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Abstract: In this paper, we investigate the existence of positive solutions for Hadamard type fractional differential
system with coupled nonlocal fractional integral boundary conditions on an infinite domain. Our analysis relies on
Guo-Krasnoselskii’s and Leggett-Williams fixed point theorems. The obtained results are well illustrated with the
aid of examples.
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1 Introduction

Fractional calculus and fractional differential equations have been studied extensively during the last decades.
Fractional derivatives provide a more excellent tool for the description of memory and hereditary properties of
various materials and processes than integer derivatives. Engineers and scientists have developed new models
that involve fractional differential equations. These models have been applied successfully in, e.g., physics,
biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electro-
dynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. For a systematic
development of the topic, we refer to the books [1]-[7]. As an important issue for the theory of fractional differential
equations, the existence of solutions to kinds of boundary value problems has attracted many scholars attention, and
lots of excellent results have been obtained by means of fixed point theorems, upper and lower solutions technique,
and so forth. A variety of results on initial and boundary value problems of fractional differential equations and
inclusions can easily be found in the literature on the topic. For some recent results, we can refer to [8]-[18] and
references cited therein.
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Boundary value problems on infinite intervals appear often in applied mathematics and physics. Due to the
fact that an infinite interval is noncompact, the discussion about boundary value problem on the infinite intervals
is more complicated. Results on the existence of solutions of boundary value problems on infinite intervals for
differential, difference and integral equations may be found in the monographs [19, 20]. For boundary value problems
of fractional order on infinite intervals we refer to [21]-[25].

Many researchers have shown their interest in the study of systems of fractional differential equations. The
motivation for those works stems from both the intensive development of the theory of fractional calculus itself and
the applications. See for example [26]-[30] where systems for fractional differential equations were studied by using
Banach contraction mapping principle and Schaefer’s fixed point theorem.

Recently in [31] we investigated the existence of positive solutions for fractional differential equations of
Hadamard type, with integral boundary condition on infinite intervals

D%u(t) +a@) f(u@®) =0, 1<a=<2,te(l,o0), )]

u() =0,  D*u(oo) = Y A IPu(n). 2

i=1

where DY denotes the Hadamard fractional derivative of order o, n € (1, 00) and [ Bi is the Hadamard fractional
integral of order 8; > 0,i = 1,2,...,mand A; > 0,i = 1,2,...,m are given constants. For some recent results
on positive solutions of fractional differential equations we refer to [32]-[37] and references cited therein.

In [38] the existence of positive solutions were studied for the following fractional system of differential
equations subject to the nonlocal Riemann-Liouville fractional integral boundary conditions of the form

DPx() + £t x(@). (1) =0. 1<p<2. 1.1
DYy(t) + g(t.x().y(1) =0, 1<q<2. 1.
X =0, x(1)= 3 il y(). 3

i=1

YO =0, y()= 3 B IMx(E).

Jj=1

where D? are Riemann-Liouville fractional derivatives of orders ¢ € {p,q}, f.g € C([0, 1] x Rﬁ_, R4), I® are
Riemann-Liouville fractional integrals of order ® € {y;, u;}, o;,8; >0,i =1,...,m, j = 1,...,n and the fixed
constants 0 < n < & < 1.

In this paper we investigate the existence of positive solutions for the following fractional system of Hadamard
differential equations subject to the fractional integral boundary conditions on an unbounded domain

DPx(t) +a() f(x(t), y (1) =0, 1<p =2, 1€(lo00).
DYy(t) + b(D)g(x(0), (1) =0, 1<g <2, 1e(l,00),
x(1)=0,  DPx(e0) = 30 A% y(), 0

i=1

y1)=0, DI ly(o0) = il a; 157 x(§).
iz

where D® are Hadamard fractional derivatives of orders ¢ € {p, ¢} with lower limit 1, £, g € C([1,00) xR ,R),
I® are Hadamard fractional integrals of order ® € {o;, B} with lower limit 1, A;,0; > 0,i = 1,....m, j =
1,...,n.

Applying first the well-known Guo-Krasnoselskii’s fixed point theorem we obtain the existence of at least one
positive solution. Next we prove the existence of at least three distinct nonnegative solutions by using Leggett-
Williams fixed point theorem.

The rest of the paper is organized as follows: In section 2, we present some preliminaries and lemmas that will
be used to prove our main results. We also obtain the corresponding Green’s function and some of its properties. The
main results are formulated and proved in Section 3. Especially in Subsection 3.1 we prove the existence of at least
one positive solution while, in Subsection 3.2, we prove the existence of at least three distinct nonnegative solutions.

Examples illustrating our results are presented in Section 4.
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2 Background materials and preliminaries

In this section, we present some notations and definitions of Hadamard fractional calculus (see [4]) and present
preliminary results needed in our proofs later.

Definition 2.1 ([4]). The Hadamard fractional integral of order ® with lower limit 1 for a function g : [1,00) - R
is defined as

t
1 ¢ d—1
1%9(1) = 7f log = 80) s a0, (5)
I'(g) S s
1
provided the integral exists, where log(-) = log, (-).

Definition 2.2 ([4]). The Hadamard derivative of fractional order ¢ with lower limit 1 for a function g : [1, 00)

— R is defined as
t
1 d n n—ep—1
D‘pg(t):m(ta) /(logé) @ds, n—1<¢ <n, (6)
1

where n = [¢] + 1, [§] denotes the integer part of the real number .

Lemma 2.3 ([4, Property 2.24)). Ifa,a, B > 0 then

o (10 ) () x\B-o—1
(Da (log 3) ) (x) = m (log E) . @)

o\ () x\B+a—l

Lemma 2.4 ([4]). Let g > 0 and x € C[1,00) N L'[1,00). Then the Hadamard fractional differential equation
D9x(t) = 0 has the solutions

and

x(t) = Z ci (logr)7"

i=1
and the following formula holds:
n .
19D9%(t) = x(t) + Z c; (logt)?™",
i=1

wherec; e R, i =1,2,...,n,andn —1<q <n.

Lemma 2.5. Suppose that the functions u,v € C([1,00),R1) and 1 < p,q < 2. Then the following system
DPx(t) +u(®) =0, te€(l,00),
D2y(t)+v() =0, te(l,00),
m
x(1)=0. DP"lx(o0) = X Ail%y(). ©)

i=1

s =0, D4ly(0) = 3 0y 1%x(E),
p2

can be written in the equivalent integral equations of the form

t oo
1 Pl g r d
x(t) = —@/ (log 2) u(s)TS + (logt)? ™! [%/u(s)%
1 1
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n
Ty jre
&

Al D+3j—1 dS
o~ F(p+ﬁ, ]/( ) ”(S)T]’ o
and
t oo
d T d
Y1) = — /(log ) v(s)TS + (log1)?™! [%/U(S)TS
1 1
pP+B;— ds A2
; (p+ﬁ,>/( ) ()*+*1”()*
Ar “ f]+01i_1 ds
R
where
Q:=T(Tr(@) —AiA2>0,
with
_ v Ml@ tai—1 _x 9T +8/—1
Ay = ; RS (log n)? and As = ]; T+ 8) (log&)”

Proof. By applying the Hadamard fractional integral of orders p and ¢ to both sides of the first two equations of
system (9), respectively, we obtain

t
1 t =l ds -1 —2
x(t) = ——/ log — u(s)— +c1 (logt)? ™" + ¢z (logt)? ™=,
I'(p) N s
1
1 -1y
(@) = _7/ IOgE U(S)*S + k1 (log)?™" + k2 (log )72,
I'(q) S S
1

where ¢1,c2,k1, k2 € R.
The conditions of (9) that x(1) = 0 and y(1) = 0 imply ¢» = 0 and k> = 0. Hence

t
p—1
x(t) = _L/‘ (log 5) ”(5)@ +c1 (logt)? 1, (12)
I(p) s s
1
and
1 / ds
y(t) = —F—/ (log ) v(s)— + kq (logr)?~ 1. (13)
s
1
From Lemma 2.3, we obtain
/ d / d
pr k) == [ue T+t wd D0 =- [v©T +hr@).
1 1

By applying the Hadamard fractional integral of orders ; and ; to (12) and (13), and also substitution t = § and
t = n, respectively, we get

3
By L g\TTHTL ds o T(p) -1
1% () = I‘(p+;6_,—)f(10gs) )5 €1 D (log )7
1
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and

1 n\4+tai—1 ds I'(g)
F(q+ai)1/(1°gs R )

qg+a;i—1

I1%y(n) =— (logn)

Using the conditions of (9) and solving the system of linear equations we find the constants c; and k1 as

m n
F(q) ds F(q) Ai n\4t+ai—1 ds
/ (s ) Q l; I'(g + o) / (10g ;) U(S)T

A1 ds A1 PHA—1 ds
+6/”( i *Z r<p+ﬂ,)/( ) R

and

M Tds T o [ 8\ s
f O " §r<p+ﬁ,~>/ (“’gz) S

s (H-wi—l ds
/ R Z F(q+oz,)/ Ve

— 649

Substituting the values of ¢; and k1 in (12) and (13), we deduce the integral equations (10) and (11), respectively.

The converse follows by direct computation. This completes the proof.

O

Lemma 2.6 (Green’s function). The integral equations (10) and (11), in Lemma 2.5, can be expressed in the form

of Green’s functions as

x(t) :/GI(I,S)M(S)% +/G2(t,s)v(s)%,
1 1

o0

>0
ds ds
y0 = [ 66906 + [ Gattoss) S
1 1
where the Green’s functions G;(t,s), i = 1,2, 3,4 are given by

A1 = oy (logt)?™!
Gi(t,5) = gp(t.5) + 6/2 T+ B 5B (&.9).
(q) A (logt)?~!
Ga(t.s) = Z T+ o) 8a: (1.5),
As Ai (logt)?™!
Ga(t.5) = gq(1,9) + " ; T Fan S ms).
_T(p) <~ 0y (log)?™!
Galt,s) = > TR RRGRE
where
g¢([vs) = (10g[)¢_1
_— 1<t<s<oo,
T($)
and

(logp)? TV =" — (log(p/s)?TV ™!, 1<s<p<oo,

0]
gy (p,s) =
v (log p)? TV 1, 1<p<s<oo,

(14)

s)

16)

a7
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with ¢ € {p.q}, ¥ € {aj, Bi}, p € t&.n}.

Proof. By Lemma 2.5, we have

t p—1 d o] d
x(t) = —%/ (log 2) u(s)?s + (log1)?~! [%/u(s)—s

n
_Tg) q+ta;i— ds
ZF(q+on 1/ ()7+7/ (s)
&

A1 ’ pHA; -1 ds 1
"2 LTo+h 5[ (o ) L)+ g )/“‘)g[)p 0

1

(I'(p)T'(q) —Ai1A2) _1 s
T arp / (log)?™ ()=~

n ds Ay [ ds
- / gt )+ o / o)~ v)
1

n
I'(g) < Ai (IOgt)” ‘1+0‘i ds
o Sy

vy

A1 <& o) (logt)? ™!

QS Te+h)

T ds | T(q) & A (og)”™" [ ot ds
~ [ et + = > i f(logn)q+ Lo
1 1= 1

pP+B;— d A
) 3 T

T(@) & A Qog)?™" [ pyatai—tds
_ Z NPETH) (logg) U(S)T

&
n —1 +8;—1
A o; (logt P P 7 d
1 J ( g ) (1 %‘) (S) SS

@ = T+h)

Ao ogn” ™t [ sy ds
o X505 lf(logé) u()"

T A1 <= 0 (logr)?™1 i ds
1[ gt s ()2 4 & L Torpy | HEMOT

Q 1 I'(g + a;) /

I'(g) <& A; (logt)? ™! T d
n (9) Z (logt) /gzi(n,s)v(s)f

= /Gl(t,s)u(s)@ +/G2(t,s)v(s)@,
K S
1

1

which yields that (14) is satisfied. In a similar way, we have

z qg—1 d T T d
y(t) = —m (log E) v(S)TS + (log2)?™! [%/U(S)TS
1



DE GRUYTER OPEN Positive solutions of Hadamard differential systems

&
LK) 9 §\7 A~ ds A2 ds
9 g1 1—‘(p'*‘lgj)/(logs) (S)i‘i‘a u(s)7

1
A2 ds 1
Z F(q+al)/ () ] l_,( )/(log[)q U(S)

(I'(p)T(q) —A1A2) _y ., .ds
- arQ /(logt)q v(s)?

q+ozi—l

= /gq(t,s)v(s)%—l— %/(logt)Q—lu(s)%
1

1

&
T(p) < oy (logn)”! ( é)”*‘s"l ds
Q /;1 L'(p+B;) J 10gs u(s)s

n
> & A (logn)d™! ( n)q+af—1 ds  Aj

1
T2 5 Tata s S Qr()/ag’)q o
T ds T(p) — cr(logt)q_l T _ ds
=/gq”’”“(”7+ Q ,21 T+ 6 /(k’gg)pm L)
1 - 1

&
_T(p) - ) (log)T™! s)”f‘f‘l ds
Q ]; I'(p+B;) J (lOgs u(s)s

Q = Tg+w)

n
Az 2N 4 (log)?™! (10 n)q+ai—1v(s)@
N

o0
Ar 4 A (logr)?™!

q+o;i—1 _-
7 X Tare /( ogn) v

o0
ds A <8 A (logt)q_l ds
= t — —_ - = q_ , -
[ a2 X e [ oS

1 - 1

£
r(p) o (logt)’”" [, ds
Z T+ ) I/gﬂf@’s)““)s

o0

_ f Gt )2 + / Galt,spu(s) 2.

1 1
which proves that (15) holds. This completes the proof.

Before establishing some properties of the Green’s functions, we set

1 Ar & oj(logg)P+hi—1 F(q) Ai(logm)atei—!
M = —— - JrYes)
T e A Th+E) Z T(q +a)
_ 1 A - Ai(log e _T(p) Z o, (log§)?+Ai~]
TT 2 &= Thtw) ‘T T(p+p;)

Lemma 2.7. The Green’s functions G;(t,s), i = 1,2, 3,4, satisfy the following properties:
(P1)Gi(t,s), i = 1,2,3,4 are continuous for (t,s) € [1,00) x [1, 00),

— 651
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(P2)Gi(t,s) >0,i =1,2,3,4forall (t,5) € [1,00) X [1,00);
Gl(t7s) Gz(t,s)

P <M, < M,
P oz =1 + Gognyr=1 =M T Glognyr—1 + (ognye=1 = "2
Gs(t.s) u Galt,s) - Mo
1+ (logt)?~1 + (log)a=1 = 72" 1+ (logt)?~ ! + (logr)a—1 — "%
") Gi(t.s) _ A i o (log§)? " gf (£.5)
VesiZen T Qogn? 1+ (g0 1 = @ £ T+ BT + oz B+ (ogby7 1)
o Ga(t,5) _T@ ﬁ Ai (logn)” ™" g, (1.5)
nst<nks 1+ (log)?—1 + (log N9—1 ~ Q2 = T(g +a;)(1 + (logn)?~! + (logm9~1)’
o Ga(r.5) oM i Ai (logn)””" g8, (n.5)
n<izniz 1+ (log)?—1 + (log)9=1 — @ = IF(q+ai)(1 + (logn)?~! + (logm)9—1)’
. Galt,s) _ T Z a; (log€)?~" gf (5.5)
e<t=ek; 1+ (logr)?—1 + (log )91 — « T(p + B;)(1 + (log€)?~! + (log)7~1)’

forany k1,k2 > 1.

Proof. Ttis easy to prove that (P1) and (P») hold.
To prove (P3), for (s, ) € [1,00) x [1, 00), we have
Gi(t,s)
1+ (logt)?—1 + (logt)?—!
_ gp(t.5) LA 2”: aj(log)?~1gf (5.5)
L+ (og)?=! + (logn)?=! = Q@ = T(p+ ;)1 + (log)?~" + (log1)?~1)

B (log£)?~! AL & aj(log)?~'gf (£.5)
= T(p)(1 + (logt)?=T + (logt)4=1) = Q@ 2:1 C(p +B;)(1 + (logt)?~1 + (logt)4—1)

RS T A
To TR 2 To R

In similar manner, we can prove that

Ga(t,s) - T'(q) ) Aigd; (n,5)

1+ (logr)?~ ! + (logt)e—! = Q — T'(q +o;)’
G3(l,S) < 1 + ﬁ Z Aigai ('i’s)

L+ (logt)?~! 4+ (logn)?~! " T(q) Q@ = T(q@+a)
Ga(t,s) _ T 2”: 0j8g, (.9

1+ (logt)?~! + (logt)4—! = Q T(p+B8;)

From (17), it follows that (P3) holds.
To prove (Pa4), from the positivity of g, (, s) and ggj (&,5),j =1,...,n, we have for any k1 > 1,

Gi(t,s)
§§Z‘§§K1 1 + (logt)?—1 + (logt)a—!
gp(t.s) Ay & aj(logn)?~gf (§.5)

" izt | 1+ (og)? T+ (og )71 T @ £ T(p+ )1 + (og)P =1 + (logn)e~1)

. . _/\1 n a_,(logt)p_l A (E5)
= esizta H; T+ /)01 + QogH? =1 + (og )
AL & o_,-(logé)‘”_1 A . (€.9)

) @ Jj=1 L(p+ ;) + (log§)?P~ 1+(10gé)q—1)'
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In the same way, for any x> > 1, we have

- Ga(t.s) _T@ i Ai (log )"~ g&, (1.5)
n=t=nk> 1 + (log?)?~1 + (logr)?=1 = Q = T(g + )1 + (log nP~1 4+ (logn)a—1)’
- G3(t.5) TR Ai (log ™" g8, (n.5)
n<i=nkz 1 + (log#)?~1 4+ (logt)4—1 = Q = T(q +a;)(1+ (log P2~ + (logn)?—1)’
. Ga(t, s) _ T Z a; (log€)7™" gf (&.5)
1 - .
g<t=éic 1+ (logt)?~1 + (logr)=1 = Q o T+ A+ (log &)~ + (log§)a—1)

Therefore, (P4) is proved. O

3 Main results

Define the set

_ . @]+ [y(@)]
E = {(x,y) € C([1,00),R) x C([1,00),R) : [e?:lgo) T+ (log )71 + (logr)i—T1

and the norm

I y)l = sup [x (O] + 1y (@)
’ tefl,o0) 1+ (log)?~1 + (log )4 =1

It is clear that (E, || - ||) is a Banach space.

Lemma 3.1. Let U C E be a bounded set. If the following conditions hold:

. u(r) +v(r)
,v)(t) e U,
(i) forany (u,v)(t) 1+ (log1)?—1 + (log 1)7—1
(ii) for any e > 0, there exists a constant T = T (&) > 0 such that

is equicontinuous on any compact interval of [1, c0);

u(t) +v(n) B u(r2) 4 v(22) e (18)
1+ (logt1)?~1 + (logt1)?—1 1+ (logt2)?~1 + (logtp)?—1

foranyty,to > T and (u,v) € U,
then U is relatively compact in E.

The proof is similar to that of Lemma 2.8 in [31], and is omitted.
Now, we define the positive cone P C E by

P={(x.y)eE :x()=0, y(r) 20 on [1,00)},

and the operator 7 : P — E by T(x,y)(t) = (A(x, y)(), B(x,y)(t)) for all t € [1,00), where the operators
A: P — Eand B : P — E are defined by

T s [ d
A0 = [ 61(0.9a6) fx6). 36N T+ [ Galt b x6). 3D S
oo o (19)
d d
B0 = [ Galt. b)) 76D T + [ Galt.9a(0) 36 v )
1 1

Throughout this paper we assume that the following conditions hold:
(H1)The functions f, g € C([0, 00) x [0, 00),[0,00)), f(x,y), g(x,y) # 0 on any subinterval of (0, c0) x (0, c0)
and f, g are bounded on [0, c0) x [0, 00);
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(Hz)a,b : [1,00) — [1, 00) are not identical zero on any closed subinterval of 1, co) and

T4 T4
0</a(s)—s<oo, 0</b(s)—s<oo.
S S

1 1

Next, we are going to prove that the operator 7 is completely continuous.
Lemma 3.2. Let (H1) and (H2) hold. Then T : P — P is completely continuous.

Proof. Firstly, we will show that 7 is uniformly bounded on P.Let Q* = {(x,y) € P : ||(x,y)| <r} C P bea
bounded set. From (H1), there exist two positive constants L1 and L» such that

| f(x (@), ()| = L, lg(x(®), y()] < L2, Y(x,y) € Q"

Then, from (H>), for any (x, y) € Q*, we have

o0

d
| [ 6165000690560

1

1
T(x, = su
17 9l rett ey T+ (log )P~ + (logr)d—1

(e 9}

s [ d
+/GZ(I,S)b(S)g(X(S),Y(S))*s +/G3(I,S)b(5)g(x(5)7Y(S))*s
) )

1 1
o

d
+ f G4<r,s>a<s)f(x(s>,y(s))—s}
S

1
o (o]

d d
= 1 [ 4@ £ 60 + M [ o) y6n T
1

1
foe) [e’s)

d d
¢ [ 6se6) 360 S+ Ma [ a6 £ 76D

1 1
oo [oe)

ds ds
< (My + M4)L, /a(S)T + (M2 + M3)L2/b(S)T < o0.
1 1
This means that the operator 7 is uniformly bounded.

Secondly, we will show that T is equicontinuous on any compact interval of [1, c0). For any S > 1, #1,t> €
[1, 8], and (x, y) € Q™*, without loss of generality, we assume that ¢ < t». Then, we have

‘ A(x, )(t2) B A(x. y)(11)
1+ (logt2)?~1 + (logt2)9=1 1+ (logt1)?~1 + (logt;)?~!
T G1(12.5) ds
= ‘/ 1+ (log l‘z)p_l + (log tz)q_la(s)f(x(s)ay(s))T
1
r Galta.5) ds
+/ 1+ (]Og[z)p_l + (logtz)‘l—l b(S)g(X(S), y(S))T

1

r Gi(t1,5) ds
_/ T+ (ogr) =1 1 (ogryya—T¢@/ &) ye)--
1

T Ga(t1,5) ds
_/ 1+ (logt1)?~! + (logty)4~! b(S)g(X(S)’y(S))T
1
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T G1(t2, 5) G1(t1,5) ds
: /(1 + (log12)? =1 + (log 12)7=" 1+ (log11)?~1 + (1ogt1)q—1)a(s)f(x(s)’y(s))s’
1
T Ga(t2,5) Ga(t1,5) ds
+‘f (1 T+ (ogr2)?—1 1 (log )71 _ 1+ (logr))P—1 + (log1)a—1 ) b6)g (=), yts)
1

Since

1+ (logt2)?~1 + (logt2)4—1 1+ (logty)?~! + (logty)4—!
lgp(t2,5) — gp(t1, )|
T 14 (logr2)P~1 + (logt)9~!
|(log £2)”~" = (log 11)”~" + (log12)9~" = (log 11)7~ " [g (11. 5)
(I + (log2)?~1 + (log )9~ 1)(1 + (log #1)?~! + (log11)7~1)
|(log12)?~! = (log11)?~" + (log12)”~ ' (log 11)4~" — (log 11)? ! (log 1)1~ | A1 (- 98, (5:9)
(4 (ogt2)7~ T+ (og )11 + (og 7~ + (ogii) @ 2= T(p + )

‘ Gi(t2,s) Gi(t1,s)

’

and

7 18p(12.5) — gp(11.9)]

ds
T+ (log12)P—1 + (logrp)a—1 4/ () y(©)-=

< ] [(Gog2)”~! — (log11) "] + |loglia/s)" ! = (og(ta /NP 7H | o1\ dS
- T(p)(1 + (log12)?~1 + (log12)4~1) V()=
5]
|(log 12)?~1 — (logt1)?~ 1| + |(log(t2/5))? 1| s
C(p)(1 + (logt2)?~1 + (logt)?~1) a(s) f(x(s). y(S))T

151

o0
+/ |(log 12)?~1 — (log#1)?~ 1|

ds
F()(1 + (ogia)? 1 + (ogipya— M I I

we have that

( G102.2) - et ) a0 36D 0
1

1+ (logt2)?~1 + (logt2)4—1 1+ (logty)?~! + (logty)4—!

uniformly as 1 — f». In addition, we can find that
Ga(t2,5) B Gal(ty,s)
1+ (logt2)P~1 + (log2)4=1 1+ (logty)?~! + (logt1)4—1
_ (IQog12)”~" — (log11)?~"| + | (log12)? " (log 11)? ™" — (log 1) "~ (log12)1™")
- (1 + (log2)?~! + (logt2)?~1)(1 + (logt1)?~! + (logt1)7~")
F(q) Z Aigd, (n,s)

L(g + o)
which leads to
T Galiz.s) Gali1, s) d
2(f2, s 2(t1, 8 s
— b — 0
‘/ (1 + (log12)?~1 + (logz2)4~! 1+ (logt1)?~ 1 + (logtl)q_l) ()8 (x(s), y()) s| 7

uniformly as #; — #». Hence,

‘ Ax, y)(12) B Ax, y)(t1)
1+ (log2)?~! 4 (logz2)4=1 14 (logz1)?~1 + (logty)4~!

— 0, uniformly as t; — 1.
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In the similar way, we can prove that

‘ B(x.y)(12) _ B(x.y)(1) o

1+ (logtz)?~! + (logt2)2=1 1+ (logt1)?~! + (logt1)9~1 ’

as t] — tp independently of (x, y) € Q™*. Therefore TQ™ is equicontinuous on [1, 00).
Thirdly, we will show that the operator 7 is equiconvergent at co. From the first step, for any (x, y) € Q*, we

have - -
d d
[a0r6@30 S <L [T <.
S S
1 1
and - -
[p066 0% < L2 [565 <.
S S
1 1
Then
lim ‘ A(x, y)(t)
t—oo |1+ (logt)?~1 + (logt)4—!
T Gi(t,5) , ds
= Jim, ‘/ 1+ (logt)?~1 + (logr)a—1 a(s)f(x(s),y(s))T
1
T Gal(t, s) ds
+/ I+ (ogr)?—1 1 (ogna—17®8( (). y()-5
1
7 (log1)?~!
=L (r(p)a T (ogn? T+ (logne 1)
At & a; (log)? ™' gf (&.5) ds
@ L TG+ G+ g )OS T
[(T@ & Xi (log)” ™" g4 (n.5) ds
+ ( Q ; T(q +a;)(1+ (log )P~ + (1ogr)q—1)) be)gx(s). ¥
1 =
T ds T ds
< ML, a(s)——i—Msz b(S)f < 00,
ot o
and
lim ‘ B(x, y)(t)
t—oo |1+ (log?)?~1 + (logt)4—!
L T Gs3(t,5) ds
= Jim, ‘/ 1+ (logt)?~1 + (logr)?—1 b(s)g(x(s),y(s))T
1
T Gyl(t,s) ds
+/ T oz T+ (log[)q_la(s)f(x(s),y(s))s’

1

T (log )7~
= tl_lPéo/ (r(q)(l + (log )P~ 1 + (log1)~1)
1

Az i Ai (logt)?™ ' g8, (n,s)
(g + o

ds
2 )1+ (logr)?—1 + (1ogz)q—l))b(s)g(x(s)’ YO

i=1
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a; (logt)? ™" gf (£.9)

T(p) «
+t£“éol Q ,gl T(p + B;)(1 + (logt)?=1 + (log1)4—1)

d
a(s) f(x(s). ¥ () >

T d T d
< M3L2/b(s)—s + MyLq [a(s)—s < 00,
s s
1 1
which imply
i T (x, y)(1)
im
t—oo |1+ (log?)?~1 + (logt)4—!

Hence 7Q* is equiconvergent at infinity.
Finally, we will prove that the operator 7 is continuous. Let (x;, y;) — oo as n — oo in P. By applying the
Lebesgue dominated convergence and the continuity of f and g guarantee that

o0

s T d
[ a6 3D > [ a0 10 56)S a0 - o0,
1

1

and
o

s T d
/ D5)gCn(5). ya () — / PEIE). YD as o,
1 1

Therefore, we get

(A, yu)(@) — A(x, ¥)(2), B(xn, yn)(t) — B(x, y)()|

- w [ACxn, yn) (@) — ACx, Y)(O)] + | B(xn, yn)(t) — B(x, y)(@)]
= p

rell,o0) 14 (logt)?~! + (logt)4~!

17 Cens yn) = T(x, )|

o0

d
My [ a7 00a(6). 0060 = Fx(6) 36D

1

IA

T d
M [ B)gon (). 35D — g(x(6). 361
1

o0

d
¢ [ 56 lgn(5). 70 ) = gx(5). 76D

1
oo

d
+M4/a(S)|f(xn(S),yn(S)) —f(X(S),y(S))ITS — 0 as n— oo,

1

Thus, the operator 7 is continuous.
By applying Lemma 3.1, we deduce that the operator 7 : P — P is completely continuous. This completes the
proof. O

To prove our main results, we set the following constants

Mg 0} (log §)>7+#) 2

@ £ T(p+ /)1 + (log&)?~" + (log&)7~1)’

mi =

y = L@ i Ai (log )P oo 2
Q & T(q+a)(1+ (ogn?~" + (logn)4~1)’
Az i A (log >+ —2
mz = —— ,
T Q@ & T(g )+ (ogn?~T + (logn)a=T)

i=1
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ma = TP) Z o) (log§)" I HP—2
Q Z T(p+ )1+ (log§)P~T + (log§)7~1)’

oo oo k1§

d d d
ny = /a(s)—s, no :/b(s)—s, n3 = /a(s)—s,
S s s
1 1 &
kan

ds
ng = / b(S)T’ A3z =n3(my +myg), Aa =na(mz+m3),
n

As =ni1(My + My), Ae =na(Mz + M3).

3.1 Existence result via Guo-Krasnoselskii’s fixed point theorem

In this subsection, the existence theorems of at least one positive solution will be established using the Guo-
Krasnoselskii fixed point theorem.

Theorem 3.3. (Guo-Krasnoselskii fixed point theorem) [39] Let E be a Banach space, and let P C E be a cone.
Assume that ®1, ®» are bounded open subsets of E with0 € ®1, ®; C ®», and let Q : P N (P> \®1) > Pbea
completely continuous operator such that:

(D) 10x|| = x|, x e PNIPy, and | Qx| < ||x]|l, x € PN IDP2; or

(i) 1Qx] < x|l x € PN 0Dy, and | Qx| > [x[|, x € P N D>

Then Q has a fixed point in P N (®5 \ ®1).

Theorem 3.4. Let f,g : RT x RT — R be continuous functions. Suppose that there exist positive constants
p1 < p2, and 01 € (A;l,oo), 0> € (Azl,oo), 03 € (O,As_l) and 04 € (O,Agl). In addition, assume that the
following conditions hold:

6 b2p1 ,
(H3)f(x.y) = =22 for (x.3) € [0.p1] x (0. pr] and g(x. y) = =% for (x.7) € [0. p1] x [0, pul;
0302 0402

(Ha) f(x.y) = Jor (x.y) €0, p2] x [0, p2] and g(x. y) <
Then, the problem (4) has at least one positive solution (x, y) such that

for (x,y) € [0, p2] x [0, p2].

p1 <[, VI < pa2.

Proof. Tt follows from Lemma 3.2 that the operator 7 : P — P is completely continuous. Define &1 = {(x,y) €
E : ||(x,»)] < p1}. Hence, for any (x,y) € P N dP;, we have 0 < x(z) < p; and 0 < y(¢) < pp for all
t € [1, 00). From assumption (H3) and Lemma 2.7, we get

|A(x, y)@)] + |B(x, y)(@)]
tell,o0) I + (log1)?~1 4 (logr)4—1

17 Ce. I =

d
1 [ / G1(t.8)a(s) f(x(s). y(s) 22
N

1

= su
te[lgo) 1+ (logt)?~! + (logr)4—!

7 ds [ d
+/Gz(l,s)b(s)g(x(s)aﬂs))*s+/GS(I,S)b(S)g(X(S)aY(S))*S
) )

1 1

d
4 / G4(t,s)a(s)f(x(s),y(s))—s]
N
1

- 70 inf G1(1.5)a(s) f(x(s), y(s)) ds +7O inf Ga(1.5)b(s)g(x(s). y(s)) ds
— J relgkig11 4+ (logt)?—1 4 (logt)4—1 & relnkanl 1 + (logt)?—1 4 (logt)4—1 &
1 1
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T Gytobg).y(s) ds [ Galt.5)a(s) f(x(s). y(s) ds
+/ retimiam T+ (log)P—1 + (log1)4—1 T*/ et 1 11 (log )P~ 1 (log1)a—1 s
1

ki&
LAy 0 (log )"~ , ds
=70 2T+ B0+ Gogb)? 1 + (logh)ye ) ! iy (AT OO

kan

NORS A (logn)” ™! ds
Y2 L TG an( T Gogn =T ¥ Gog o) n/ S (1 PO YD

kan

ds
T e o T T og =T nf 84, (1.9 (5)(x(5), y(5)

Az i Ai (log )~
Q

i=1

+

k1§

T(p) © a; (log)?™" ds
+— _,; T T B + (ogé)P=T  (ogd)a=T) S/ggj(é,s)a(s)f(x(s)y)’(s))s

1 k1& d 1 kaon d 1 kan d 1 k1& d
S N N S
> Loty / a) %+ Linapi6, / b Z 4 Lmspioy / b)E 4 Lmipi6s / a2
2 Ky 2 Ky 2 Ky 2 Ky
3 n n 3

1 1
= 51\391/01 + 51\49291 > p1,

which implies that || 7 (x, y)|| = || (x, y)| for (x,y) € P N dD;.
Next, we define &2 = {(x,y) € E : |[(x, )| < p2}. Hence, forany (x, y) € PNdP,, wehave 0 < x(t) < p2
and 0 < y(t) < pp forall ¢ € [1, co0). Using the condition (H4), we obtain

1 T ds
Tl = S ey +(10gt)q_1[ 1/ G1(0,9)as) F(x(5), v(5)
n ds T d
4 / Gt $)b()g(x(5). y () 22 + / Gt $)b()g (x(s). y(s) 2
S )
1 1

o0

d
4 / G4(t,s)a(s)f(x(s),y(s))—s]
N
1

o0 o0 o0

1 ds 1 ds 1 ds 1 ds

My 635 / 0% + L0000 / b)Y + L M3000 / b)Y+ a6 / a2

2 s 2 Ky 2 K} 2 K}
1 1 1 1

IA

1 1
= 51\593/02 + §A694P2 < p2.

which leads to || 7 (x, )| < ||(x, y)]|| for (x,y) € P N IPs.
Therefore, by the first part of Theorem 3.3, we deduce that the operator 7 has a fixed point in P N (@5 \ &)
which is a positive solution of problem (4). Thus the problem (4) has at least one positive solution (x, ¥) such that
p1 < [, M < p2.
This completes the proof. O
Similarly to the previous theorem, we can prove the following result.
Theorem 3.5. Let f,g : Rt x Rt — RT be continuous functions. Assume that there exist positive constants

p1 < p2, and 01 € (A3_l,oo), 0, € (Azl,oo), 03 € (0,1\5_1) and 04 € (0, Aé_l). In addition, assume that the
Sfollowing conditions hold:
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%)
(Hs) f(x.3) < BPL for (x.3) € [0, p1] x 0. pr] and g(x. ) < 42X for (x. y) € 0. p1] x [0, pu;

0102 622
(He) f(x.y) = Jor (x,y) € [0, p2] x [0, p2] and g(x., y) = Jor (x,y) € [0, p2] x [0, p2].
Then, the problem (4) has at least one positive solution (x, y) such that

p1 < IGx, )| < p2.

3.2 Existence result via Leggett-Williams fixed point theorem

In this subsection, the existence of at least three positive solutions will be proved using the Leggett-Williams fixed
point theorem.

Definition 3.6. A continuous mapping w : P — [0, 00) is said to be a nonnegative continuous concave functional
on the cone P of a real Banach space E provided that

oAx + (1 =21)y) > ro(x) + (1 —Vo(y)
forallx,y € Pand A € [0, 1].

Leta,b,d > 0 be given constants and define Py = {(x,y) € P : |[(x, )| <d}, Pa ={(x,y) € P : |(x, )| <
dyand P(w,a,b) = {(x,y) € P : o((x.y)) Z a. [[(x, y)| = b}.

Theorem 3.7. (Leggett-Williams fixed point theorem) [40] Let P be a cone in the real Banach space E and ¢ > 0
be a constant. Assume that there exists a concave nonnegative continuous functional @ on P with w(x) < || x| for
all x € Pe. Let Q : P — P, be a completely continuous operator. Suppose that there exist constants 0 < a < b <
d < c¢ such that the following conditions hold:

(i) {x e P(w,b,d) : w(x)> b} # @dand w(Qx) > b forx € P(w,b,d);

(ii) |Ox| < aforx <a;

(iii) w(Qx) > b for x € P(w,b,c) with || Qx| > d.

Then Q has at least three fixed points x1,x2 and x3 in Pc. In addition, ||x1| < a, w(x2) > b, |x3| > a with
w(x3) < b.

Theorem 3.8. Let f, g : RT xRt — R be continuous functions. Suppose that there exist two constants k1, k> > 1
such that [§,k1&] N [n, kan] # @. In addition, assume that there exist positive constants a < b < ¢ satisfying

(H7)f(x.9) < 55— and g(x. ) < 57— for (x.y) € [0.a] x 0.a];

2A5
b b
(915 > gy 0.) > 5 for 5.9 bl
(Ho) f(x.,y) < K and g(x.y) < 7f0r (x,y) €[0,c] x [0, c].

Then, the problem (4) has at least three posmve solutions (x1, y1), (x2, y2) and (x3, y3) such that ||(x1, y1)| < a,
infr, <<z, (x2,¥2)(t) > b and ||(x3,y3)|| > a with inf;, <<, (x3,¥3)(t) < b, where 11 = max{{,n}, 1o =
min{k; &, kon}.

Proof. At first, we will show that the operator 7 : P, — P..For any (x,y) € P, we have ||(x, y)|| < c. Using
the condition (Hog) and Lemma 2.7, we obtain

oo

d
| [ 6165060690560
1

1
T(x, su
17 I = reti ey T+ (log)P—1 + (logr)d—1

(e o)

s [ d
+/Gz(f,S)b(S)g(X(S),J’(S))*S +/Gs(hs)b(s)g(x(s),y(S))*S
S )

1 1
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o0

d
+ / G4(r,s)a(s)f(x(s>,y(s)>S]
S

T Gi(t,s) ds
/ e[l oo) 14 (logt)?=1 + (log1)4— la(s)f(X(s)’y(s))T
Ga(t,s)

+ su
reti ey T+ (log )P + (log1)4

d
—b(5)g(x(5). ()=~

G3(Z,S)

+ sup — —
tell,o0) 1 + (log?)?~1 + (logr)4—!

d
b(s)g(x(s). y(5) =

Gal(t,s)
su
rell ooy 1+ (log)?=1 + (log )41

d
+ a(s) £ (x(5). ¥ (6)

T T3 ”\8

C C C
< —M —— Mbsn —— M3n —— Myn
= 2As 1n1+2A6 22+2A6 32+2A5 4n

= C’
which yields 7 : P — P. Secondly, we let (x, y) € P,. By applying condition (H7), we have

(e 9}

Gi(t,s)
T(x, < su
17 )l 1/ e (g1

d
a(s) f(x(s). y(5) -

oo

GZ(l"s) ds
i / A (s o (Y

T Gi(t,s) ds
/te[l o) 1+ (log1)P—1 + (logt),,_lb(s)g(x(s),J/(s))?
G4(I,S)

+ sup — —
tell,o0) 1 + (log?)?~1 + (logr)?—1

d
a(s) f(x(s). y(5) >

a
—M M —M M.
2A 1111-i-2A 2"2+2A 3"2-i—2A5 4ni

=d.

This means that the condition (i7) of Theorem 3.7 is satisfied.

— 661

Thirdly, we define 1 = max{{, n}, 7o = min{k&, k2n} and also a concave nonnegative continuous functional

w on E by
_ lx@)] + |y ()]
(7)) = Tlfrllfffz 1 + (logt)?—1 + (logt)?—1"
By choosing
(b+o -1 1, @ + <) 1 —1
(x, (1) = ( > (I + (logt)”™" + (logt)?™"), ———(1 + (logt)”~" + (logt)“ )) ;

we deduce that (x, y)(t) € P(w,b,c) and w((x, y)) > b. Hence it follows that {(x, y) € P(w,b,c) : o((x,y)) >
b} # @. Therefore, if (x,y) € P(w,b,c), then we have b < x(t) < cand b < y(t) < c fort € [r1, 12]. Using

condition (Hg) and Lemma 2.7, we obtain

[AQx, )] + [B(x, y)(1)]
ri=<t=t2 1 + (logt)?~1 + (logt)?—!

(T (x, y)(1))

e’}
1

. ds
= T oz T+ (ogr)7—T [/Gl(”s)a(s)f(x(s)’y(s))T
1
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oo

ds T d
4 / Gat.5)b()g(x(5). y () 2 + / Ga(t.9)b()g (x(s). y(s) 2
S S

1 1
foe)

d
4 [ G4(r,s)a(s)f(x<s>,y(s))—”‘]
S
1

o0

>/ . Gi(t.8)a(s) f(x(s), y(s)) ds / . G2(1,5)b(s)g(x(s), y(s)) ds
— J telgkig11 4+ (logt)?~1 + (logr)4—1 s relndanl 1+ (logt)?—1 + (logt)9—1 s
1 1

+7o inf G3(1,5)b(s)g(x(s), y(s)) ds 7 inf Ga(t,8)a(s) f(x(s), y(s)) ds
relnkam 1+ (logt)?P~1 + (logt)4—1 s releki€1 1+ (log2)?—1 + (logt)4—! s

b b
> — —_ _ _
5 3m1n3+2 4m2n4+2 4m3n4+2 3m4n3

=b.

Therefore, w(7T (x, y)) > b for all (x, y) € P(w, b, ¢). This means that the condition (i) of Theorem 3.7 is fulfilled.
Finally, we assume that (x,y)(t) € P(w,b,c) with || T(x,y)| > d, where b < d < c. Then, we have
b<x()<candb < y(t) <cfort € [11, 12]. From condition (Hg) and Lemma 2.7, we get

o0

d
| [ 616900 £x09). 560

1

1
inf
nsi=o 1+ (logr)?~1 + (logt)9—!

o(T(x, y)() =

T ds [ d
+ / Ga(t.$)b(5)g(x(s), y(s) = + f G3(t.5)b(s)g(x(s). y(s) =
N N
1 1

o]

+ [ Gt a6y o) |

1

>7 o Gi9a() [, () _ds +7° o Ga9b© (). ¥(s) ds
— ) relekigl 1+ (logt)?—1 + (logt)d—1 s relnkan 1+ (logt)?~1 + (logt)4—1 s

+7° o Ga)E). v ds +7° o Gal9)a6) f(6).y() ds
relnkan 1+ (logt)?—1 + (log)4—1 & J telg k1811 + (logt)?~1 + (logr)4—! s

1
2A3 3imni 4 274 4\m2 3

It follows that the condition (iii) of Theorem 3.7 is satisfied. Hence, by applying Theorem 3.7, we deduce that

the problem (4) has at least three positive solutions (x1, y1), (x2, y2) and (x3, y3) such that ||(x1,y1)|| < a,
infr, <r <7, (x2, y2)(¢) > b and ||(x3, ¥3)|| > a with infz, <s <, (x3, ¥3)(t) < b. This completes the proof. O

4 Examples

In this section, we present two examples to illustrate our results.
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Example 4.1. Consider the following Hadamard fractional differential system subject to boundary conditions on an
unbounded domain

D3 2x(t) + e f(x(t),y(t)) =0, te(1,00),
D33y (1) +172g(x(1). y(t)) =0, te(l,00),

7 7
x(1) =0, DV2x(c0) = 1‘/2 + I3y (L), (20)
4) 75 4
ﬁ 8\ 1 8 2 8
1) =0, D2/3 :711/3 ° 712/3 ° 714/3 -,
y(1) y(00) 5 X 3 +7 X 3 +JE X 3
where | .
X y
Z_ R 7, 0=<x,y<1/4,
1+y(4 x)+1+ (4 y)“L =xy=l
flx.y) =
6+ e16™Y 4 sin? (( )(f—y));l/4§x,y<oo,
and

m»—

x2 1 4
— + 0<x,y<1/4,
1+x2\a ” 1+y - -

glx,y) =
2+e_Xysin4((x—f)(y—f)) 1/4<x,y < oco.

Here p = 3/2, g = 5/3,a(t) = e I, b(t) = t™2,m = 2,0 =T7/4 A1 = 2/3, a1 = 1/2, A» = 7/5,
o =3/2,n = 3,6 =8/3,01 = ~2/5 1 = 1/3,00 = 1/7, fo = 2/3, 03 = 2//e and B3 = 4/3. We
find that A; = 0.3512388401 and A, = 0.9782224108 which leads to 2 = 0.4564474804 > 0. In addition,
we can compute that M1 = 1.977763776, My = 0.7695054857, M3z = 1.941574800, M4 = 2.143121504,
m1 = 0.2825156640, mr = 0.2371688476, m3 = 0.2332983559, m4 = 0.7105323246, n1 = 0.2193839344 and
ny = 0.5000000000. By choosing k1 = 2 and k> = 3, we also obtain n3 = 0.01925300492, n4 = 0.1451247166,
A3z = 0.01911915781, A4 = 0.06827641958, A5 = 0.9040560259 and Ag = 1.355540143. Observe that the
functions f, g, a and b satisfy the conditions (Hy)-(H>).

Choosing p1 = 1/4, po = 100, 6; = 54 € (A3', 00) = (52.30355908,00), 2 = 16 € (A;!,00) =
(14.64634505,00), 63 = 1 € (0,A5!) = (0,1.106126137) and 64 = 0.5 € (0, Ag') = (0,0.7377133058), we
obtain

0 7
fory =7z 220 and g(xy) =2z 2

for 0 < x,y < 1/4. Also we have

o G
f.y)<50< 22 and g, y)<25<4Tp2

for1/4 <x,y < o0.
Hence the conditions (H3)-(H4) hold. By Theorem 3.4, we conclude that the problem (20) has at least one
positive solution (x, y) such that 1/4 < ||(x, y)|| < 100.

Example 4.2. Consider the following Hadamard fractional differential system subject to boundary conditions on an
unbounded domain

D74x(t) + 173/ f(x(1). y(1)) =0, 1 €(1,00),
D3y (t) + e~ g(x(1). y(1)) =0, 1€ (1.00),

x(1) =0, D3/4X(OO) f11/4y(9)+711/2y (9)+\/§I3/4y (2)

13 5 12 5 15 5 1)
3 7 2 7 1 7
1)=0, D*> LAY 3 VETOY (A A -V e 135 (.
ro »(e) 16 *5)F NG \3) T 32 3

3
714/5 -
Tl Y\3

’
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where 3 3 3
X y
o — | = —0<x,y <3/5,
5(1+x)(5 x)+5(1+y)(5 y)+1oo =x.y=3/
flx,y) = ie_lx_y|+3 x—é +2 y—§ ; 3/5<x,y<7/5
’ 100 5 5)° - ’
403 7
100 + e~ T/D=W) gip2 (g —x); 7/5<x,y < oo,
and
3 3
Xy g—x g—y +2; 0<x,y <3/5,

3 3
glx,y) = 2e_|x2—y2| + 230 (x — g) + 220 (y — g) 13/5<x,y<17/5,

7
362 + ¢ 2((7/5)=X) Gjp4 (g — y) ; 7/5<x,y < oo.

Here p = 7/4,q = 9/5,a(t) =t 34, b(t) = e 2, m =3,n=9/5 11 = /13,01 = 1/4, 1o = 7/12,
o =1/2, A3 = /2/15,00 =3/4,n =4, =7/3,01 = 3/16, B1 = 1/5,00 = 2//5, B2 = 2/5, 03 = 1/e2
and B3 = 3/5, 04 = 3/87 and B4 = 4/5. We find that A1 = 0.3324581038 and A» = 0.8725814055 which
leads to 2 = 0.5659031627 > 0. In addition, we can compute that M; = 1.645835954, M> = 0.5874823216,
M3 = 1.624063246, M4 = 1.541927070, m; = 0.1785392532, mo = 0.1696242483, m3 = 0.1547484152,
my4 = 0.4894898091, n 1.333333333 and np = 0.04890051071. By choosing k1 = 4 and kp = 5, it is
easy to see that [£,k1£] N [, kan] # @. Then we also obtain n3 = 0.4565504861, n4 = 0.006160413528, A3z =
0.3049889931, A4 = 0.001998269744, As = 4.250350698 and Ag¢ = 0.1081457077. From above information,
the conditions (H1)-(H>) are fulfilled.
Choosinga = 3/5,b = 7/5, c = 80, we get

F(x.y) <0.06600000000 and g(x,y) < 2.008100000000,

which yields for 0 < x,y < 3/5,

f(x,y) < 0.07058241103 = —— and  g(t, x, y) < 2.774035201 = ——.
2A5 2A6

In addition, we obtain
f(x,y) > 4.030000000 and g(x,y) > 362.000000,

which leads to

b b
f(x,y) >2.295164796 = —— and g(x,y) > 350.3030570 = ——,
2A5 2A4

for 7/5 < x,y < 80. Also we have for 0 < x, y < 80.

c c
,y) <9.410988138 = — d ,¥) <369.8713601 = —.
fx.y) = s g(x.y) 2he
It is easy to see that t1 = max{&, n} = 7/3, 1o = min{k 1§, kan} = 9.
Therefore, the conditions (H7)-(Hg) of Theorem 3.8 hold. Applying Theorem 3.8, we deduce that the
problem (21) has at least three positive solutions (xy, y1), (x2, y2) and (x3, y3) such that ||(x1,y1)|| < 3/5,
inf7/3<r<9(x2, y2)(t) > 7/5 and ||(x3, y3)|| > 3/5 with inf7,/3<;<9(x3, y3)(¢) < 7/5.
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