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1 Introduction

The study of discrete boundary value problems has captured special attention in the last years. We
refer reader to the recent results [1–9] and the references therein. The studies regarding such type
of problems can be placed at the interface of certain mathematical fields such as nonlinear partial
differential equations and numerical analysis. On the other hand, they are strongly motivated by
their applicability in mathematical physics.

Besides, we note that some systems of discrete boundary value problems (include integer-order
and fractional order ) are investigated by several authors in recent years, for example, see [10–13].

Sun and Li in [10] studied the following boundary value problem of discrete systems:
{
42u1(k) + f1(k, u1(k), u2(k)) = 0, k ∈ {1, 2, ..., T},
42u2(k) + f2(k, u1(k), u2(k)) = 0,

(1.1)

subject to the boundary value conditions

u1(0) = u1(T + 2) = u2(0) = u2(T + 2) = 0.

They obtained, under some assumptions on f1, f2, some sufficient conditions for the existence of
one or two positive solutions to the system by using nonlinear alternative of Leray-Schauder type
and Krasnosel’skii fixed point theorem in a cone.
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Henderson [11] considered the following systems of three-point discrete boundary value prob-
lems, as a generalization of [10] :

{
42u(n− 1) + λa(n)f(u(n), v(n)) = 0, n ∈ {1, 2, ..., N − 1}, N ≥ 4,

42v(n− 1) + µb(n)g(u(n), v(n)) = 0,
(1.2)

subject to the boundary value conditions

u(0) = βu(η), u(N) = αu(η), v(0) = βv(η), v(N) = αv(η),

where η ∈ {1, 2, ..., N − 1}, α > 0, β > 0, λ, µ > 0 and f, g, a, b are nonnegative. They deduced the
existence of the eigenvalues λ and µ yielding at least one positive solutions to the systems (1.2)
under some assumptions on f, g, a and b with weakly coupling behaviors. Their main tools is the
Guo-Krasnosel’skii fixed point theorem in cones.

In [12], Goodrich generalized (1.2) to the following discrete fractional difference boundary value
problem with more general boundary conditions:

{
−4v1y1(t) + λ1a1(t + v1 − 1)f1(y1(t + v1 − 1), y2(t + v2 − 1)) = 0,

−4v2y2(t) + λ2a2(t + v2 − 1)f2(y1(t + v1 − 1), y2(t + v2 − 1)) = 0,
(1.3)

for t ∈ [0, b]N0 , subject to the nonlocal boundary value conditions

y1(v1 − 2) = ψ1(y1), y2(v2 − 2) = ψ2(y2), y1(v1 + b) = φ1(y1), y2(v2 + b) = φ2(y2).

It should be noted that the paper generalizes some results both on discrete fractional boundary
value problems and on discrete integer-order boundary value problems. We also note that the
conditions on f, g and processing methods as well as the fixed point theorem, employed in the
paper, are similar to those given by Henderson in [11].

Motivated by the above, we shall also investigate the existence of positive solution to the
following second-order Dirichlet boundary value problem of discrete system:





42u(k − 1) + f(k, u(k), v(k)) = 0, k ∈ {1, 2, ..., T},
42v(k − 1) + g(k, u(k), v(k)) = 0,

u(0) = u(T + 1) = v(0) = v(T + 1) = 0,

(1.4)

where T > 2 is a fixed positive integer number, 4u(k) = u(k + 1) − u(k),42u(k) = 4(4u(k)),
f, g : {1, 2, ..., T} × R+ × R+ → R+(R+ := [0,+∞)) are continuous. By positive solutions of the
problem (1.4), we mean that a pair of (u, v) solves (1.4) and is nonnegative and nontrivial.

Different to [11, 12], we will not study the problem of eigenvalue yielding a positive solution
but lay emphasis on the conditions of coupling behaviors of f and g those yield at least one
positive solution. Although the papers have considered some problems similar to the problem
(1.4), the nonlinearities f and g were weakly coupled. So [10–12] can not include ours. Our paper
has the following characteristics: in our assumptions on the nonlinearities f and g, they have a
stronger coupling behaviors, which are characterized by convex and concave functions. We establish
existence of one or two positive solutions for boundary value problem (1.4) via the well-known
Krasnosel’skii-Zabreiko fixed point theorem in a cone. Moreover, a priori estimates achieved by
using Jensen’s inequality and the first eigenvalue of relevant operator are applied in our calculation.

The rest of the paper is organized as follows. In Section 2, we introduce some lemmas which
are used in main results. In Section 3, Criteria for the existence of one or two positive solutions to
boundary value the problem (1.4) are established. In section 4, we offer two examples to illustrate
our main results.

2



2 Preliminaries

Denote
T1 := {1, 2, . . . , T}, T2 := {0, 1, 2, . . . , T + 1}.

Let E be the Banach space of real valued functions defined on the discrete interval T2 with the
norm ‖u‖ = maxk∈T2 |u(k)|, and therefore X = E ×E with norm ‖(u, v)‖ = max{‖u‖, ‖v‖} is also
a Banach space. Let

P =
{

u ∈ E : u(k) ≥ 0, ∀k ∈ T2, and min
k∈T1

u(k) ≥ 1
T
‖u‖

}
(2.1)

and Br = {x ∈ X : ‖x‖ ≤ r} for r > 0. It is easy to see P = P × P is a cone in X , and the partial
ordering ≤ in X is induced by P. We call (u, v) ≤ (x, y), if (x, y)− (u, v) ∈ P.

Lemma 2.1 (see [11]) Let h(k) ∈ C(T1,R+). Then the following Dirichlet boundary value problem
of discrete system 



42u(k − 1) + h(k) = 0, k ∈ T1,

u(0) = u(T + 1) = 0,
(2.2)

is equivalent to

u(k) =
T∑

l=1

G(k, l)h(l), k ∈ T2, (2.3)

where

G(k, l) =
1

T + 1

{
l(T + 1− k), 1 ≤ l ≤ k − 1 ≤ T,

k(T + 1− l), 0 ≤ k ≤ l ≤ T.
(2.4)

Moreover, we easily obtain that G(k, l) has the following properties (see [13, Lemma 2]):
(1) G(k, l) > 0 and G(k, l) = G(l, k), for (k, l) ∈ T1 × T1;
(2) G(l, l)/T ≤ G(k, l) ≤ G(l, l), for (k, l) ∈ T1 × T1.

From Lemma 2.1, it is clear that the discrete system (1.4) is equivalent to




u(k) =
∑T

l=1 G(k, l)f(l, u(l), v(l)), k ∈ T2,

v(k) =
∑T

l=1 G(k, l)g(l, u(l), v(l)), k ∈ T2,
(2.5)

and by the above properties of G(k, l), it is easy to obtain u(k) ≥ ‖u‖/T, v(k) ≥ ‖v‖/T for k ∈ T1,
i.e., u, v ∈ P .

For u, v ∈ P, k ∈ T2, define operators T ,S : P → E by

T (u, v)(k) =
T∑

l=1

G(k, l)f(l, u(l), v(l)), S(u, v)(k) =
T∑

l=1

G(k, l)g(l, u(l), v(l))

and operator A : P → X by

A(u, v)(k) = (T (u, v)(k),S(u, v)(k)).

Lemma 2.2 The operators T ,S : P → P are completely continuous, and then A : P → P is
completely continuous.
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Proof. From the non-negativity of G(k, l) and f , it follows that T (u, v)(k) ≥ 0, S(u, v)(k) ≥ 0,
for k ∈ T2. Moreover, by (2) in Lemma 2.1, one gets

T (u, v)(k) ≥ 1
T

T∑

l=1

G(l, l)f(l, u(l), v(l)), ‖T (u, v)‖ ≤
T∑

l=1

G(l, l)f(l, u(l), v(l)),

for k ∈ T1. Therefore, T (u, v)(k) ≥ ‖T (u, v)‖/T. This indicates that T : P → P . Similarly, we may
also prove that S : P → P . Thus, from the definition of operator A we conclude that A : P → P.

A relatively straightforward application of the Arzela-Ascoil theorem reveals that both operators
T and S are completely continuous. Hence A is a completely continuous operator. This completes
the proof. ¥

From the definition of operator A, we note that the problem (1.4) has a pair of positive solutions
if and only if the operator A has a fixed point in P.

Lemma 2.3 Let φ(k) = sin(kπ)/(T + 1), k ∈ T2, λ = 4 sin2(π/(2T + 2)). Then

λ
T∑

k=1

G(k, l)φ(k) = φ(l), ∀l ∈ T1. (2.6)

Proof. From [6, Lemma 2.2], we acquire that λ
∑T

l=1 G(k, l)φ(l) = φ(k), k ∈ T2. Since φ(k)
vanishes at k = 0, T + 1, we have λ

∑T
l=1 G(k, l)φ(l) = φ(k), k ∈ T1. By (1) in Lemma 2.1, we see

G(k, l) is a symmetric function about k, l ∈ T1, that is, G(k, l) = G(l, k). Thus λ
∑T

l=1 G(l, k)φ(l) =
φ(k) for k ∈ T1. Hence, (2.6) is true. This completes the proof. ¥

Lemma 2.4 (see [14]) Let E be a real Banach space and P a cone of E. If A : (BR\Br)∩P → P
is a completely continuous operator with 0 < r < R. If either (1) Av 
 v for each P ∩ ∂Br and
Av � v for each P ∩ ∂BR or (2) Av � v for each P ∩ ∂Br and Av 
 v for each P ∩ ∂BR, then A
has at least one fixed point on (BR\Br) ∩ P .

3 Main results

In this section, we set

K = max
k∈T1

T∑

l=1

G(k, l)

and λ is defined by Lemma 2.3. Now we list our assumptions.
(H1) There exist p, q ∈ C(R+,R+) and constant c > 0 such that p is concave on R+,

f(k, u, v) ≥ p(v)− c, g(k, u, v) ≥ q(u)− c, ∀(k, u, v) ∈ T1 × R+ × R+ (3.1)

and
p(Kq(u)) ≥ γ1λ

2Ku− c, γ1 > 1,∀u ∈ R+. (3.2)

(H2) There exist α, β ∈ C(R+,R+) and a sufficiently small constant r > 0 such that α is convex
and strictly increasing on R+,

f(k, u, v) ≤ α(v), g(k, u, v) ≤ β(u), ∀(k, u, v) ∈ T1 × [0, r]× [0, r] (3.3)

and
α(K(β(u))) ≤ γ2Kλ2u, 0 < γ2 < 1,∀u ∈ [0, r]. (3.4)
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(H3) There exist p, q ∈ C(R+,R+) and a sufficiently small constant r > 0 such that p is concave
and nondecreasing on R+,

f(k, u, v) ≥ p(v), g(k, u, v) ≥ q(u), ∀(k, u, v) ∈ T1 × [0, r]× [0, r] (3.5)

and
p(Kq(u)) ≥ γ3λ

2Ku, γ3 > 1, ∀u ∈ [0, r]. (3.6)

(H4) There exist four nonnegative constants a, b, c, d and e > 0 such that λ > a, λ > d and
(λ− a)(λ− d) > bc,

f(k, u, v) ≤ au + bv + e, g(k, u, v) ≤ cu + dv + e, ∀(k, u, v) ∈ T1 × R+ × R+. (3.7)

(H5) There exists M > 0 such that

f(k, u, v) <
M

K
, g(k, u, v) <

M

K
,∀(k, u, v) ∈ T1 × [0,M ]× [0,M ].

(H6) There exists N > 0 such that

f(k, u, v) > Nη, g(t, u, v) > Nη, ∀(k, u, v) ∈ T1 × [0, N ]× [0, N ],

where η := T/
∑T

l=1 G(l, l).

Remark 3.1 Equation (3.2) implies that limt→+∞ p(t) = +∞, and p is concave on R+, therefore,
p is strictly increasing on R+.

Theorem 3.1 Suppose (H1) and (H2) hold. Then problem (1.4) has at least one positive solution.

Proof. If (H2) holds, we claim that

(u, v) 6≤ A(u, v), ∀(u, v) ∈ P ∩ ∂Br. (3.8)

For contradiction we assume that there exists (u, v) ∈ P ∩ ∂Br such that (u, v) ≤ A(u, v), that is,
u ≤ T (u, v), v ≤ S(u, v). By (3.3), it follows that

T (u, v)(k) ≤
T∑

l=1

G(k, l)α(v(l)), S(u, v)(k) ≤
T∑

l=1

G(k, l)β(u(l)), (3.9)

∀(k, u, v) ∈ T1 × [0, r]× [0, r], and then

u(k) ≤
T∑

l=1

G(k, l)α(v(l)), v(k) ≤
T∑

l=1

G(k, l)β(u(l)). (3.10)

It follows from (3.4) that α(Kβ(0)) ≤ 0. Note that β ∈ C(R+,R+) and α is strictly increasing, we
get α(0) ≤ α(Kβ(0)) ≤ 0, and then α(0) = 0 for α ∈ C(R+,R+). Furthermore, we can get

α(v(k)) ≤ α

(
T∑

l=1

G(k, l)β(u(l))

)
≤ K−1

T∑

l=1

G(k, l)α(Kβ(u(l))), (3.11)
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by convex nature of α and Jensen’s inequality. Substituting (3.11) into the first inequality in (3.10),
we acquire

u(k) ≤ K−1
T∑

l=1

G(k, l)
T∑

s=1

G(l, s)α(Kβ(u(s))).

Multiply both sides of the above inequality by φ(k) and sum for k = 1 to T , and by (2.6) and (3.4)
to obtain

T∑

k=1

u(k)φ(k) ≤ K−1λ−2
T∑

k=1

φ(k)α(Kβ(u(k))) ≤ γ2

T∑

k=1

φ(k)u(k).

Which implies
∑T

k=1 φ(k)u(k) = 0 since γ2 ∈ (0, 1), therefore u ≡ 0. Equations (3.4) and (3.11)
lead to

α(v(k)) ≤ K−1
T∑

l=1

G(k, l)α(Kβ(u(l))) ≤ γ2λ
2

T∑

l=1

G(k, l)u(l) = 0.

Since α is strictly increasing, then v ≡ 0, which contradict (u, v) ∈ P ∩ ∂Br. Hence, (3.8) is true.
On the other hand, if (H1) holds, by (3.1) and the definitions of T and S, we see

T (u, v)(k) ≥
T∑

l=1

G(k, l)p(v(l))− c1, S(u, v)(k) ≥
T∑

l=1

G(k, l)q(u(l))− c1, (3.12)

where c1 = Kc. Let
M1 = {(u, v) ∈ P : (u, v) ≥ A(u, v)}.

Then we shall prove that M1 is bounded in P. In fact, if (u, v) ∈ M1, then u ≥ T (u, v) and
v ≥ S(u, v). From (3.12), it follows that

u(k) ≥
T∑

l=1

G(k, l)p(v(l))− c1, v(k) ≥
T∑

l=1

G(k, l)q(u(l))− c1. (3.13)

By the concavity and increasing nature of p and the second inequality of (3.13), in view of Jensen’s
inequality and p(a + b) ≤ p(a) + p(b) for a, b ≥ 0 (see Lemma 5 in [15]), we obtain

p(v(k)) ≥ p(v(k) + c1)− p(c1) ≥ p

(
T∑

l=1

G(k, l)q(u(l))

)
− p(c1)

≥
T∑

l=1

(p(G(k, l)q(u(l))))− p(c1) ≥ K−1
T∑

l=1

G(k, l)p(Kq(u(l)))− p(c1).

(3.14)

Substitute (3.14) into the first inequality of (3.13), and use (3.2) to obtain

u(k) ≥
T∑

l=1

G(k, l)

(
K−1

T∑

m=1

G(l, m)(γ1λ
2Ku(m)− c)− p(c1)

)
− c1

≥ γ1λ
2

T∑

l=1

G(k, l)
T∑

m=1

G(l, m)u(m)− c2,

(3.15)

where c2 = 2Kc + Kp(c1). Multiply both sides of the above by φ(k) and sum for k = 1 to T and
use (2.6) to obtain

T∑

k=1

u(k)φ(k) ≥ γ1

T∑

k=1

u(k)φ(k)− c2

T∑

k=1

φ(k). (3.16)
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Consequently,
∑T

k=1 u(k)φ(k) ≤ c2
∑T

k=1 φ(k)/(γ1 − 1). By (2.1), we acquire

T∑

k=1

‖u‖φ(k) ≤ T

T∑

k=1

u(k)φ(k) ≤ Tc2
∑T

k=1 φ(k)
γ1 − 1

, (3.17)

therefore
‖u‖ ≤ Tc2

γ1 − 1
. (3.18)

Multiply the first inequality of (3.13) by φ(k) and sum for k = 1 to T and use (2.6) to obtain

‖u‖
T∑

k=1

φ(k) ≥
T∑

k=1

u(k)φ(k) ≥ λ−1
T∑

k=1

p(v(k))φ(k)− c1

T∑

k=1

φ(k),

which implies
T∑

k=1

p(v(k))φ(k) ≤ λ(‖u‖+ c1)
T∑

k=1

φ(k). (3.19)

For any (u, v) ∈ M1, we first assume v 6≡ 0, thus p(‖v‖) > 0 by Remark 3.1. And from v ∈ P , it
follows that

1
T
‖v‖

T∑

k=1

φ(k) ≤
T∑

k=1

v(k)φ(k) =
‖v‖

p(‖v‖)
T∑

k=1

φ(k)
v(k)
‖v‖ p(‖v‖) ≤ ‖v‖

p(‖v‖)
T∑

k=1

φ(k)p(v(k)).

Consequently, by (3.19) we get p(‖v‖) ≤ Tλ(‖u‖+ c1).
By Remark 3.1, we know that p is strictly increasing, thus v is bounded and then there exists

c3 > 0 such that
‖v‖ ≤ c3,∀(u, v) ∈M1. (3.20)

(If the v ≡ 0, then the inequality ‖v‖ ≤ c3 also hold. So we first assume v 6≡ 0.) According to
(3.20) and (3.18) we know M1 is bounded in P. Set R > supM1 and R > r, then

(u, v) 6≥ A(u, v), ∀(u, v) ∈ P ∩ ∂BR. (3.21)

Consequently, by (2) in Lemma 2.4, (3.8) and (3.21) indicate that A has at least one fixed point in
(BR\Br) ∩ P. Therefore (1.4) has at least one positive solution. This completes the proof. ¥

Theorem 3.2 Assume (H3) and (H4) hold, then problem (1.4) has at least one positive solution.

Proof. By (3.5), we have

T (u, v)(k) ≥
T∑

l=1

G(k, l)p(v(l)), S(u, v)(k) ≥
T∑

l=1

G(k, l)q(u(l)), (3.22)

for (k, u, v) ∈ T1 × [0, r]× [0, r]. Let

M2 = {(u, v) ∈ P ∩Br : (u, v) ≥ A(u, v)}.
If (u, v) ∈M2, then u ≥ T (u, v), v ≥ S(u, v), that is,

u(k) ≥
T∑

l=1

G(k, l)p(v(l)), v(k) ≥
T∑

l=1

G(k, l)q(u(l)). (3.23)
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By the increasing and concave nature of p together with the second inequality of (3.23), applying
Jensen’s inequality, it follows that

p(v(k)) ≥ p

(
T∑

l=1

G(k, l)q(u(l))

)
≥ K−1

T∑

l=1

G(k, l)p(Kq(u(l))). (3.24)

Substituting the inequality (3.24) into the first inequality of (3.23), we obtain

u(k) ≥ K−1
T∑

l=1

G(k, l)
T∑

s=1

G(l, s)p(Kq(u(s))).

Multiply both sides of the above by φ(k) and sum for k = 1 to T , and use (2.6) and (3.6) to obtain

T∑

k=1

u(k)φ(k) ≥ γ3

T∑

k=1

u(k)φ(k).

Since γ3 > 1, it implies
∑T

k=1 u(k)φ(k) = 0, and then u ≡ 0. It follows from the first inequality
of (3.23) that p(v) = 0, thus v ≡ 0 as p is nondecreasing (see Lemma 2.5 in [16]). It proves
M2 = {(0, 0)}. Hence

(u, v) 6≥ A(u, v), ∀(u, v) ∈ P ∩ ∂Br. (3.25)

On other hand, for all (k, u, v) ∈ T1 × R+ × R+, it follows that, by (3.7),

T (u, v)(k) ≤
T∑

l=1

G(k, l)(au(l) + bv(l) + e), S(u, v)(k) ≤
T∑

l=1

G(k, l)(cu(l) + dv(l) + e). (3.26)

Next, we will prove there exists a number R > r such that set

M3 = {(u, v) ∈ P ∩BR : (u, v) ≤ A(u, v)}

is bounded. Let (u, v) ∈M3. Then, by (3.26),

u(k) ≤
T∑

l=1

G(k, l)(au(l) + bv(l) + e), v(k) ≤
T∑

l=1

G(k, l)(cu(l) + dv(l) + e).

Multiply both sides of the above by φ(k) and sum for k = 1 to T and use (2.6) to obtain

T∑

k=1

u(k)φ(k) ≤ λ−1
T∑

k=1

φ(k)(au(k) + bv(k) + e),

T∑

k=1

v(k)φ(k) ≤ λ−1
T∑

k=1

φ(k)(cu(k) + dv(k) + e),

(3.27)

which can be written in the form

[
λ− a −b
−c λ− d

][ ∑T
k=1 φ(k)u(k)∑T
k=1 φ(k)v(k)

]
≤

[
e
∑T

k=1 φ(k)
e
∑T

k=1 φ(k)

]
.
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By (3.7), let ρ := (λ− a)(λ− d)− bc, the above implies
[ ∑T

k=1 φ(k)u(k)∑T
k=1 φ(k)v(k)

]
≤ ρ−1

[
λ− d b

c λ− a

][
e
∑T

k=1 φ(k)
e
∑T

k=1 φ(k)

]
,

from which we have
T∑

k=1

φ(k)u(k) ≤ ρ−1e((λ− d) + b)
T∑

k=1

φ(k),

T∑

k=1

φ(k)v(k) ≤ ρ−1e(c + (λ− a))
T∑

k=1

φ(k).

Noting that (u, v) ∈ P, we obtain

T∑

k=1

‖u‖φ(k) ≤ T

T∑

k=1

φ(k)u(k),
T∑

k=1

‖v‖φ(k) ≤ T

T∑

k=1

φ(k)v(k)

and thus
‖u‖ ≤ Tρ−1e((λ− d) + b), ‖v‖ ≤ Tρ−1e(c + (λ− a)).

This proves M3 is bounded. Taking R > max{supM3, r}, we obtain

(u, v) 6≤ A(u, v), ∀(u, v) ∈ P ∩ ∂BR. (3.28)

By (1) in Lemma 2.4, (3.25) and (3.28) indicate A has at least one fixed point in (BR\Br) ∩ P.
Therefore (1.4) has at least one positive solution. This completes the proof. ¥

Theorem 3.3 Assume that (H1), (H3) and (H5) hold. Then problem (1.4) has at least two positive
solutions.

Proof. By (H5), we have

T (u, v)(k) <
M

K

T∑

l=1

G(k, l) ≤ M, S(u, v)(k) <
M

K

T∑

l=1

G(k, l) ≤ M,

for any (k, u, v) ∈ T1 × ∂BM × ∂BM , from which we obtain

‖A(u, v)‖ < ‖(u, v)‖,∀(u, v) ∈ P ∩ ∂BM .

It implies that
A(u, v) 6≥ (u, v),∀(u, v) ∈ P ∩ ∂BM . (3.29)

On the other hand, by (H1) and (H3), we take R > M and 0 < r < M such that (3.21) and (3.25)
hold (see Theorem 3.1 and Theorem 3.2). Combining (3.21), (3.25) and (3.29), by Lemma 2.4, we
acquire A has at least two positive fixed points, one in (BR\BM )∩P and another in (BM\Br)∩P.
Thus (1.4) has at least two positive solutions. The proof is completed. ¥

Theorem 3.4 Suppose (H2), (H4) and (H6) hold. Then problem (1.4) has at least two positive
solutions.
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Proof. By (H6) and (2) in Lemma 2.1, we have

T (u, v)(k) > Nη
T∑

l=1

G(k, l) ≥ Nη

T

T∑

l=1

G(l, l) = N,

S(u, v)(k) > Nη

T∑

l=1

G(k, l) ≥ Nη

T

T∑

l=1

G(l, l) = N,

for any (k, u, v) ∈ T1 × ∂BN × ∂BN , from which we obtain

‖A(u, v)‖ > ‖(u, v)‖,∀(u, v) ∈ P ∩ ∂BN ,

which implies that
A(u, v) 6≤ (u, v),∀(u, v) ∈ P ∩ ∂BN . (3.30)

On the other hand, by (H2) and (H4), we take 0 < r < N and R > N such that (3.8) and (3.28)
hold (See Theorem 3.1 and Theorem 3.2). Combining (3.8), (3.28) and (3.30), by Lemma 2.4, we
acquire A has at least two positive fixed points, one in (BR\BN )∩P and another in (BN\Br)∩P.
Thus (1.4) has at least two positive solutions. The proof is completed. ¥

4 Numerical Examples

We now present two numerical examples illustrating Theorem 3.1 and Theorem 3.2 respectively.

Example 4.1 Consider the problem, for k ∈ T2 = {0, 1, 2, ..., 51},




42u(k − 1) + 2(u+2)v3/2

u+1 = 0, k ∈ {1, 2, ..., 50},
42v(k − 1) + 1

3250
u2(11+10v2)

1+v2 = 0,

u(0) = u(51) = v(0) = v(51) = 0.

(4.1)

In the following, we will check that the example (4.1) fits the conditions (H1) and (H2).
First, we compute K = 325 and λ = 0.0038. We have set

f(k, u, v) :=
2(u + 2)v3/2

u + 1
, g(k, u, v) :=

u2(11 + 10v2)
3250(1 + v2)

.

Set p(v) = v4/5/2 + 10 and q(u) = u2/1300 + 1/5. Then p, q : [0,+∞) → [0,+∞) are continuous
and p is concave. Observe that

lim
v→+∞

f(k, u, v)
p(v)

= +∞, ∀u ∈ R+,

and that
lim

u→+∞
g(k, u, v)

q(u)
≥ 4, ∀v ∈ R+.

So, there exist constant c = 10 > 0 such that (3.1) of (H1) holds.
Moreover, taking γ1 = 100 > 1, we get

p(Kq(u)) > 0.468u,
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that is, inequality (3.2) of (H1) holds.
On the other hand, we shall check that conditions (H2) is satisfied. Set α(v) = 21v3/2/5 and

β(u) = 11u2/3250. Then α, β : [0,+∞) → [0,+∞) are continuous and α is convex and strictly
increasing.

Obviously, for ‖u‖ ≤ 0.03 =: r, ‖v‖ ≤ 0.03 we observe that f(k, u, v) ≤ α(v) and that g(k, u, v) ≤
β(u). Moreover, taking γ2 = 0.99 < 1, we obtain α(Kβ(u)) ≤ 0.0046u, ∀u ∈ [0, r]. Thus, condition
(H2) holds.

In summary, the example (4.1) fits the conditions of Theorem 3.1 and has at least one positive
solution by the theorem.

Example 4.2 Consider the problem, for k ∈ T2 = {0, 1, 2, ..., 41},




42u(k − 1) + 1 + e−(u+v) = 0, k ∈ {1, 2, ..., 40},
42v(k − 1) + 1 + 1

u+v+1 = 0,

u(0) = u(41) = v(0) = v(41) = 0.

(4.2)

In the following, we will check that the example (4.2) fits the conditions (H3) and (H4).
First, we find K = 210 and λ = 0.0059. We have set

f(k, u, v) := 1 + e−(u+v), g(k, u, v) := 1 +
1

u + v + 1
.

Set p(v) = ln(v + 1) and q(u) = u2. Then p, q : [0,+∞) → [0,+∞) are continuous and p is concave
and nondecreasing. We observe that

lim
v→0

f(k, u, v)
p(v)

= +∞, ∀(k, u) ∈ T1 × [0,+∞)

and

lim
u→0

g(k, u, v)
q(u)

= +∞, ∀(k, v) ∈ T1 × [0,+∞).

In fact, when r := 1.2 the inequality (3.5) holds.
Moreover,

p(Kq(u)) = ln(210u2 + 1) ≥ 0.72u,

for γ3 = 100,∀u ∈ [0, r]. So, (H3) holds.
In the following, we shall check (H4) is satisfied. Set a = 0.0009 < λ, b = 0.004, e = 0.5 and

c = 0.006, d = 0.0009 < λ, then (λ− a)(λ− d) = 2.5× 10−5 > bc = 2.4× 10−5. We get

lim
(u,v)→(+∞,+∞)

f(k, u, v)
au + bv + e

≤ lim
(u,v)→(+∞,+∞)

400
v + u

= 0

and

lim
(u,v)→(+∞,+∞)

g(k, u, v)
cu + dv + e

≤ lim
(u,v)→(+∞,+∞)

1000
3(u + v)

= 0.

Thus, (H4) holds. Therefore, we conclude that (4.2) has at least one solution by Theorem 3.2.
Acknowledgments. The authors are grateful to the editor and anonymous referee for their
valuable suggestions.
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