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Using the fixed point index, we establish two existence theorems for positive solutions to a system of semipositone fractional
difference boundary value problems. We adopt nonnegative concave functions and nonnegative matrices to characterize the

coupling behavior of our nonlinear terms.

1. Introduction

In this paper we study the existence of positive solutions for
the system of fractional difference boundary value problems
involving semipositone nonlinearities:

AN x (@)= ft+v-Lx(t+v-1),y(t+v-1)),
te [0,b+2]N0,
Ny =g(t+rv-Lx(t+v-1),yt+r-1)),
te [0,b+2]N0,

x(v=3)= [A55x(D)]]1yars @
- [A€’3x (t)] t=v+b+2-f3 -
y(r=3)=[A 5y O], _aes

= [A5y )]

>

>

t=v+b+2-f3 B

where2 < v <3, 1< f<2,7v->10<a<1b>
3 (b € N),and A’ _, is a discrete fractional operator. For the
nonlinear terms f, g, we assume the following.

(HO) fig : [v=Lb+v+ 1]y X R* x R* — R are
two continuous functions; moreover, there exists a positive
constant M > 0 such that

fgtxy)=-M, .
forall (t,x,y) € [v-1,b+v+1]y  xR"xR".

Note that, in this paper, we use [a, b]Na to stand for {a,a +
l,a+2,...,b} withb—a € N, whereN, = {a,a+1,a+2,---}.

Fractional calculus has been applied in physics, chem-
istry, aerodynamics, biophysics, and blood flow phenomena.
For example, CD4"T cells’ infections can be depicted by a
fractional order model

D" (T) =s—KVT —dT +bl,
D* (I) = KVT - (b+98)]1, 3)
D (V) = N8I - ¢V,
where D% (i = 1,2, 3) are fractional derivatives (see [1,2]); we
also refer the reader to [1-45] and the references therein. In

[3], the authors considered the existence of positive solutions
for the semipositone discrete fractional system

- A"y, ()

=M ity =Ly (4, =1), 3, (t+7,-1)),

te[l,b+1]y,
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— A%y (1)
=ML+, -Ly (t+v, = 1),y (E+v,— 1)),
te[l,b+1]y,
(v =2)=y, (v +b+1)=0,
y,(1,=2) =y, (v, +b+1)=0,
(4)

where v,,7, € (1,2]. Using the Guo-Krasnosel'skii fixed
point theorem, the authors showed that the problem has
positive solutions for sufficiently small values of A{,A, >
0. The growth conditions on f; (i = 1,2) are superlinear;
ie.,

filtxy)
" = 400,
N0 Y+ Y,
(5)
filbxy) o

y+3—0" Y1t Y,

uniformly for t € [v;,7; +b]y _ . Using conditions of (5) type
the existence of solutions for various fractional boundary
value problems was considered in [1, 4-6, 9, 11-13].

In this paper, we use the fixed point index to obtain
two existence theorems for positive solutions to (1) with
semipositone nonlinearities. We adopt some appropriate
nonnegative concave functions and nonnegative matrices to
characterize the coupling behavior of our nonlinear terms.
Moreover, the growth conditions on +00 of our nonlinearities
f> g are an improvement of (5); see conditions (H1) and (H3)
in Section 3.

2. Preliminaries

We first recall some background materials from discrete
fractional calculus; for more details we refer the reader to [10].

2L (y+b— s+ 1)L

_ y=p-1
G(t,s):L (v+b-B+2)

TO) | pL(v4b-B-s+1)E2L

(v+b-p+2) 2

Lemma 4 (see [9], Lemma 5). Green’s function (10) has the
following properties.
(i) G(t,s) >0, (t,s) e [v—-1L,b+v+ ly, , X [0,0+ 2]y,
(i) " )GOL + v+ 1,5) <G(t,s) <Gl + v+ 1,5), (t,5) €
[v=1,b+v+1]y_ x[0,b+2]y,, whereq" (t) = =1/ (b+v+1)"~.
Let (s +v—=1) =G(b+7v+1,s) fors € [0,b + 2], . Then
o) =Gb+v+1,t—v+1)fort € [v-1,b+v+1]y - From
Lemma 22, the following inequalities are satisfied: -
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Definition 1. We define t* == T(¢t + 1)/T(t + 1 — ) for any
t,v € R for which the right-hand side is well-defined. We use
the convention that if + 1 —vis a pole of the Gamma function
and t + 1 is not a pole, then ¢* = 0.

Definition 2. For v > 0, the v—th fractional sum of a function
fis

t—v
AVf(t) = ﬁZ(t—s— D=L f(s), forteN,, (6)

We also define the v—th fractional difference for v > 0 by
A () =ANATN (), for t € Ny, 7)

where N e Nwith0< N-1<v<N.

Leth: [v—1,b+v+ ly , —R be a continuous function.
Then we consider the fractional difference boundary value
problems

-A Ly =h({t+v-1), te [0,b + 2]y, »

y (1! - 3) = [Alf/—Sy (t)]lt:vftfo (8)

t=v+b+2-f3 B

= [A€_3y (t)]

>

where v, &, 3, b are as in (1). The following two lemmas are in
[9], so we omit their proofs.

Lemma 3 (see [9], Lemma 4). Problem (8) has a unique
solution

b+2
y®O) =) Gt,s)h(s+v-1),
= (9)
telv-Lb+v+1]y_,
where
—(t-s-1)"L, 0<s<t-v+1<b+2,
(10)
0<t-v+1<s<b+2.
b+r+1 b+r+1
Y @ We®) -ps+v-1)< Y G(ts)e()
t=v-1 t=v-1
(11)

b+v+1

< Z o) -p(s+v-1), forse[O,b+2]N0.

t=7-1

For convenience, we let
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b+v+1

K = Z q" ()¢ (t) and
t=v-1 (12)

b+v+1

Ky = Z Q(t).

t=v-1

Let E be the collection of all maps from [v—3,b+v+1]y
to R equipped with the max norm, || - ||. Then E is a Banach
space. Define a set P ¢ Eby P = {y € E : y(t) > 0,t €
[v-1,b+v+ 1]NH}' Then P is a cone in E. Note that E X E is
a Banach space with the norm ||(x, y)|l == max{| x|, | |}, and
PxPisaconein E X E.

From Lemma 3, for allt € [v—1,b+v+ 1]y _, we have
that (1) is equivalent to

b+2

x(t)=) G(ts)
s=0

fs+rv-Lx(s+v-1),y(s+v-1)),
(13)
b+2

y(®) =) G(ts)

s=0

g(s+v-Lx(s+v-1),y(s+v-1)),

where G is defined in (10).

Lemma 5 (see [46]). Let E be a real Banach space and P a
cone on E. Suppose that Q) C E is a bounded open set and that
A : QNP — Pisa continuous compact operator. If there
exists wy € P\ {0} such that

w—Aw # Awy, YA >0, w € 0QNP, (14)

then i(A,Q N P, P) = 0, where i denotes the fixed point index
on P.

Lemma 6 (see [46]). Let E be a real Banach space and P a cone
on E. Suppose that Q0 C E is a bounded open set with 0 € Q
and that A : QN P — P is a continuous compact operator. If

w-AMw#0, VAe[0,1], we QNP (15)

theni(A,Q NP, P) = 1.

3. Main Results
Let w be a solution of
Ny =1, te[0,b+2]y,,
y(V— 3) = [AC:/*Sy (t)”t:v—oc—Z (16)

= (27 0]

t=v+b+2-f3 B

>

where v, &, 8, b are as in (1). Define z = Mw, and then, from
Lemmas 3 and 22, we have

b+2 b+2
z(t)=Mw(t)=M) G(t,s) <MY ¢(s+v-1)
s=0 s=0 (17)
b+v+1
=M Z @ (s) = Mxk,.
s=v-1

We note that (1) has a positive solution (x, y) € (PxP)\ {0} if
and only if (X, ¥) = (x+z, y +z) is a solution of the fractional
difference boundary value problems
-AN L x) = ftrrv-Lx(t+v-1)
—z({t+v-1),yt+v-1)-z({t+v-1)),
te0,b+ 2], >
AN sy =g(t+v-Lx@t+v-1)
—z(t+v-1),yt+v-1)-z(t+v-1)),

tef0,b+2],, (18)

x(v=3) = [AT5xO]],,an

t=v+b+2—-f B

= [a8_x )]

y(V - 3) = [Aj—ﬁ’ (t)]lt:v—a—Z

= [25 Ly )]

t=v+b+2-f3 B

>

and (X, y)(t) = (z,2)(t) fort € [v-1,b+v+ I]NH, where
v,a, B,bareas in (1) and

f(tx.y)
fltxy)+M, telv-Lb+v+1ly , xy=20,
f(t,x,00+M, te [v—l,b+v+1]NH, x>0, y<0, (19)
f60,y)+M, te[v-1b+v+1]y , x<0, y>0,
f&0,00+M, telv-Lb+v+l]y , xy<0,

and

g(txy)
gltx,y)+M, te[v-Lb+v+1]y , %y =0,
g(t,x,00+M, te[v-Lb+v+l1]y , x>0,y<0, (20)

B gt0,y)+M, te[v-Lb+v+1]y , x<0,y>0,
gt0,00+M, te[y-Lb+v+l]y , xy<O0.

Note that for (x;, y;)(£) = (x5, y,)(t), we mean x; (t) > x,(t),
yi(6) > y,(6) forallt € [v=1,b+v+1]y .



For (x,y) e PxP,andt € [v-1,b+v+ I]NH, we define
the operators

b+2
B, (x,y)(t) = ZG(t,s)f(s+v—1,x(s+v—1)
s=0

—z(s+v-1),y(s+v-1)—z(s+v-1)),

(21)
b+2
B, (x,y)(t) = ZG(t,s)g(s+v—1,x(s+v—l)
s=0
—z(s+v=-1),y(s+v-1)-z(s+v-1)),
and
B(x,y)(t) = (B}, B,) (x, ) (1). (22)

Then (HO) and using the Arzela-Ascoli theorem in a standard
way establish that B : P x P — P x P is a completely
continuous operator. It is clear that (x, y) € (P x P) \ {0} isa
positive solution for (18) if and only if (x, y) € (P x P)\ {0} is
a fixed point of B.

LetPy={y € P: y(t) =2 q"(D)llyll, vt € [v-1,b+v+1]y_}
Then from Lemma 22 we have

B,(PxP)CP, i=1,2. (23)

If we seek a fixed point (X, y) of Bthen X, ¥ € P, and

w(t)-z(t) = q" ) |w] - Mk, > q, |w] - Mx,, 24)
forte[v-Lb+v+1]y

where w = X, 7, and q, = minte[y,l,bwﬂlm_lq*(t) > 0, so

as a result if [|X], | 7]l > q," Mx, then (%, §)(t) > (z,z)(t) for
tev-1L,b+v+ 1]NH (i.e., (¥ — 2,y — z)(1) is a positive
solution for (1)).

For convenience, we use ¢;,¢,,... to stand for different
positive constants. Let B, := {x € E: ||x|]l < ¢} for ¢ > 0. Now,

we list our assumptions on f, g (the first two are needed for
Theorem 10 and the last two are needed for Theorem 11):
(H1) There exist p,q € C(R", R") such that
(i) p is concave and strictly increasing on R*,
(ii) there exists ¢; > 0 such that

fltxy)zx+p(y)-a
gtxy)zq(x)-c, (25)
V(t,x,y)e[v-Lb+v+1]y  xR"xR",
(iii) there is a y; > 0 such that (1 + y,x;) > 1 and
plrygxt+v-1)-z(t+v-1)))
(26)

) (x(t+v-1)—-zFt+v-1))—¢

forx e R*andt € [0,b + Z]NO.
(H2) Forany (t,x, y) € [V_l’b+7’+1]N,,_l X[O,qglsz]x
[O,qO_IMKZ], assume

£:3(txy) <q'M. (27)
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(H3) There existe; > 0 (i = 1,2,3,4) withe] +e5 # 0,5 +
e; # 0 such that

() k= (1 - e;,) (1 — e45,) — ere5%5 > 0,e1,e, <K,

(ii) there exist ¢, > 0 such that

[ (cxreree)
Gtxy)) \ex+ey+o) (28)
V(t,x,y)elv-Lb+v+1]y xR xR"

(H4) Forany (t,x, y) € [v—1,b+v+ 1y, x[0, qalMKZ] X
[o, qglMKZ], assume

f:3(txy) > q°M. (29)

19/20

Example 7. Let p(y) = y and g(x) = x* for x, y € R*.

Then, for any w > 0, we have

19/20 _19/10
wqg (x w
lim inf M = liminf
x—+00 X xX—+00 X

=+00. (30)

Let f(t,x,y) = (1/2k)x + (I/ZKZeﬁ‘+C°s(tx))y - M and
glt,x,y) = (l/eﬁf’sm(t’c))(6151M)1_ﬁ3162_/333&;3 — M, where
Bis By > 1, Bs > 2, for (t,x, ) € [v=Lb+v+1]y  xR*xR".
Then, forany (t,x,y) € [v-1,b+v + 1]NH x [0, qalMKZ] X
[0, qalMKZ], we have

1 1
flt.x,y)+ M= 7 - —2K2€ﬁ1+cos(tx)y

[ 1 (31)
< —q, Mx, + —qg, Mk
2K2q0 2 2K2q0 2
-1
=q, M,

and

1 -1 1-5 -B
eBx+sin(tx) (q() M) L) 3xﬁ3

1-f;

g(tx,y)+ M=

<('M) P P (g ) O

= q(;lM .
Also,

f(tx,y)+M
x+p(y)

(1/21y) x + (1/21,eP 7)) y - (33)

x + )/19/20

lim inf
X—+00,y—>+00

= liminf
X—+00,y—>+00

=+o0o, forte[v-Lb+v+1]y
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and
t, x, M
lim inf LB 2) + M
X—+00 q (x)
sin(tx - 1-p5 -B
l/eﬁ2+ (tx) Vi w P3 xPs
= lim inf( ) (%2 ) 2 (34)
x—>+00 X
= +00,

uniformly on (t,y) € [v-1,b+v+ 1y, x R

Thus, (H1)-(H2) are satisfied.

Example 8. Let f(t,x, y) = (quMeqalMK2+e|Sin(txy)|)ef(’”y)/z—

M and g(t,x,y) = (qoszeq"ilM"2 + eloostEN =2 _ pp
for (t,x,y) € [v=1,b+v+1]y_ x R" x R". Then, for any

tx,y)elv-Lb+v+ 1y, % [O,qo_lsz] x [0, qalMKZ],
we have

ftx,y)+Mg(t,x,y)+M

, . (35)
> q(;ZMeqo M;cze—qo Mk, — qazM

Also,

f(tx,y)+M

lim sup
ex+ey

X—+00,y—>+00

(qO—ZMeqalsz +e|sin(txy)|)e—(x+y)/2 (36)
= limsup
X—+00,y—>+00

e xtey

= O)
and

g(t.x,y)+M

lim sup
esx +e,y

X—+00,y—>+00

(q(;ZMqulMKZ + elcos(txy)l)e—(x+y)/2 (37)

e3x +euy

= limsup
X—+00,y—>+00

:0’

forte[v-1,b+v+ I]NH. Thus, (H3)-(H4) hold.

Remark 9. (i) In (H1), the growth condition for nonlinear
term f depends on two variables x, y; however, in [7], this
corresponding condition only involves one variable.

(ii) When nonlinear terms f, g grow sublinearly at +co,
nonnegative matrices are used to depict the coupling behav-
ior of our nonlinearities. This is different from condition (H4)
in [7].

Theorem 10. Suppose that (HO0)-(H2) hold. Then (1) has at
least one positive solution.

Proof. We first claim that there exists a sufficiently large
positive number R > g, ! Mk, such that

(%) # B(x, ) + A (%o, %0) » 69)
V(x,y) €d(BgxBg)N(PxP), A>0,

where x,, y, € P, are two given functions. Suppose not. Then
there exist (x, y) € d(Bg x Bg) N (P x P) and A > 0 such that
(x, ¥) = B(x, y) + A(xy, ¥,), and so

x(t) = By (x,9) (£) + Ax, (1),
y () =B, (%, y) () + Ay, (1), (39)

fort € [v—l,b+v+1]Nv_1.

This implies x(t) > By(x, ¥)(¢), and y(t) > B,(x, y)(t) for
tev-Lb+v+ I]NH. From (H1) we have

b+2
x(t) 2B, (x,y) ()2 ) Gt,5) [x(s+v-1)

s=0
—z(s+v-D+p(y(s+v-1)-z(s+v-1))

b+2 b+2
—q]2 Y Gt x(s+v-1)+ Y G(t3)
s=0 s=0

b+2
pyG+rv-1D-z(s+v-1)-¢= ZG(t,s)
s=0 (40)
b+2
x(s+v=1+ ) Gt,5) [p(y(s+v-1))
s=0
b+2
—pG+v-1))] -2 Y Gts)x(s+v-1)
s=0
b+2
+ZG(t,s)p(y(s+v—1))—c4,
s=0
fort € -Lb+v+1]y, >
and
y(t) 2 B, (x, ) (1)
b+2
> Gts)[qx(s+v-1)-z(s+v-1)-q]
- (41)
b+2
> ZG(t,s)q(x(s+v—1)—z(s+v—1))—03,
s=0

for t € [v—l,b+v+1]NH.



As aresult, fort € [0,b + Z]NO, we have

p(yt+v=1)+p(g)zp(yt+v-1)+g)

b+2
2p[2G(t+v—l,s)

s=0
-q(x(s+v—1)—z(s+v—1))]

b+2
:P[ZG(t+V_1’S)
s=0

b+2
.Kzlxzq(x(s+v—1)—z(s+v—1))] > ZG(t
s=0

+v=1,9)%6"plg(x+v-1)-z(s+v-1)))
b+2

> Y G(t+v-1,5)
s=0

1 [y (xGs+v-1)-z(s+v-1) - ¢]

b+2
2y Y G(t+v—19) (x(s+v-1)
s=0
b+2
—z(s+v-1)) —¢ ZyIZG(t+v—1,s)x(s+v
s=0
-1) - .
Thus
b+2
p(y(t+v—l))ZylzG(t+v—1,s)x(s+v—l)
s=0
-c,
and, therefore,
b+2
x(t)2 Y Gts)x(s+v-1)
s=0

b+2

+ZG(t,s)p(y(s+v—l))—c4
s=0

b+2 b+2

> ;G(t,s)x(s+v— 1)+ ;G(t,s)

b+2
. VIZG(S+V—1,T)x(T+v—1)—C7 -

=0

42)

(43)
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b+2 b+2
> ZG(t,s)x(s+7/— )+ ZG(t,s)
s=0 s=0

b+2
-ZG(s+v—1,1)x(T+v—l)—c8,
=0
forte[v-1Lb+v+1]y .
(44)

Multiply both sides of the above inequality by ¢(¢) and sum
from v — 1to b + v + 1 and together with (11) we obtain

b+y+1 b+2

Y xMe®) =) xt+v-1)gt+v-1)

t=1-1 t=0

b+2 b+2

> @t+v-1)| Y Glt+v-1Ls)x(s+v-1)
t=0 s=0
b+2
+ylzG(t+v—l,s)
s=0
(45)
b+2
.ZG(s+v—1,1)x(T+v—1)—c8] Z(Kl
7=0
5 b+2
+)/1;<1)Zx(t+v—1)go(t+7/—1)—c9:(;c1
t=0
b+v+1

tpK7) Y 2Ot -

t=v—1
From (23), (39), and x,, € P, we have x € P,. This implies

b+r+1 b+r+1

lxl=lxl Y g ®e®) < Y x®e®)

t=v-1 t=v-1

(46)
5
Ky (1+yx) =1
and
K_1C9
[l < - (47)

i (L+ ) -1

Note that, from (23), (39), and y, € P, we find y € P,.
Moreover, we may assume y(t) # 0,fort € [v—l,b+v+1]N“71.
Then | y| > 0and p(||yll) > 0. Thus, from the concavity of p,
we have
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b+r+1 b+v+1

=l Y e < Y yow

t=v-1 t=y-1

b+2
=Y yt+v-Deot+v-1)

t=0

b+2 -1
— "y" Z)’(t+7/ )p(”y”)gD(t‘I"V—l)

NGO
< "L"bizp(y(t+v— D)e+v-1).
r(yl) &
This implies that
b+2

Py <& Y p(yt+v-1) gt +v-1).
t=0

From (40) and Lemma ?? we obtain

b+2

x(t)+¢ > ZG(t,s)p(y(s+v— 1))
s=0

b+2
> Zq* Oes+rv-Dp(y(s+v-1))
s=0
b+2
>0 Y p(yt+v-1)pt+v-1).
=0

Combining the above two inequalities, we get
-1
p(Iyl) < Gergo) ™ (x(®) +¢y)
K G

< (k) | ————
K (1+y%,) -1

tol-

From (H1),lim, ,, p(z) = +00, and thus there exists ./, >

0 such that [|y]| < ..

Hence, we have || x| < Kl_lcg/(;cl(l + %) — 1) and [|y]| <
M. As a result, choosing R > max{q, My, k7" o/ (1, (1 +
y1%;)—1), A} we have a contradiction (recall in general 0(Ax
B) = (0A x B) U (A x 0B)). Thus (38) is true. Consequently

Lemma 5 (with R chosen above) implies
i(B,(Bg x Bg) N (P xP),PxP)=0.
Now we show that
(x,5) # AB(x, ),

V(x, ) €0 (B, X By, ) N (P X P), A€ [0,1].

Suppose not. Then there exist (x, y) € 0(Bg-1pz, X Bgoipge,) N
(P x P), A, € [0,1] such that (x, y) = A,B(x, y). This implies

that
x(t) < B, (x,y)(),

y(t) < B, (%) (1),

fort € [v—l,b+v+1]NH.

Hence, [lx|| < [B,(x, »)Il and ||yl < [B,(x, y)ll. However,
from (H2) we have

b+2
B, (x,y)(t) = ZG(t,s)f(s+v— Lx(s+v-1)
(48) s=0
—z(s+v-1),y(s+v-1)—z(s+v-1)) (55)
b+2
< Z @(s+v-1)g,"'M = q,' Mx,,
s=0
forallt € [v-1Lb+ v+ HNH‘ This implies [|B, (x, y)| <
qalsz. Similarly, [B,(x, y)II < qalMKZ. Thus, note that
(x,y) € E)(Bq(;lM,c2 X B%lMKZ) N (P x P), and we have
(49)
G, y)]| = max{iix], | [}
< max (B, (5 D)L B (s )} < ;' Mx, (56)
=[G -
Clearly, this is a contradiction. Thus (53) is true. It follows
(50) from Lemma 6 that
i (B, (Bytaa, X Biiang, ) N(PX P),PxP)=1.  (57)
From (52) and (57) we have
i (B, ((Bg % Br) \ By, ate, X Bysaas,)) N (P X P), P
51) (58)

><P)=0—1=—1.

Therefore the operator B has at least one fixed point (x, y) in
((Bx x Br) \ Bypinge,  Bypinne,)) N (P x P) with x|, [y >
a4 1M;cz, and then (x — z, y — z)(¢) is a positive solution for
(1). This completes the proof. O

Theorem 11. Suppose that (HO), (H3), and (H4) hold. Then (1)
has at least one positive solution.

(52)  Proof. We show there exists a positive constant R > g, ' M,
such that

(x,y) # AB(x, y),

(59)
(53) Y (x,y) €d(Bg xBg)N(PxP), Ae[0,1].

Suppose not. Then there exist (x, y) € 0(Bg x Bp) N (P x
P), A, € [0,1] such that (x, y) = AB(x, y). This implies that

x(t) < By (x, ) (t),
y () < By (x,y) (1),

forte[v-1,b+v+ ly, , -

(54) (60)



From (H3) we have

b+2
xt)< Y Gts) ey (x(s+v-1)—z(s+v-1))
s=0

te,(y(s+rv-1)—z(s+v-1))+6]

b+2 61
sZG(t,s)[elx(s+v—1)+ezy(s+v—1)] (0

s=0
+ €l
V(txy)elv-Lb+v+1]y xR xR"

Similarly, we have

b+2

y(t) < ZG(t,s) [esx(s+v—1)+ey(s+v-1)]
= (62)
+ €100

V(txy)elv-Lb+v+1]y xR xR"

Consequently, forallt € [0, b+2]y, , multiply both sides of the
above two inequalities by ¢(¢) and sum fromv-1tob+v+1
and together with (11) we obtain

b+y+1 b+2
Y xOet) =) xt+v-1et+v-1)
t=v-1 t=0
b+2
< Z et+v-1)
=0
b+2
: ZG(t,s)[elx(s+v—1)+ezy(s+v—1)] (63)
s=0
b+v+1
+ c10:| < ek, Z x ()@ (t)
t=v-1
b+v+1 b+y+1
+ ek, Z y (@)@ () + ¢ Z @ (t).
t=v-1 t=v-1
Similarly, we have
b+y+1 b+2
Y y®Oe®) =Y yt+v-Dot+v-1)
t=v-1 t=0
b+2
< Z et+v-1)
£=0
b+2
. ZG(t,s)[e3x(s+v—1)+e4y(s+v—1)] (64)
s=0
b+r+1
+Cw:| < ek, Z x() e (t)
t=1-1
b+r+1 b+r+1

tegy Y yO @) +cy ) @(t).

t=y-1 t=y-1
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Consequently, we obtain

b+v+1
(1 —ek, —eK, ) t;1 *Bel)
_ 1- b+r+1
ek, €4k, Zl y () (t) (65)
t=v—
(KZCIO)
< .
K260
From (H3)(i) we have
b+r+1
Y xt)e®)
brvsl
Y vy
t=v-1
(66)

- 1 (1 EZUS 1) )(K2C10>
K ek, 1—ex,/ \K¢

1,010 (1 + ey, — e4k5)

K
K510 (1 + ek, — e1x;)

K
Note that x, y € P, from the fact that B;(PxP) c P, (i = 1,2).
This implies

b+v+1 b+v+1

Il Y 4" e < Y x®e®)

t=v-1 t=y-1

< 1,010 (1 + ey, — e4kcy)

= >

K
67
b+v+1 b+v+1 ( )
Y awew< Y yOow
t=v-1 t=y-1
< K510 (1 + ek, — e1k;)
< . .
Hence
1] < %3610 (1 + ey, — €4%,)
B KK ’ )
68
Iy < Kycip (1 + €3y — €1%y)

KK

Thus if we choose R > max{qy' Mx,, k,¢,o(1+e,k,—e,k,) /K K,
and x,¢,((1 + e;x, — e, k,) /K, k} we have a contradiction. Thus
(59) is true. Lemma 6 (with R chosen above) implies

i (B,(Bg x Bg) N (Px P),PxP)=1. (69)
We next prove that
(%, y) # B(x,y) + A (x0 70)
(70)

V(x,y)€d (B%IMKZ x B%IMKZ) N(PxP), A>0,
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where x, y, € P are two fixed functions. Indeed, if not, there
exist (x, y) € 0(Bg-1pp, X Byipge,) N (P X P), A 2 0 such that
(x, ¥) = B(x, y) + Ay(x, ¥p)- This implies that

x(t) =B, (x,y) (),
y () =B, (x,y)(t), (71)
forte[v-1,b+v+ U, -

Hence, ||x|| > [B;(x, y)Il and ||yl > [IB,(x, y)l. However,
from (H4) we have

b+2
B, (x,y)(t) = ZG(t,s)f(s+v—l,x(s+v—l)
s=0
—z(@s+v=-1),y(s+v-1)—z(s+v-1)) (72)
b+2
>3 O¢s+v-1)q,"M = q,' Mr,,
s=0

forallt € [v-1L,b+v+ I]NH. This implies [|B; (x, y)II >

gy M. Similarly, [|B,(x, y)ll > g,'Mkx,. Thus, note that
(x,9) € a(qulMKZ X B%lMKZ) N (P x P), and we have

IGe, )| = max {ixl, | y[}}
> max {||B; (x, y)||, |B; (=, y)||} > qalM;c2 (73)

=[G I

This is a contradiction. So (70) is true. It follows from
Lemma 5 that

i (B, (Bytaa, X Byiang, ) N (P X P),PxP)=0.  (74)
From (69) and (74) we have

i (B, ((Bg x Br) \ (By; ate, X Bysane,)) N (P X P), P
(75)
xP)=1-0=1.

Therefore the operator B has at least one fixed point (x, y) in
((Br X Br) \ (Bgoins, X By, )) N (P x P) with [|x], [ y]l =

9 IMKZ, and then (x — z, y — z)(t) is a positive solution for
(1). This completes the proof. O
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