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We are concerned with the existence and nonexistence of positive solutions for the non-

linear fractional boundary value problem: Dα
0+u(t) + λa(t) f (u(t)) = 0, 0 < t < 1, u(0) =

u
′

(0) = u
′

(1) = 0, where 2 < α < 3 is a real number and Dα
0+ is the standard Riemann-

Liouville fractional derivative. Our analysis relies on Krasnoselskiis fixed point theorem

of cone preserving operators. An example is also given to illustrate the main results.

Copyright © 2007 Moustafa El-Shahed. This is an open access article distributed under

the Creative Commons Attribution License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

1. Introduction

One of the most frequently used tools for proving the existence of positive solutions to

the integral equations and boundary value problems is Krasnoselskii theorem on cone

expansion and compression and its norm-type version due to Guo [1]. In 1994, Wang

[2] applied Krasnoselskii’s work to eigenvalue problems to establish intervals of the pa-

rameter for which there is at least one positive solution. Since this pioneering work, a

lot of research has been done in this area. Differential equations of fractional order, or

fractional differential equations, in which an unknown function is contained under the

operation of a derivative of fractional order, have been of great interest recently. Many pa-

pers and books on fractional calculus and fractional differential equations have appeared

recently [3–8]. It should be noted that most of papers and books on fractional calculus

are devoted to the solvability of linear initial fractional differential equations in terms of

special functions. Recently, there are some papers which deal with the existence and mul-

tiplicity of solution (or positive solution) of nonlinear fractional differential equation by

the use of techniques of nonlinear analysis. Bai and Lü [3] studied the existence and mul-

tiplicity of positive solutions of nonlinear fractional differential equation boundary value
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problem:

Dα
0+u(t)= f

(

t,u(t)
)

, 0 < t < 1, 1 < α≤ 2,

u(0)= u(1)= 0,
(1.1)

where Dα
0+ is the standard Riemann-Liouville fractional derivative. Zhang [7] considered

the existence of solution of nonlinear fractional boundary value problems involving Ca-

puto’s derivative

Dα
t u(t)= f

(

t,u(t)
)

, 0 < t < 1, 1 < α≤ 2,

u(0)= ν �= 0, u(1)= ρ �= 0.
(1.2)

In another paper, by using fixed point theorem on cones, Zhang [8] studied the exis-

tence and multiplicity of positive solutions of nonlinear fractional boundary value prob-

lem

Dα
t u(t)= f

(

t,u(t)
)

, 0 < t < 1, 1 < α≤ 2,

u(0) +u′(0)= 0, u(1) +u′(1)= 0,
(1.3)

where Dα
t is the Caputo’s fractional derivative.

The purpose of this paper is to establish the existence and nonexistence of positive

solutions to nonlinear fractional boundary value problem

Dα
0+u(t) + λa(t) f

(

u(t)
)

= 0, 0 < t < 1, 2 < α < 3, (1.4)

u(0)= u′(0)= u′(1)= 0, (1.5)

where λ is a positive parameter, a : (0,1)→ [0,∞) is continuous with
∫ 1

0 a(t), dt > 0, and

f : [0,∞)→ [0,∞) is continuous. Here, by a positive solution of the boundary value prob-

lem we mean a function which is positive on (0,1) and satisfies differential equation (1.4)

and the boundary condition (1.5). The paper has been organized as follows. In Section 2,

we give basic definitions and provide some properties of certain Green’s functions which

are needed later. We also state Krasnoselskii’s fixed point theorem for cone preserving

operators. In Section 3, we establish some results for the existence and nonexistence of

positive solutions to problem (1.4) and (1.5). In the end of this section, an example is

also given to illustrate the main results.

2. Preliminaries

For the convenience of the reader, we present here some notations and lemmas that will

be used in the proof of our main results.

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set K ⊂ E is called

cone of E if it satisfies the following conditions:

(1) x ∈ K , σ ≥ 0 implies σx ∈ K ;

(2) x ∈ K , −x ∈ K implies x = 0.
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Definition 2.2. An operator is called completely continuous if it is continuous and maps

bounded sets into precompact sets.

All results are based on the following fixed point theorem of cone expansion-

compression type due to Krasnoselskii’s. See, for example, [1, 9, 10].

Theorem 2.3. Let E be a Banach space and let K ⊂ E be a cone in E. Assume that Ω1 and

Ω2 are open subsets of E with 0∈Ω1 and Ω1 ⊂Ω2. Let T : K ∩ (Ω2 \Ω1)→ K be completely

continuous operator. In addition, suppose that either

(H1) ‖Tu‖ ≤ ‖u‖,∀u∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖,∀u∈ K ∩ ∂Ω2 or

(H2) ‖Tu‖ ≤ ‖u‖,∀u∈ K ∩ ∂Ω2 and ‖Tu‖ ≥ ‖u‖,∀u∈ K ∩ ∂Ω1.

holds. Then T has a fixed pint in K ∩ (Ω2 \Ω1).

Definition 2.4. The Riemann-Liouville fractional derivative of order α > 0 of a continuous

function f : [0,∞)→ R is defined to be [4, 6]

Dα
0+ f (t)=

1

Γ(n−α)

(

d

dt

)n∫ t

0

f (s)

(t− s)α−n+1
ds, n= [α] + 1. (2.1)

Lemma 2.5 (see [3]). Let α > 0. If u∈ C(0,1)∩L(0,1), then the fractional differential equa-

tion

Dα
0+u(t)= 0 (2.2)

has solutions u(t)= c1tα−1 + c2tα−2 + ···+ cN tN−1, ci ∈R, i= 0,1, . . . ,N .

Lemma 2.6 (see [3]). Assume that u∈ C(0,1)∩L(0,1) with a fractional derivative of order

α > 0. Then

Iα0+D
α
0+u(t)= u(t) + c1t

α−1 + c2t
α−2 + ···+ cN t

N−1 (2.3)

for some ci ∈R, i= 0,1, . . . ,N .

Lemma 2.7. Let y ∈ C[0,1], then the boundary value problem

Dα
0+u(t) + y(t)= 0, 0 < t < 1, 2 < α < 3, (2.4)

u(0)= u′(0)= u′(1)= 0 (2.5)

has a unique solution

u(t)=

∫ 1

0
G(t,s)y(s)ds, (2.6)

where

G(t,s)=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(1− s)α−2tα−1

Γ(α)
if 0≤ t ≤ s≤ 1,

(1− s)α−2tα−1

Γ(α)
−

(t− s)α−1

Γ(α)
if 0≤ s≤ t ≤ 1.

(2.7)
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Proof. We can reduce (2.4) to an equivalent integral equation

u(t)= c1t
α−1 + c2t

α−2 + c3t
α−3−

∫ t

0

(t− s)α−1

Γ(α)
. (2.8)

By (2.5), the unique solution of problem (2.4), (2.5) is

u(t)=

∫ 1

0

tα−1(1− s)α−2

Γ(α)
y(s)ds−

∫ t

0

(t− s)α−1

Γ(α)
y(s)ds

=

∫ 1

0
G(t,s)y(s)ds.

(2.9)

The proof is complete. �

It is obvious that

G(t,s)≥ 0, G(1,s)≥G(t,s), 0≤ t, s≤ 1. (2.10)

Lemma 2.8. G(t,s)≥ q(t)G(1,s) for 0≤ t, s≤ 1, where q(t)= tα−1.

Proof. If t ≥ s, then

G(t,s)

G(1,s)
=

tα−1(1− s)α−2− (t− s)α−1

(1− s)α−2− (1− s)α−1

=
t(t− ts)α−2− (t− s)(t− s)α−2

(1− s)α−2− (1− s)α−1

≥
t(t− ts)α−2− (t− s)(t− ts)α−2

(1− s)α−2− (1− s)α−1

≥ tα−2 ≥ tα−1.

(2.11)

If t ≤ s, then

G(t,s)

G(1,s)
= tα−1. (2.12)

The proof is complete. �

3. Main results

In this section, we will apply Krasnoeselskii’s fixed point theorem to the eigenvalue prob-

lem (1.4), (1.5). We note that u(t) is a solution of (1.4), (1.5) if and only if

u(t)= λ

∫ 1

0
G(t,s)a(s) f

(

u(s)
)

ds, 0≤ t ≤ 1. (3.1)

For our constructions, we shall consider the Banach space X = C[0,1] equipped with

standard norm ‖u‖ =max0≤t≤1 |u(t)|, u∈ X . We define a cone P by

P =
{

u∈ X : u(t)≥ q(t)‖u‖, t ∈ [0,1]
}

. (3.2)
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It is easy to see that if u∈ P, then ‖u‖ = u(1). Define an integral operator T : P→ X by

Tu(t)= λ

∫ 1

0
G(t,s)a(s) f

(

u(s)
)

ds, 0≤ t ≤ 1, u∈ P. (3.3)

Notice from (2.10) and Lemma 2.8 that, for u∈ P, Tu(t)≥ 0 on [0,1] and

Tu(t)= λ

∫ 1

0
G(t,s)a(s) f

(

u(s)
)

ds

≥ λq(t)

∫ 1

0
G(1,s)a(s) f

(

u(s)
)

ds

≥ λq(t) max
0≤t≤1

∫ 1

0
G(t,s)a(s) f

(

u(s)
)

ds

= q(t)
∥

∥Tu(t)
∥

∥, ∀t,s∈ [0,1].

(3.4)

Thus, T(P)⊂ P. In addition, standard arguments show that T is completely continuous.

We define some important constants [11]:

A=

∫ 1

0
G(1,s)a(s)q(s)ds, B =

∫ 1

0
G(1,s)a(s)ds,

F0 = lim
u→0+

sup
f (u)

u
, f0 = lim

u→0+
inf

f (u)

u
,

F∞ = lim
u→+∞

sup
f (u)

u
, f∞ = lim

u→+∞
inf

f (u)

u
.

(3.5)

Here we assume that 1/A f∞ = 0 if f∞→∞, 1/BF0 =∞ if F0 → 0, 1/A f0 = 0 if f0 →∞, and

1/BF∞ =∞ if F∞→ 0.

Theorem 3.1. Suppose that A f∞ > BF0, then for each λ ∈ (1/A f∞, 1/BF0), the problem

(1.4) and (1.5) has at least one positive solution.

Proof. We choose ǫ > 0 sufficiently small such that (F0 + ǫ)λB ≤ 1. By the definition of

F0, we can see that there exists an l1 > 0, such that f (u)≤ (F0 + ǫ)u for 0 < u≤ l1. If u∈ P

with ‖u‖ = l1, we have

∥

∥Tu(t)
∥

∥= Tu(1)= λ

∫ 1

0
G(1,s)a(s) f

(

u(s)
)

ds

≤ λ

∫ 1

0
G(1,s)a(s)

(

F0 + ǫ
)

u(s)ds

≤ λ
(

F0 + ǫ
)

‖u‖

∫ 1

0
G(1,s)a(s)ds

≤ λB
(

F0 + ǫ
)

‖u‖ ≤ ‖u‖.

(3.6)
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Then we have ‖Tu‖ ≤ ‖u‖. Thus if we let Ω1 = {u ∈ X : ‖u‖ < l1}, then ‖Tu‖ ≤ ‖u‖

for u∈ P∩ ∂Ω1. We choose δ > 0 and c ∈ (0,1/4), such that

λ
((

f∞− δ
)

∫ 1

c
G(1,s)a(s)q(s)ds

)

≥ 1. (3.7)

There exists l3 > 0, such that f (u)≥ ( f∞− δ)u for u > l3. Therefore, for each u∈ P with

‖u‖ = l2, we have

∥

∥Tu(t)
∥

∥= (Tu)(1)= λ

∫ 1

0
G(1,s)a(s) f

(

u(s)
)

ds

≥ λ

∫ 1

c
G(1,s)a(s)

(

f∞− ǫ
)

u(s)ds

≥ λ
(

f∞− ǫ
)

‖u‖

∫ 1

c
G(1,s)a(s)q(s)ds≥ ‖u‖.

(3.8)

Thus if we let Ω2 = {u ∈ E : ‖u‖ < l2}, then Ω1 ⊂Ω2 and ‖Tu‖ ≥ ‖u‖ for u ∈ P∩ ∂Ω2.

Condition (H1) of Krasnoesel’skii’s fixed point theorem is satisfied. So there exists a fixed

point of T in P. This completes the proof. �

Theorem 3.2. Suppose that A f0 > BF∞, then for each λ ∈ (1/A f0, 1/BF∞) the problem

(1.4) and (1.5) has at least one positive solution.

Proof. Choose ǫ > 0 sufficiently small such that ( f0− ǫ)λA≥ 1. From the definition of f0,

we see that there exists an l1 > 0, such that f (u)≥ ( f0− ǫ)u for 0 < u ≤ l1. If u ∈ P with

‖u‖ = l1, we have

∥

∥Tu(t)
∥

∥= (Tu)(1)= λ

∫ 1

0
G(0,s)a(s) f

(

u(s)
)

ds

≥ λ
(

f0− ǫ
)

‖u‖A≥ ‖u‖.

(3.9)

Then we have ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1. By the same method, we can see that

if u ∈ P with ‖u‖ = l2, then we have ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2. Condition (H2) of

Krasnoesel’skii’s fixed-point theorem is satisfied. So there exists a fixed point of T in P.

This completes the proof. �

Theorem 3.3. Suppose that λB f (u) < u for u ∈ (0,∞). Then the problem (1.4) and (1.5)

has no positive solution.

Proof. Assume to the contrary that u is a positive solution of (1.4) and (1.5). Then

u(1)= λ

∫ 1

0
G(1,s)a(s) f

(

u(s)
)

ds <
1

B

∫ 1

0
G(1,s)a(s)u(s)ds

≤
1

B
u(1)

∫ 1

0
G(1,s)a(s)ds= u(1).

(3.10)

This is a contradiction and completes the proof. �
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Theorem 3.4. Suppose that λA f (u) > u for u∈ (0,∞). Then the problem (1.4) and (1.5)

has no positive solution.

Proof. Assume to the contrary that u is a positive solution of (1.4) and (1.5). Then

u(1)= λ

∫ 1

0
G(1,s)a(s) f

(

u(s)
)

ds >
1

A

∫ 1

0
G(1,s)a(s)u(s)ds

≥
u(1)

A

∫ 1

0
G(1,s)a(s)q(s)ds≥ u(1).

(3.11)

This is a contradiction and completes the proof. �

Finally, we give an example to illustrate the results obtained in this paper.

Example 3.5. Consider the equation

D
(2.7)
0+ u(t) + λ(2t+ 3)

8u2 +u

u+ 1
(4 + sinu)= 0, 0≤ t ≤ 1,

u(0)= u′(0)= u′(1)= 0.

(3.12)

Then F0 = f0 = 4, F∞ = 40, f∞ = 24, and 4u < f (u) < 40u. By direct calculations, we ob-

tain thatA= 0.240408 and B = 0.575602. From Theorem 3.2, we see that if λ∈ (0.173316,

0.434328), then the problem (3.12) has a positive solution. From Theorem 3.3, we have

that if λ < 0.043433, then the problem (3.12) has a positive solution. By Theorem 3.4, if

λ > 1.0399, then the problem (3.12) has a positive solution.
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