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POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM
OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION

TINGTING QIU1∗ AND ZHANBING BAI2

Abstract. We investigate the positive solution of nonlinear fractional differ-
ential equation with semi-positive nonlinearity{

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0

where 2 < α ≤ 3 is a real number, Dα
0+ is the Caputo’s differentiation, and

f : [0, 1] × [0,∞) → (−∞,∞). By use of Krasnosel’skii fixed point theorem,
the existence results of positive solution are obtained.

1. Introduction and preliminaries

Fractional differential equations have been of great interest recently. It is caused
both by the intensive development of the theory of fractional calculus itself and
by the applications of such constructions in various sciences such as physics, me-
chanics, chemistry, engineering, etc. For details, see [4, 6, 7, 8] and the references
therein.

It should be noted that most of papers and books on fractional calculus are
devoted to the solvability of linear initial fractional differential equations in terms
of special functions [9]. Recently, there are some papers deal with the existence
and multiplicity of solution (or positive solution) of nonlinear initial fractional
differential equation by the use of techniques of nonlinear analysis (fixed-point
theorems, Leray-Shauder theory, etc.), see [2, 3, 5, 11, 12].

However, there are few papers consider the semipositone nonlinearity differ-
ential equations of fractional order. No contributions exist, as far as we know,
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concerning the positive solution with semipositone nonlinearity of the following
problem: {

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0
(1.1)

where 2 < α ≤ 3 is a real number, Dα
0+ is the Caputo’s differentiation, and

f : [0, 1]× [0,∞) → (−∞,∞) is continuous.
In this paper, we firstly derive the corresponding Green’s function,then we give

the properties of Green’s function,finally,the existence of positive solution with
semipositone nonlinearity are obtained by Krasnosel’skii fixed point theorem.

Here, a positive solution u∗ of (1.1) will mean a solution u∗ of (1.1) satisfying
u∗(t) > 0, 0 < t < 1.

For the convenience of the reader, we present here the necessary definitions
from fractional calculus theory. These definitions can be found in the recent
literature.

Definition 1.1. The Riemann-Liouville fractional integral of order α > 0 of a
function f : [0, 1] → R is given by

Iα
0+f(t) =

1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

provided that the right side is pointwise defined on (0,∞).

Definition 1.2. The Caputo’s fractional derivative of order α > 0 of a function
f ∈ ACn[0, 1] is given by

Dα
0+f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α−n+1
ds

where n−1 < α ≤ n, provided that the right side is pointwise defined on (0,∞).

From the definition we can obtain the following lemma:

Lemma 1.3. Assume that u ∈ Cn[0, 1], then

Iα
0+Dα

0+u(t) = u(t)− C1 − C2t− · · · − Cnt
n−1

where Ci ∈ R, i = 1, 2, . . . , n, n = [α] + 1.

Lemma 1.4. [6] The relation

Iα
a+Iβ

a+ϕ = Iα+β
a+ ϕ

is valid in following case

Reβ > 0, Re(α + β) > 0, ϕ(x) ∈ L1(a, b).

Lemma 1.5. Given f ∈ C[0, 1], and 2 < α ≤ 3, the unique solution of

Dα
0+u(t) + f(t) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0.
(1.2)

is

u(t) =

∫ 1

0

G(t, s)f(s)ds



BOUNDARY VALUE PROBLEM 125

where

G(t, s) =

{
(α−1)t(1−s)α−2−(t−s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

t(1−s)α−2

Γ(α−1)
, 0 ≤ t ≤ s ≤ 1.

(1.3)

Proof. We may apply Lemma1.3 to reduce Eq.(1.2) to an equivalent integral
equation

u(t) = −Iα
0+f(t) + C1 + C2t + C3t

2

for some Ci ∈ R, i = 1, 2, 3. By Lemma1.4 we have

u′(t) = −D1
0+Iα

0+f(t) + C2 + 2C3t = −D1
0+I1

0+Iα−1
0+ f(t) + C2 + 2C3t

= −Iα−1
0+ f(t) + C2 + 2C3t

u′′(t) = −D1
0+Iα−1

0+ f(t) + 2C3 = −D1
0+I1

0+Iα−2
0+ f(t) + 2C3 = −Iα−2

0+ f(t) + 2C3.

From u(0) = u′(1) = u′′(0) = 0, one has

C1 = 0, C2 =
1

Γ(α− 1)

∫ 1

0

(1− s)α−2f(s)ds, C3 = 0.

Therefore, the unique solution of problem (1.2) is

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds +
1

Γ(α− 1)

∫ 1

0

t(1− s)α−2f(s)ds

=

∫ t

0

[
t(1− s)α−2

Γ(α− 1)
− (t− s)α−1

Γ(α)

]
f(s)ds +

∫ 1

t

t(1− s)α−2

Γ(α− 1)
f(s)ds

=

∫ 1

0

G(t, s)f(s)ds

The proof is complete. ¤

Lemma 1.6. The function G(t, s) defined by Eq. (1.3) satisfies
(1) G(t, s) > 0, for t, s ∈ (0, 1);
(2)

min
1/4≤t≤3/4

G(t, s) ≥ 1

4
max
0≤t≤1

G(t, s) =
1

4
G(1, s), for 0 < s < 1. (1.4)

Proof. Setting

g1(t, s) =
(α− 1)t(1− s)α−2 − (t− s)α−1

Γ(α)
, g2(t, s) =

t(1− s)α−2

Γ(α− 1)
.

(1) For g1(t, s), since 2 < α ≤ 3, 0 ≤ s ≤ t ≤ 1 we can obtain

(α− 1)t(1− s)α−2 ≥ t(1− s)α−2 ≥ t(t− s)α−2 ≥ (t− s)α−1

we get g1(t, s) > 0. It is clearly that g2(t, s) > 0, therefore G(t, s) >
0, for t, s ∈ (0, 1).
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(2) Since

∂g1(t, s)

∂t
=

(α− 1)(1− s)α−2 − (α− 1)(t− s)α−2

Γ(α)
> 0,

∂g2(t, s)

∂t
=

(1− s)α−2

Γ(α− 1)
> 0.

we know G(t, s) is increasing with respect to t. Consequently,

0 ≤ G(t, s) ≤ max
0≤t≤1

G(t, s) = G(1, s), for t, s ∈ [0, 1].

One has

min
1/4≤t≤3/4

G(t, s) = G(
1

4
, s) =





1
4
(α−1)(1−s)α−2−( 1

4
−s)α−1

Γ(α)
, s ∈ (0, 1

4
],

1
4
(1−s)α−2

Γ(α−1)
, s ∈ [1

4
, 1).

max
0≤t≤1

G(t, s) = G(1, s) =
(α− 1)(1− s)α−2 − (1− s)α−1

Γ(α)
, s ∈ (0, 1).

we will prove

min
1/4≤t≤3/4

G(t, s) ≥ 1

4
max
0≤t≤1

G(t, s) =
1

4
G(1, s)

As follows,
10 : For 0 < s ≤ 1

4
,

min
1/4≤t≤3/4

G(t, s) =
(α− 1)(1− s)α−2

4Γ(α)
− (1

4
− s)α−1

Γ(α)

1

4
max
0≤t≤1

G(t, s) =
1

4
G(1, s) =

(α− 1)(1− s)α−2

4Γ(α)
− (1− s)α−1

4Γ(α)

Since 2 < α ≤ 3, 0 < s ≤ 1
4

we can obtain

(
1

4
− s)α−1 = (

1

4
)α−1(1− 4s)α−1 ≤ 1

4
(1− 4s)α−1 <

1

4
(1− s)α−1

Thus,

min
1/4≤t≤3/4

G(t, s) ≥ 1

4
max
0≤t≤1

G(t, s) =
1

4
G(1, s).

20 : For 1
4
≤ s < 1,

min
1/4≤t≤3/4

G(t, s) =
1
4
(1− s)α−2

Γ(α− 1)
=

(α− 1)(1− s)α−2

4Γ(α)

1

4
max
0≤t≤1

G(t, s) =
1

4
G(1, s) =

(α− 1)(1− s)α−2

4Γ(α)
− (1− s)α−1

4Γ(α)

It is clearly that

min
1/4≤t≤3/4

G(t, s) ≥ 1

4
max
0≤t≤1

G(t, s) =
1

4
G(1, s).

The proof is complete. ¤
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Lemma 1.7. If f ∈ C[0, 1], and f ≥ 0, then,the unique solution u of prob-
lem (1.1) satisfies

min
1
4
≤t≤ 3

4

u(t) ≥ 1

4
‖u‖,

Proof. By Lemma 1.5,u can be expressed by

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds ≤
∫ 1

0

max
0≤t≤1

G(t, s)f(s, u(s))ds

so,

max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s))ds ≤
∫ 1

0

max
0≤t≤1

G(t, s)f(s, u(s))ds

then,

‖u‖ = max
0≤t≤1

|u(t)| = max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s))ds ≤
∫ 1

0

max
0≤t≤1

G(t, s)f(s, u(s))ds

Taking into account(1.4), we obtain

min
1
4
≤t≤ 3

4

u(t) = min
1
4
≤t≤ 3

4

∫ 1

0

G(t, s)f(s, u(s))ds

≥ 1

4

∫ 1

0

max
0≤t≤1

G(t, s)f(s, u(s))ds ≥ 1

4
max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s))ds =
1

4
‖u‖

The proof is complete. ¤
Lemma 1.8. [5] Let X be a Banach space, P ⊆ X a cone, and Ω1, Ω2 are two
bounded open balls of X centered at the origin with Ω1 ⊂ Ω2. Suppose that

A : P ∩ (Ω2 \ Ω1) → P is a completely continuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or
(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2

holds. Then A has a fixed point in P ∩ (Ω2 \ Ω1).

2. Main results

In this section, by uses of Lemma 1.5, Lemma 1.6,Lemma 1.7 and Lemma 1.8,
we will obtain the existence of positive solution with semipositone nonlinearity
for Problem (1.1).

Let X = C[0, 1] be endowed with the ordering u ≤ v if u(t) ≤ v(t) for all
t ∈ [0, 1], and the maximum norm

‖u‖ = max
0≤t≤1

|u(t)|

Define the cone K ⊂ X by

K =

{
u ∈ X

∣∣u(t) ≥ 0, and min
1
4
≤t≤ 3

4

u(t) ≥ 1

4
max
0≤t≤1

|u(t)| = 1

4
‖u‖,

}
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Define operator T : K → K

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds

Lemma 2.1. T : K → K is completely continuous.

Proof. Let u ∈ K, we have

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds ≤
∫ 1

0

max
0≤t≤1

G(t, s)f(s, u(s))ds

So,

max
0≤t≤1

Tu(t) = max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s))ds ≤
∫ 1

0

max
0≤t≤1

G(t, s)f(s, u(s))ds

Taking into account (1.4), we get

min
1
4
≤t≤ 3

4

Tu(t) = min
1
4
≤t≤ 3

4

∫ 1

0

G(t, s)f(s, u(s))ds

≥ 1

4

∫ 1

0

max
0≤t≤1

G(t, s)f(s, u(s))ds ≥ 1

4
max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s))ds =
1

4
‖Tu‖

Also, by Lemma1.6, for u ∈ K, we have Tu(t) ≥ 0, 0 ≤ t ≤ 1.
Consequently, T : K → K. Further, with the nonnegativeness and continuity

of G(t, s) and f(t, u), by means of Arzela-Ascoli theorem we can easily obtain T
is completely continuous. The proof is complete. ¤
Theorem 2.2. Suppose

(H1) f ∈ C([0, 1]× [0,∞), (−∞, +∞)), ∃M > 0, L > −M, such that
−M ≤ f(t, x) ≤ L, , 0 ≤ t ≤ 1, 0 ≤ x ≤ 1;

(H2) lim
x→∞

f(t,x)
x

= +∞, t ∈ [α, β] ⊂ [0, 1], uniformly hold.

Then Problem (1.1) has at least one positive solution.

Proof. Let

w(t) =

∫ 1

0

G(t, s)ds =
αt− tα

Γ(α + 1)
<

1

Γ(α)

and set

v(t) =
1

4
Mw(t) <

1
4
M

Γ(α)
, u(t) = u(t) + v(t)

then u(t) is the positive solution of problem(1.1) if and only if u(t) is the solution
of the following problem:{

Dα
0+u(t) + [f(t, u(t)− v(t)) + M ] = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0
(2.1)

and satisfies u(t)− v(t) > 0, (0 < t < 1).
Define the operator T ∗ : K → K

T ∗x(t) =

∫ 1

0

G(t, s)[f(s, x(s)− v(s)) + M ]ds
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From Lemma2.1, we know T ∗ : K → K is completely continuous operator.
Clearly, the fixed point of operator T ∗ is the solution of problem (2.1).

Let

K1 =

{
x ∈ K : ‖X‖ <

M + L

Γ(α)

}
for u ∈ ∂K1

we get

‖Tx‖ = max
0≤t≤1

∫ 1

0

G(t, s)[f(s, x(s)− v(s)) + M ]ds

≤ (M + L) max
0≤t≤1

∫ 1

0

G(t, s)ds <
M + L

Γ(α)
= ‖x‖

Thus, ‖Tx‖ = ‖x‖, for u ∈ ∂K1.
By condition (H2) exists R > 0 is large enough such that R > 2M

Γ(α)
satisfies

f(t, x) + M

x
≥ N, for t ∈ [ξ, η] ⊂ [0, 1] , x ≥ R

8

where N is chosen so that
1
4
N

2

∫ η

ξ

G(
ξ + η

2
, s)ds > 1

Set

KR = {x ∈ K : ‖x‖ < R} , for x ∈ ∂KR.

we have

x(t) >
1

4
‖x‖ =

1

4
R >

M

2Γ(α)
> 2v(t)

so

x(t)− v(t) > x(t)− 1

2
x(t) =

1

2
u(t) >

R

8
, t ∈ [0, 1]

x(t)− v(t) >
R

8
, t ∈ [ξ, η]

Thus, we obtain

f(t, x(t)− v(t)) + M ≥ N(x(t)− v(t)) ≥ R

8
, t ∈ [ξ, η].

Consequently,

Tx(t) =

∫ 1

0

G(
ξ + η

2
, s)[f(s, x(s)− v(s)) + M ]ds

≥
∫ η

ξ

G(
ξ + η

2
, s)

NR 1
4

2
ds ≥ NR 1

4

2

∫ η

ξ

G(
ξ + η

2
, s)ds > R = ‖x‖

Therefore, ‖Tx‖ = ‖x‖, for x ∈ ∂KR. An application of Lemma1.8 yields that
exists u ∈ KR \K1, such that u = Tu.

Namely, u = u(t) satisfies
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{
Dα

0+u(t) + [f(t, u(t)− v(t)) + M ] = 0, 0 < t < 1,
u(0) = u′(1) = u′′(0) = 0

thus,

u(t) ≥ 1

4
‖u‖ =

1

4
max
0≤t≤1

|u(t)|

=
1

4
max
0≤t≤1

∣∣∣∣
∫ 1

0

G(t, s)[f(s, x(s)− v(s)) + M ]ds

∣∣∣∣

≥ 1

4
·M max

0≤t≤1

∫ 1

0

G(t, s)ds =
1
4
M

Γ(α)
> v(t)

Consequently,

u(t) = u(t)− v(t) > 0, 0 < t ≤ 1.

and satisfies {
Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1,
u(0) = u′(1) = u′′(0) = 0,

Obviously, u(t) 0 < t < 1 is positive solution of problem (1.1). The proof is
complete. ¤
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