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Abstract

This paper investigates the existence of nonnegative multiple solutions for nonlinear

fractional differential equations of Hadamard type, with nonlocal fractional integral

boundary conditions on an unbounded domain by means of Leggett-Williams and

Guo-Krasnoselskii’s fixed point theorems. Two examples are discussed for illustration

of the main work.
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1 Introduction

Fractional calculus has gained considerable attention from both theoretical and the ap-

plied points of view in recent years. There are numerous applications in a variety of fields

such as electrical networks, chemical physics, fluid flow, economics, signal and image pro-

cessing, viscoelasticity, porous media, aerodynamics, modeling for physical phenomena

exhibiting anomalous diffusion, and so on. In contrast to integer-order differential and

integral operators, fractional-order differential operators are nonlocal in nature and pro-

vide the means to look into hereditary properties of several materials and processes. The

monographs [–] are commonly cited for the theory of fractional derivatives and inte-

grals and applications to differential equations of fractional order. For more details and

examples, see [–] and the references therein.

However, it has been noticed that most of the work on the topic is concerned with

Riemann-Liouville or Caputo type fractional differential equations. Besides these frac-

tional derivatives, another kind of fractional derivatives found in the literature is the

fractional derivative due to Hadamard introduced in  [], which differs from the

aforementioned derivatives in the sense that the kernel of the integral in the definition

of Hadamard derivative contains logarithmic function of arbitrary exponent. A detailed

description of Hadamard fractional derivative and integral can be found in [, –].

Boundary value problems on infinite intervals appear often in applied mathematics and

physics, such as in unsteady flow of gas through a semi-infinite porousmedium, the theory

of drain flows, etc.More examples and a collection of works on the existence of solutions

of boundary value problems on infinite intervals for differential, difference and integral
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equations may be found in themonographs [, ]. For boundary value problems of frac-

tional order on infinite intervals we refer to [–].

Zhao andGe [] studied the existence of unbounded solutions for the following bound-

ary value problem on the infinite interval:

Dα
u(t) + f

(

t,u(t)
)

= ,  < α ≤ , t ∈ [,∞), (.)

u() = , lim
t→∞

Dα–
 u(t) = βu(ξ ), (.)

where Dα
 denotes Riemann-Liouville fractional derivative of order α, and  < β , ξ < ∞.

Zhang et al. [] studied the existence of nonnegative solutions for the following bound-

ary value problem for fractional differential equations with nonlocal boundary conditions

on unbounded domains:

Dα
u(t) + f

(

t,u(t)
)

= ,  < α ≤ , t ∈ [,∞), (.)

Iα– u() = , lim
t→∞

Dα–
 u(t) = βIα– u(η), (.)

where Dα
 denotes Riemann-Liouville fractional derivative of order α, f ∈ C([,∞) ×

R,R+) and  < β ,η <∞. The Leray-Schauder nonlinear alternative is used.

Liang and Zhang [] used a fixed-point theorem for operators on a cone, proved the

existence of positive solutions to the following fractional boundary value problem:

Dα
u(t) + f

(

t,u(t)
)

= ,  < α ≤ , t ∈ [,∞), (.)

u() = u′() = , lim
t→∞

Dα–
 u(t) =

m–
∑

i=

βiu(ξi), (.)

where Dα
 denotes Riemann-Liouville fractional derivative of order α, f ∈ C([,∞) ×

R,R+),  < ξ < ξ < · · · < ξm– <∞, βi ≥ , i = , , . . . ,m – , with  <
∑m–

i= βiξ
α–
i < Ŵ(α).

Recently in [] we studied a new class of boundary value problems on fractional differ-

ential equations with m-point Erdélyi-Kober fractional integral boundary conditions on

an infinite interval of the form

Dα
u(t) + f

(

t,u(t)
)

= ,  < α ≤ , t ∈ (,∞), (.)

u() = , Dα–
 u(∞) =

m–
∑

i=

βiI
γi ,δi
ηi

u(ξi), (.)

where Dα
 denotes the Riemann-Liouville fractional derivative of order α, I

γi ,δi
ηi is the

Erdélyi-Kober fractional integral of order δi >  with ηi > , γi ∈ R, i = , , . . . ,m – ,

βi ∈R, and ξi ∈ (,∞), i = , , . . . ,m– are given constants. We proved the existence and

uniqueness of unbounded solution of the boundary value problem (.)-(.) by using the

Leray-Schauder nonlinear alternative and Banach contraction principle.

In this paper, we aim to investigate the existence criteria of positive solutions for frac-

tional differential equations of Hadamard type, with integral boundary condition on infi-

nite intervals. Precisely, we consider the following boundary value problem for Hadamard
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fractional differential equations:

Dαu(t) + a(t)f
(

u(t)
)

= ,  < α ≤ , t ∈ (,∞), (.)

u() = , Dα–u(∞) =

m
∑

i=

λiI
βiu(η), (.)

where Dα denotes the Hadamard fractional derivative of order α, η ∈ (,∞), and Iβi is the

Hadamard fractional integral of order βi > , i = , , . . . ,m, and λi ≥ , i = , , . . . ,m are

given constants.

To the best of our knowledge, there are no papers devoted to the study of positive so-

lutions for Hadamard fractional differential equations on infinite intervals; we fill the gap

in this paper. As we know, [,∞) is noncompact. In the literature a special Banach space

were introduced. Unfortunately this Banach space is not suitable for Hadamard fractional

differential equations. In order to overcome this difficulty, a special Banach space is in-

troduced so that we can establish some inequalities, which guarantee that the functionals

defined on [,∞) have better properties. Applying first the well-known Leggett-Williams

fixed point theorem, we obtain a new result on the existence of at least three distinct non-

negative solutions under some conditions. Next we prove the existence of at least one

positive solution by using Guo-Krasnoselskii’s fixed point theorem.

The rest of the paper is organized as follows: In Section , we present some preliminaries

and lemmas that will be used to prove our main results. We also obtain the corresponding

Green’s function and some of its properties. The main result is formulated and proved in

Sections  and . Especially in Section  we prove the existence of at least three distinct

nonnegative solutions while, in Section , we prove the existence of at least one positive

solution. Examples illustrating our results are presented in Section .

2 Preliminaries

In this section, we introduce some notations and definitions of fractional calculus [] and

present preliminary results needed in our proofs later.

Definition . [] The Hadamard fractional integral of order q for a function g is defined

as

Iqg(t) =


Ŵ(q)

∫ t



(

log
t

s

)q–
g(s)

s
ds, q > ,

provided the integral exists.

Definition . [] The Hadamard derivative of fractional order q for a function g :

[,∞) →R is defined as

Dqg(t) =


Ŵ(n – q)

(

t
d

dt

)n ∫ t



(

log
t

s

)n–q–
g(s)

s
ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q and log(·) = loge(·).
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Lemma . ([], Property .) If a,α,β >  then

(

Dα
a

(

log
t

a

)β–)

(x) =
Ŵ(β)

Ŵ(β – α)

(

log
x

a

)β–α–

.

Lemma . [, ] Let q >  and x ∈ C[,∞) ∩ L[,∞). Then the Hadamard fractional

differential equation Dqx(t) =  has the solutions

x(t) =

n
∑

i=

ci(log t)q–i,

and the following formula holds:

IqDqx(t) = x(t) +

n
∑

i=

ci(log t)q–i,

where ci ∈R, i = , , . . . ,n, and n –  < q < n.

Lemma . Let h ∈ C[,∞) with  <
∫ ∞


h(s) ds
s
< ∞, and


 = Ŵ(α) –

m
∑

i=

λiŴ(α)

Ŵ(α + βi)
(logη)α+βi– > . (.)

Then the unique solution of the following fractional differential equation:

Dαu(t) + h(t) = , t ∈ (,∞),α ∈ (, ), (.)

subject to the boundary conditions

u() = , Dα–u(∞) =

m
∑

i=

λiI
βiu(η), (.)

is given by the integral equation

u(t) =

∫ ∞



G(t, s)h(s)
ds

s
, (.)

where

G(t, s) = g(t, s) +

m
∑

i=

λi(log t)α–


Ŵ(α + βi)
gi(η, s) (.)

and

g(t, s) =


Ŵ(α)

⎧

⎨

⎩

(log t)α– – (log t
s
)α–,  ≤ s ≤ t <∞,

(log t)α–,  ≤ t ≤ s <∞,
(.)

gi(η, s) =

⎧

⎨

⎩

(logη)α+βi– – (log
η

s
)α+βi–,  ≤ s ≤ η <∞,

(logη)α+βi–,  ≤ η ≤ s <∞.
(.)
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Proof Applying the Hadamard fractional integral of order α to both sides of (.), we have

u(t) = c(log t)α– + c(log t)α– –


Ŵ(α)

∫ t



(

log
t

s

)α–

h(s)
ds

s
, (.)

where c, c ∈R.

The first condition of (.) implies c = . Therefore,

u(t) = c(log t)α– –


Ŵ(α)

∫ t



(

log
t

s

)α–

h(s)
ds

s
. (.)

In accordance with Lemma ., we have

Dα–u(t) = cŴ(α) –

∫ t



h(s)
ds

s
.

The second condition of (.) leads to

c =





(

∫ ∞



h(s)
ds

s
–

m
∑

i=

λi

Ŵ(α + βi)

∫ η



(

log
η

s

)α+βi–

h(s)
ds

s

)

, (.)

where 
 is defined by (.). Therefore, the unique solution of fractional boundary value

problem (.)-(.) is

u(t) =
(log t)α–




∫ ∞



h(s)
ds

s
–

m
∑

i=

λi(log t)α–


Ŵ(α + βi)

∫ η



(

log
η

s

)α+βi–

h(s)
ds

s

–


Ŵ(α)

∫ t



(

log
t

s

)α–

h(s)
ds

s

=
(log t)α–Ŵ(α)

Ŵ(α) –
∑m

i=
λiŴ(α)
Ŵ(α+βi)

(logη)α+βi–

∫ ∞



h(s)

Ŵ(α)

ds

s

–

m
∑

i=

λi(log t)α–


Ŵ(α + βi)

∫ η



(

log
η

s

)α+βi–

h(s)
ds

s
–



Ŵ(α)

∫ t



(

log
t

s

)α–

h(s)
ds

s

=
(log t)α–(Ŵ(α) –

∑m
i=

λiŴ(α)
Ŵ(α+βi)

(logη)α+βi– +
∑m

i=
λiŴ(α)
Ŵ(α+βi)

(logη)α+βi–)

Ŵ(α) –
∑m

i=
λiŴ(α)
Ŵ(α+βi)

(logη)α+βi–

×
∫ ∞



h(s)

Ŵ(α)

ds

s
–

m
∑

i=

λi(log t)α–


Ŵ(α + βi)

∫ η



(

log
η

s

)α+βi–

h(s)
ds

s

–


Ŵ(α)

∫ t



(

log
t

s

)α–

h(s)
ds

s

= (log t)α–
∫ ∞



h(s)

Ŵ(α)

ds

s
+

m
∑

i=

λi(log t)α–


Ŵ(α + βi)
(logη)α+βi–

∫ ∞



h(s)
ds

s

–

m
∑

i=

λi(log t)α–


Ŵ(α + βi)

∫ η



(

log
η

s

)α+βi–

h(s)
ds

s

–


Ŵ(α)

∫ t



(

log
t

s

)α–

h(s)
ds

s



Thiramanus et al. Advances in Difference Equations  ( 2016)  2016:83 Page 6 of 18

=


Ŵ(α)

∫ t



[

(log t)α– –

(

log
t

s

)α–]

h(s)
ds

s
+



Ŵ(α)

∫ ∞

t

(log t)α–h(s)
ds

s

+

m
∑

i=

λi(log t)α–


Ŵ(α + βi)

∫ η



[

(logη)α+βi– –

(

log
η

s

)α+βi–
]

h(s)
ds

s

+

m
∑

i=

λi(log t)α–


Ŵ(α + βi)

∫ ∞

η

(logη)α+βi–h(s)
ds

s

=

∫ ∞



g(t, s)h(s)
ds

s
+

m
∑

i=

λi(log t)α–


Ŵ(α + βi)

∫ ∞



gi(η, s)h(s)
ds

s

=

∫ ∞



G(t, s)h(s)
ds

s
.

The proof is completed. �

Lemma . The Green’s function G(t, s) defined by (.) satisfies the following conditions:

(C) G(t, s) is a continuous function for (t, s) ∈ [,∞)× [,∞);

(C) G(t, s)≥  for all s, t ∈ [,∞);

(C)
G(t,s)

+(log t)α–
≤ 

Ŵ(α)
+

∑m
i=

λigi(η,s)

Ŵ(α+βi)

for all s, t ∈ [,∞);

(C) minη≤t≤kη
G(t,s)

+(log t)α–
≥

∑m
i=

λi(logη)α–gi(η,s)


Ŵ(α+βi)(+(logη)α–)
for k >  and s ∈ [,∞).

Proof It is easy to check that (C) and (C) hold.

To prove (C), we have, for s, t ∈ [,∞),

G(t, s)

 + (log t)α–
=

g(t, s)

 + (log t)α–
+

m
∑

i=

λi(log t)α–gi(η, s)


Ŵ(α + βi)( + (log t)α–)

≤


Ŵ(α)
·

(log t)α–

 + (log t)α–
+

m
∑

i=

λi(log t)α–gi(η, s)


Ŵ(α + βi)( + (log t)α–)

≤


Ŵ(α)
+

m
∑

i=

λigi(η, s)


Ŵ(α + βi)
.

To prove (C), from g(t, s) ≥  and gi(η, s)≥ , i = , , . . . ,m, for all s, t ∈ [,∞), we have,

for k > ,

min
η≤t≤kη

G(t, s)

 + (log t)α–
= min

η≤t≤kη

[

g(t, s)

 + (log t)α–
+

m
∑

i=

λi(log t)α–gi(η, s)


Ŵ(α + βi)( + (log t)α–)

]

≥ min
η≤t≤kη

g(t, s)

 + (log t)α–
+ min

η≤t≤kη

m
∑

i=

λi(log t)α–gi(η, s)


Ŵ(α + βi)( + (log t)α–)

≥ min
η≤t≤kη

m
∑

i=

λi(log t)α–gi(η, s)


Ŵ(α + βi)( + (log t)α–)

≥
m

∑

i=

λi(logη)α–gi(η, s)


Ŵ(α + βi)( + (logη)α–)

for s ∈ [,∞). The proof is completed. �
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In this paper, we will use the Banach space E, which is defined by

E =

{

u ∈ C
(

[,∞),R
)

: sup
t∈[,∞)

|u(t)|
 + (log t)α–

<∞
}

and is equipped with the norm

‖u‖E = sup
t∈[,∞)

|u(t)|
 + (log t)α–

.

Lemma . (E,‖ · ‖E) is Banach space.

Proof Let {un}∞n= be any Cauchy sequence in the space (E,‖ · ‖E). Then ∀ε > , ∃N > 

such that

‖un – um‖E = sup
t∈[,∞)

|un(t) – um(t)|
 + (log t)α–

< ε

for n,m > N . Therefore, any fixed t ∈ [,∞), we have {un(t)}∞n= is a Cauchy sequence

in R. In this way, we can associate to each t ∈ [,∞) for a unique u(t). Letting n→ ∞, we

obtain |u(t) – um(t)| ≤ ε for all m > N and t ∈ [,∞). It is easy to show that um → u in E

asm → ∞. Therefore, we see that (E,‖ · ‖E) is Banach space. �

Lemma . Let U ⊂ E be a bounded set. Then U is relatively compact in E if the following

conditions hold:

(i) for any u(t) ∈U , u(t)

+(log t)α–
is equicontinuous on any compact interval of [,∞);

(ii) for any ε > , there exists a constant T = T(ε) >  such that

∣

∣

∣

∣

u(t)

 + (log t)α–
–

u(t)

 + (log t)α–

∣

∣

∣

∣

< ε (.)

for any t, t ≥ T and u ∈U .

Proof Evidently, it is sufficient to prove that U is totally bounded. In the following we

divide the proof into two steps.

Step . Let us consider the case t ∈ [,T].

Define

U[,T] =
{

u(t) : u(t) ∈U , t ∈ [,T]
}

.

Then clearly, U[,T], with the norm ‖u‖∞ = supt∈[,T]
|u(t)|

+(log t)α–
is a Banach space. The con-

dition (i) combined with the Arzelá-Ascoli theorem indicates that U[,T] is relatively com-

pact, hence U[,T] is totally bounded, namely, for any ε > , there exist finitely many balls

Bε(ui) such that

U[,T] ⊂
n

⋃

i=

Bε(ui),
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where

Bε(ui) =

{

u(t) ∈U[,T] : ‖u – ui‖∞ = sup
t∈[,T]

∣

∣

∣

∣

u(t)

 + (log t)α–
–

ui(t)

 + (log t)α–

∣

∣

∣

∣

< ε

}

.

Step . Define

Ui =
{

u(t) ∈U : u[,T] ∈ Bε(ui)
}

.

It is clear that U[,T] ⊂
⋃

≤i≤nUi[,T]. Now let us take ui ∈ Ui; then U can be covered by

the balls Bε(ui), i = , , . . . ,n where

Bε(ui) =
{

u(t) ∈U : ‖u – ui‖E < ε
}

.

In fact, for u(t) ∈U , the arguments in Step  imply that there exist i such that u[,T] ∈ Bε(ui).

Hence, for t ∈ [,T], we have

∣

∣

∣

∣

u(t)

 + (log t)α–
–

ui(t)

 + (log t)α–

∣

∣

∣

∣

< ε. (.)

For t ∈ [T , +∞), (.), and (.) yield

∣

∣

∣

∣

u(t)

 + (log t)α–
–

ui(t)

 + (log t)α–

∣

∣

∣

∣

≤
∣

∣

∣

∣

u(t)

 + (log t)α–
–

u(T)

 + (logT)α–

∣

∣

∣

∣

+

∣

∣

∣

∣

u(T)

 + (logT)α–
–

ui(T)

 + (logT)α–

∣

∣

∣

∣

+

∣

∣

∣

∣

ui(T)

 + (logT)α–
–

ui(t)

 + (log t)α–

∣

∣

∣

∣

< ε + ε + ε = ε. (.)

Equations (.) and (.) show that ‖u(t) – ui(t)‖E < ε. Therefore, U is totally bounded

and Lemma . is proved. �

We define the cone P ⊂ E by

P =
{

u ∈ E : u(t) ≥  on [,∞)
}

,

and the operator T : P → E by

Tu(t) =

∫ ∞



G(t, s)a(s)f
(

u(s)
)ds

s
, t ∈ [,∞), (.)

where G(t, s) defined by (.).

Throughout this paper, we assume that the following conditions hold:

(A) f ∈ C([,∞), [,∞)), f (u) =  on any subinterval of (,∞) and f (( + (log t)α–)u) is

bounded on [,∞);
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(A) a : [,∞) → [,∞) is not identical zero on any closed subinterval of [,∞) and

 <

∫ ∞



a(s)
ds

s
< ∞.

Lemma . Let (A) and (A) hold. Then T : P → P is completely continuous.

Proof We divide the proof into four steps.

Step :We show that T is uniformly bounded on P.

From the definition of E, we can choose r such that supn∈N ‖un‖E < r. Let Br =

sup{f (( + (log t)α–)u),u ∈ [, r]} and � be any bounded subset of P, then there exists

r >  such that ‖u‖E ≤ r for all u ∈ �. From (C), it follows that

‖Tu‖E = sup
t∈[,∞)



 + (log t)α–

∣

∣

∣

∣

∫ ∞



G(t, s)a(s)f
(

u(s)
)ds

s

∣

∣

∣

∣

≤
∫ ∞



(



Ŵ(α)
+

m
∑

i=

λigi(η, s)


Ŵ(α + βi)

)

a(s)f
(

u(s)
)ds

s

≤
(



Ŵ(α)
+

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)

)

Br

∫ ∞



a(s)
ds

s
< ∞

for u ∈ �. Therefore T� is uniformly bounded.

Step :We show that T is equicontinuous on any compact interval of [,∞).

For any S > , t, t ∈ [,S], and u ∈ �, without loss of generality, we assume that t < t.

In fact,

∣

∣

∣

∣

Tu(t)

 + (log t)α–
–

Tu(t)

 + (log t)α–

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞



G(t, s)

 + (log t)α–
a(s)f

(

u(s)
)ds

s
–

∫ ∞



G(t, s)

 + (log t)α–
a(s)f

(

u(s)
)ds

s

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∞



(

g(t, s)

 + (log t)α–
–

g(t, s)

 + (log t)α–

)

a(s)f
(

u(s)
)ds

s

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ ∞



(

(log t)
α–

 + (log t)α–
–

(log t)
α–

 + (log t)α–

) m
∑

i=

λigi(η, s)


Ŵ(α + βi)
a(s)f

(

u(s)
)ds

s

∣

∣

∣

∣

∣

≤
∫ ∞



∣

∣

∣

∣

g(t, s)

 + (log t)α–
–

g(t, s)

 + (log t)α–

∣

∣

∣

∣

a(s)f
(

u(s)
)ds

s

+

∫ ∞



∣

∣

∣

∣

g(t, s)

 + (log t)α–
–

g(t, s)

 + (log t)α–

∣

∣

∣

∣

a(s)f
(

u(s)
)ds

s

+

∫ ∞



∣

∣

∣

∣

(log t)
α–

 + (log t)α–
–

(log t)
α–

 + (log t)α–

∣

∣

∣

∣

m
∑

i=

λigi(η, s)


Ŵ(α + βi)
a(s)f

(

u(s)
)ds

s

=

∫ ∞



∣

∣

∣

∣

g(t, s)

 + (log t)α–
–

g(t, s)

 + (log t)α–

∣

∣

∣

∣

a(s)f
(

u(s)
)ds

s

+

∫ ∞



(log t)
α– – (log t)

α–

( + (log t)α–)( + (log t)α–)
g(t, s)a(s)f

(

u(s)
)ds

s

+

∫ ∞



(log t)
α– – (log t)

α–

( + (log t)α–)( + (log t)α–)

m
∑

i=

λigi(η, s)


Ŵ(α + βi)
a(s)f

(

u(s)
)ds

s
.
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We now consider

∫ ∞



∣

∣

∣

∣

g(t, s)

 + (log t)α–
–

g(t, s)

 + (log t)α–

∣

∣

∣

∣

a(s)f
(

u(s)
)ds

s

=

∫ t



∣

∣

∣

∣

g(t, s)

 + (log t)α–
–

g(t, s)

 + (log t)α–

∣

∣

∣

∣

a(s)f
(

u(s)
)ds

s

+

∫ t

t

∣

∣

∣

∣

g(t, s)

 + (log t)α–
–

g(t, s)

 + (log t)α–

∣

∣

∣

∣

a(s)f
(

u(s)
)ds

s

+

∫ ∞

t

∣

∣

∣

∣

g(t, s)

 + (log t)α–
–

g(t, s)

 + (log t)α–

∣

∣

∣

∣

a(s)f
(

u(s)
)ds

s

≤


Ŵ(α)

∫ t



(log t)
α– – (log t)

α– + (log t
s
)α– – (log t

s
)α–

 + (log t)α–
a(s)f

(

u(s)
)ds

s

+


Ŵ(α)

∫ t

t

(log t)
α– – (log t)

α– + (log t
s
)α–

 + (log t)α–
a(s)f

(

u(s)
)ds

s

+


Ŵ(α)

∫ ∞

t

(log t)
α– – (log t)

α–

 + (log t)α–
a(s)f

(

u(s)
)ds

s

→  uniformly as t → t. (.)

Similarly, we have

∫ ∞



(log t)
α– – (log t)

α–

( + (log t)α–)( + (log t)α–)
g(t, s)a(s)f

(

u(s)
)ds

s
→  (.)

uniformly as t → t, and

∫ ∞



(log t)
α– – (log t)

α–

( + (log t)α–)( + (log t)α–)

m
∑

i=

λigi(η, s)


Ŵ(α + βi)
a(s)f

(

u(s)
)ds

s
→  (.)

uniformly as t → t.

Hence, from (.), (.), and (.), we get

∣

∣

∣

∣

Tu(t)

 + (log t)α–
–

Tu(t)

 + (log t)α–

∣

∣

∣

∣

→  uniformly as t → t.

Thus T� is equicontinuous on [,∞).

Step :We show that T is equiconvergent at ∞.

For any u ∈ �, we have

∫ ∞



a(s)f
(

u(s)
)ds

s
≤ Br

∫ ∞



a(s)
ds

s
< ∞

and

lim
t→∞

∣

∣

∣

∣

(Tu)(t)

 + (log t)α–

∣

∣

∣

∣

= lim
t→∞

∣

∣

∣

∣



 + (log t)α–

∫ ∞



G(t, s)a(s)f
(

u(s)
)ds

s

∣

∣

∣

∣
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≤ lim
t→∞

∫ ∞



(



Ŵ(α)
·

(log t)α–

 + (log t)α–
+

(log t)α–

 + (log t)α–
·

m
∑

i=

λigi(η, s)


Ŵ(α + βi)

)

a(s)f
(

u(s)
)ds

s

≤
∫ ∞



(



Ŵ(α)
+

m
∑

i=

λigi(η, s)


Ŵ(α + βi)

)

a(s)f
(

u(s)
)ds

s

≤
(



Ŵ(α)
+

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)

)

Br

∫ ∞



a(s)
ds

s

< ∞.

Hence, T� is equiconvergent at infinity.

Step :We show that T is continuous.

Let un → u as → ∞ in P. We have

∫ ∞



a(s)f
(

u(s)
)ds

s
< ∞.

Hence the Lebesgue dominated convergence and the continuity of f guarantee that

∫ ∞



a(s)f
(

un(s)
)ds

s
→

∫ ∞



a(s)f
(

u(s)
)ds

s
as n→ ∞.

Therefore, we get

‖Tun – Tu‖E

= sup
t∈[,∞)



 + (log t)α–
|Tun – Tu|

= sup
t∈[,∞)

∣

∣

∣

∣

∫ ∞



G(t, s)

 + (log t)α–
a(s)

[

f
(

un(s)
)

– f
(

u(s)
)]ds

s

∣

∣

∣

∣

≤
(



Ŵ(α)
+

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)

)

∣

∣

∣

∣

∫ ∞



a(s)f
(

un(s)
)ds

s
–

∫ ∞



a(s)f
(

u(s)
)ds

s

∣

∣

∣

∣

→  as n→ ∞.

So, T is continuous.

Using Lemma ., we see that T : P → P is completely continuous. The proof is com-

pleted. �

3 Existence of at least three positive solutions

In this section we use the Leggett-Williams fixed point theorem to prove the existence of

at least three positive solutions.

For convenience, we denote

M =

(



Ŵ(α)
+

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)

)

∫ ∞



a(s)
ds

s
> ,

m =

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)( + (logη)α–)

∫ kη

η

a(s)
ds

s
> .
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Definition . A continuous mapping θ : P → [,∞) is said to be a nonnegative continu-

ous concave functional on the cone P of a real Banach space E provided that

θ
(

λu + ( – λ)v
)

≥ λθ (u) + ( – λ)θ (v)

for all u, v ∈ P and λ ∈ [, ].

Let a,b,d >  be constants. We defined Pd = {u ∈ P : ‖u‖ < d}, Pd = {u ∈ P : ‖u‖ ≤ d},
and P(θ ,a,b) = {u ∈ P : θ (u) ≥ a,‖u‖ ≤ b}.

Theorem . [] Let P be a cone in the real Banach space E and c >  be a constant.

Assume that there exists a concave nonnegative continuous functional θ on P with θ (u) ≤
‖u‖ for all u ∈ Pc. Let T : Pc → Pc be a completely continuous operator. Suppose that there

exist constants  < a < b < d ≤ c such that the following conditions hold:

(i) {u ∈ P(θ ,b,d) : θ (u) > b} = ∅ and θ (Tu) > b for u ∈ P(θ ,b,d);

(ii) ‖Tu‖ < a for u≤ a;

(iii) θ (Tu) > b for u ∈ P(θ ,b, c) with ‖Tu‖ > d.

Then T has at least three fixed points u, u, and u in Pc. Furthermore, ‖u‖ < a, b < θ (u),

a < ‖u‖ with θ (u) < b.

Theorem . Suppose conditions (A) and (A) hold. Let  < a < b < d ≤ c and suppose

that f satisfies the following conditions:

(A) f (( + (log t)α–)u) < c
M

for all (t,u) ∈ [,∞)× [, c];

(A) f (( + (log t)α–)u) > b
m
for all (t,u) ∈ [η,kη]× [b, c];

(A) f (( + (log t)α–)u) < a
M

for all (t,u) ∈ [,∞)× [,a].

Then fractional boundary value problem (.)-(.) has at least three positive solutions u,

u, and u satisfying

‖u‖E < a, b < θ (u)

and

a < ‖u‖E with θ (u) < b.

Proof We will show that the conditions of the Leggett-Williams fixed point theorem are

satisfied for the operator T defined by (.). We defined a nonnegative functional on E

by

θ (u) = min
η≤t≤kη

u(t)

 + (log t)α–
.

For u ∈ Pc, we have ‖u‖E ≤ c, that is,

 ≤
u(t)

 + (log t)α–
≤ c for t ∈ [,∞).
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Then assumption (A) implies

f (u) <
c

M
for (t,u) ∈ [,∞)× [, c].

Therefore,

‖Tu‖E = sup
t∈[,∞)



 + (log t)α–

∣

∣

∣

∣

∫ ∞



G(t, s)a(s)f
(

u(s)
)ds

s

∣

∣

∣

∣

<

(



Ŵ(α)
+

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)

)

c

M

∫ ∞



a(s)
ds

s
= c.

Hence, T : Pc → Pc and by Lemma ., T is completely continuous. It follows from con-

dition (A), using the above argument, that if u ∈ Pa then ‖Tu‖E < a. Therefore, condition

(ii) of Theorem . holds.

Let

u∗(t) =
b + c



(

 + (log t)α–
)

, t ∈ [,∞).

It is obvious that u∗(t) ∈ P and ‖u∗‖ = b+c


< c. From the definition of θ (u), then

θ
(

u∗) =
b + c


> b.

Hence, we get

u∗ ∈
{

x ∈ P(θ ,b,d) : θ (x) > b
}

= ∅.

Moreover, for u ∈ P(θ ,b,d), it follows that

b ≤
u(t)

 + (log t)α–
≤ c for t ∈ [η,kη].

Then assumption (A) implies

f (u) >
b

m
for (t,u) ∈ [η,kη]× [b, c].

So, we have

θ (Tu) = min
η≤t≤kη

Tu(t)

 + (log t)α–

≥
∫ ∞



min
η≤t≤kη

G(t, s)

 + (log t)α–
a(s)f

(

u(s)
)ds

s

≥
m

∑

i=

λi(logη)α–


Ŵ(α + βi)( + (logη)α–)

∫ ∞



gi(η, s)a(s)f
(

u(s)
)ds

s

≥
m

∑

i=

λi(logη)α–


Ŵ(α + βi)( + (logη)α–)

∫ kη

η

gi(η, s)a(s)f
(

u(s)
)ds

s



Thiramanus et al. Advances in Difference Equations  ( 2016)  2016:83 Page 14 of 18

>

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)( + (logη)α–)

b

m

∫ kη

η

a(s)
ds

s

= b.

Thus θ (Tu) > b for all u ∈ P(θ ,b,d). This shows that condition (i) of Theorem . holds.

Finally, we assume that u ∈ P(θ ,b, c) with ‖Tu‖E > d; then ‖u‖E ≤ c and b ≤ u(t)

+(log t)α–
≤ c

and from assumption (A) we can show θ (Tu) > b. So, condition (iii) of Theorem . is

satisfied. As a consequence of Theorem . implies that boundary value problem (.)-

(.) has at least three positive solutions u, u, and u such that

‖u‖E < a, b < θ (u) and a < ‖u‖E with θ (u) < b.

The proof is completed. �

4 Existence of at least one positive solution

In this section we use the Guo-Krasnoselskii fixed point theorem to prove the existence

of at least one positive solution.

Theorem . [] Let E be a Banach space, and let P ⊂ E be a cone. Assume that 
, 


are open subsets of E with  ∈ 
, 
 ⊂ 
, and let T : P ∩ (
 \ 
) → P be a completely

continuous operator such that:

(i) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂
, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂
; or

(ii) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂
, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂
.

Then T has a fixed point in P ∩ (
 \ 
).

Theorem . Suppose conditions (A) and (A) hold. Let r > r > , ρ ∈ (m–,∞), ρ ∈
(,M–), and suppose that f satisfies the following conditions:

(A) f (( + (log t)α–)u) ≥ ρr for all (t,u) ∈ [,∞)× [, r];

(A) f (( + (log t)α–)u) ≤ ρr for all (t,u) ∈ [,∞)× [, r].

Then fractional boundary value problem (.)-(.) has at least one positive solution u

such that

r < ‖u‖E < r.

Proof We will show that the condition (i) of Theorem . is satisfied. By Lemma ., the

operator T : P → P is completely continuous.

Let � = {u ∈ E : ‖u‖E < r}, then for any u ∈ P ∩ ∂�, we have

 ≤
u(t)

 + (log t)α–
≤ r for all t ∈ [,∞).

Then assumption (A) implies

f (u) ≥ ρr for (t,u) ∈ [,∞)× [, r].



Thiramanus et al. Advances in Difference Equations  ( 2016)  2016:83 Page 15 of 18

Therefore, for t ∈ [,∞), we get

‖Tu‖E = sup
t∈[,∞)



 + (log t)α–

∣

∣

∣

∣

∫ ∞



G(t, s)a(s)f
(

u(s)
)ds

s

∣

∣

∣

∣

≥ min
t∈[η,kη]

∫ ∞



G(t, s)

 + (log t)α–
a(s)f

(

u(s)
)ds

s

≥
∫ ∞



min
t∈[η,kη]

G(t, s)

 + (log t)α–
a(s)f

(

u(s)
)ds

s

≥
m

∑

i=

λi(logη)α+βi–


Ŵ(α + βi)( + (logη)α–)
ρr

∫ kη

η

a(s)
ds

s

≥ r = ‖u‖E for u ∈ P ∩ ∂�. (.)

Let � = {u ∈ E : ‖u‖E < r}, then for any u ∈ P ∩ ∂�, it follows that

 ≤
u(t)

 + (log t)α–
≤ r for all t ∈ [,∞).

For t ∈ [,∞), assumption (A) yields

‖Tu‖E = sup
t∈[,∞)



 + (log t)α–

∣

∣

∣

∣

∫ ∞



G(t, s)a(s)f
(

u(s)
)ds

s

∣

∣

∣

∣

≤
∫ ∞



(



Ŵ(α)
+

m
∑

i=

λigi(η, s)


Ŵ(α + βi)

)

a(s)f
(

u(s)
)ds

s

≤
(



Ŵ(α)
+

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)

)

ρr

∫ ∞



a(s)
ds

s

≤ r = ‖u‖E for u ∈ P ∩ ∂�. (.)

Hence, from (.), (.), and condition (i) of Theorem ., it follows that T has a fixed

point in P∩ (� \ �). Therefore, the boundary value problem (.)-(.) has at least one

positive solution such that

r < ‖u‖E < r.

The proof is completed. �

Similarly to the previous theorem we can show the following theorem.

Theorem . Suppose conditions (A) and (A) hold. Let r > r > , ρ ∈ (m–,∞), ρ ∈
(,M–), and suppose that f satisfies the following conditions:

(A) f (( + (log t)α–)u) ≤ ρr for all (t,u) ∈ [,∞)× [, r];

(A) f (( + (log t)α–)u) ≥ ρr for all (t,u) ∈ [,∞)× [, r].

Then fractional boundary value problem (.)-(.) has at least one positive solution u

such that

r < ‖u‖E < r.
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5 Examples

Example . We consider the following Hadamard fractional differential equation with

nonlocal boundary conditions on an unbounded domain:

{

D

 u(t) + e–tf (u(t)) = , t ∈ (,∞),

u() = , D

 u(∞) = 


I

 u( 


) + πI


 u( 


) + 


I

 u( 


),

(.)

where

f
(

u(t)
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

cos(( 

– u)π ) + 


, u ∈ [, 


],

cos(( 

– u)π ) + 


+  arctan(u – 


), u ∈ [ 


, 

],

cos(( 

– u)π ) + 


+  arctan(u – 


)

+ 


sin(u – 

), u ∈ [ 


,∞).

Setm = , α = /, η = /, k = , a(t) = e–t , λ = /, λ = π , λ = /, β = /, β = /,

β = /, and we can obtain


 = Ŵ(α) –

m
∑

i=

λiŴ(α)

Ŵ(α + βi)
(logη)α+βi– ≈ ..

By direct calculation we can get

M =

(



Ŵ(α)
+

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)

)

∫ ∞



a(s)
ds

s
≈ .,

m =

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)( + (logη)α–)

∫ kη

η

a(s)
ds

s
≈ ..

Choose a = /, b = /, and c = ; then f satisfies

f
((

 + (log t)


)

u
)

≤ . < .≈
a

M
, (t,u) ∈ [,∞)×

[

,




]

,

f
((

 + (log t)


)

u
)

≥ . > .≈
b

m
, (t,u) ∈

[




, 

]

×
[




, 

]

,

f
((

 + (log t)


)

u
)

≤ . < .≈
c

M
, (t,u) ∈ [,∞)× [, ].

Thus, by an application of Theorem . the boundary value problem (.) has at least three

positive solutions u, u, u such that

sup
t∈[,∞)

|u(t)|
 + (log t)




<



,




< min

t∈[  ,]

u(t)

 + (log t)



and




< sup

t∈[,∞)

|u(t)|
 + (log t)




with min
t∈[  ,]

u(t)

 + (log t)



<



.
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Example . We consider the following Hadamard fractional differential equation with

nonlocal boundary conditions on unbounded domain:

{

D

 u(t) + t–f (u(t)) = , t ∈ (,∞),

u() = , D

 u(∞) = I

√
πu() + e–I


 u() + sin()I


 u() +

√
π


I

 u(),

(.)

where

f
(

u(t)
)

=

⎧

⎪

⎨

⎪

⎩

e–u + 


cos( uπ

) + , u ∈ [, ],

e–u + 


cos( uπ

) +  + 

π
arctan(u – )

+  sin( (u+)π


), u ∈ [,∞).

Set m = , α = /, η = , k = , a(t) = t–, λ = , λ = e–, λ = sin(), λ =
√

π/,

β =
√

π , β = /, β = /, β = /, and we can obtain


 = Ŵ(α) –

m
∑

i=

λiŴ(α)

Ŵ(α + βi)
(logη)α+βi– ≈ ..

By direct calculation we can get

M =

(



Ŵ(α)
+

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)

)

∫ ∞



a(s)
ds

s
≈ .,

m =

m
∑

i=

λi(logη)α+βi–


Ŵ(α + βi)( + (logη)α–)

∫ kη

η

a(s)
ds

s
≈ ..

Choose r = , r = , ρ = , and ρ = /; then f satisfies

f
((

 + (log t)


)

u
)

≥  ≥  = ρr, (t,u) ∈ [,∞)× [, ],

f
((

 + (log t)


)

u
)

≤ .≤  = ρr, (t,u) ∈ [,∞)× [, ].

Thus, by an application of Theorem . the boundary value problem (.) has at least one

positive solution u such that

 ≤ sup
t∈[,∞)

|u(t)|
 + (log t)




≤ .

6 Conclusions

We have investigated the existence of nonnegative multiple solutions for nonlinear frac-

tional differential equations of Hadamard type, with nonlocal fractional integral bound-

ary conditions on an unbounded domain. The existence of at least one positive solution is

proved by applying Guo-Krasnoselskii’s fixed point theorem, while the existence of at least

three distinct nonnegative solutions is established by means of the well-known Leggett-

Williams fixed point theorem. For our study a special Banach space was introduced. The

results are well illustrated with the aid of examples. The results reported in this study sig-

nificantly contribute to the study of positive solutions for Hadamard fractional differential

equations on infinite intervals.
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