. We have

u(t) ≤ (I – T)
–M ≤ M

∥

∥(I – T)
–

∥

∥, t ∈ [, ],

which impliesW is bounded.

Select r > max{r,M‖(I – T)
–‖}. Then by Lemma ., we have

i(A,Br ∩ P,P) = . (.)

By (.) and (.), we have

i
(

A, (Br\B̄r )∩ P,P
)

= i(A,Br ∩ P,P) – i(A,Br ∩ P,P) = ,

which implies that A has at least one fixed point on (Br\B̄r ) ∩ P. This means that BVP

(.) has at least one positive solution.

This completes the proof. �

Theorem . Assume that (H), (H), and the following assumptions hold:

lim sup
x→+

max
t∈[,]

f (t,x)

x
< , (.)

and f (t, ) �≡  on [, ]. Then (.) has at least one positive solution.

Proof It follows from (.) that there exists r >  such that

f (t,x)≤ , ∀(t,x) ∈ [, ]× [, r]. (.)

Denote Tu = bTu. Obviously, r(T) = .

Wemay suppose thatA has no fixed points on ∂Br ∩P (otherwise, the proof is finished).

In the following, we prove that

Au �= μu, ∀u ∈ ∂Br ∩ P,μ > . (.)

If otherwise, there exist u ∈ ∂Br ∩ P,μ > , such that Au = μu. It is clear that μu =

Au ≤ Tu, and

μn
u ≤ Tn

u, n = , , . . . .
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Therefore,

μn
u ≤ Tn

u ≤
∥

∥Tn


∥

∥‖u‖.

Thus r(T) = limn→+∞
n
√

‖Tn
 ‖ ≥ μ > , which contradicts r(T) = . We have from

Lemma .

i(A,Br ∩ P,P) = . (.)

Since f (t, ) �≡  on [, ], clearly we have Aθ �= θ , here θ is the zero element of E. So

(.) implies that the problem (.) has at least one positive solution. �

Remark . Suppose u is a positive solution of (.), then there exist l, l > , such that

lt
α– ≤ u(t) ≤ lt

α–.

Example . (A -point boundary value problem at resonance) Consider the following

problem:

{

D


+u(t) + f (t,u(t)) = ,  < t < ,

u() = , u() = u( 

).

(.)

Since Ŵ(·) is strictly increasing on [,+∞), for any t ∈ [, +∞), we have

g(t) = –



√

π
+

+∞
∑

k=

tk

Ŵ( 

k – 


)
= –




√

π
+ t +

+∞
∑

k=

tk

Ŵ( 

k – 


)

≤ –



√

π
+ t +

+∞
∑

k=

tk

Ŵ(k)
= –




√

π
+ t

[

 +

+∞
∑

k=

tk

k!

]

= –



√

π
+ tet .

Noticing 

√

π
≈ ., 


e

 ≈ ., we have g( 


) < . Therefore b∗ > b :=



.

Let

f (t,x) =

{



( + t)( – b)x, (t,x) ∈ [, ]× [, ),



( + t)(

√
x – bx), (t,x) ∈ [, ]× [, +∞),

where b ∈ (,b]. It is clear that (H) and (H) hold. Moreover,

lim inf
u→+

min
t∈[,]

f (t,u)

u
=
 – b


> ,

lim sup
x→+∞

max
t∈[,]

f (t,x)

x
= –

b


< .

Therefore the assumptions of Theorem . are satisfied. Thus Theorem . ensures that

(.) has at least one positive solution.
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