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Abstract

In this paper, we study the existence of positive solutions for a class of coupled integral boundary value
problems of nonlinear semipositone Hadamard fractional differential equations

Dαu(t) + λf(t, u(t), v(t)) = 0, Dβv(t) + λg(t, u(t), v(t)) = 0, t ∈ (1, e), λ > 0,

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n− 2, u(e) = µ

∫ e

1
v(s)

ds

s
, v(e) = ν

∫ e

1
u(s)

ds

s
,

where λ, µ, ν are three parameters with 0 < µ < β and 0 < ν < α, α, β ∈ (n − 1, n] are two real numbers
and n ≥ 3, Dα, Dβ are the Hadamard fractional derivative of fractional order, and f, g are sign-changing
continuous functions and may be singular at t = 1 or/and t = e. First of all, we obtain the corresponding
Green’s function for the boundary value problem and some of its properties. Furthermore, by means of the
nonlinear alternative of Leray-Schauder type and Krasnoselskii’s fixed point theorems, we derive an interval
of λ such that the semipositone boundary value problem has one or multiple positive solutions for any λ
lying in this interval. At last, several illustrative examples were given to illustrate the main results. c©2015
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1. Introduction

We consider the following coupled integral boundary value problem for systems of nonlinear semipositone
Hadamard fractional differential equations

Dαu(t) + λf(t, u(t), v(t)) = 0, Dβv(t) + λg(t, u(t), v(t)) = 0, t ∈ (1, e), λ > 0,

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n− 2, u(e) = µ

∫ e

1
v(s)

ds

s
, v(e) = ν

∫ e

1
u(s)

ds

s
,

(1.1)

where λ, µ, ν are three parameters with 0 < µ < β and 0 < ν < α, α, β ∈ (n − 1, n] are two real numbers
and n ≥ 3, Dα, Dβ are the Hadamard fractional derivative of fractional order, and f, g are sign-changing
continuous functions and may be singular at t = 1 or/and t = e. To the best knowledge of the author,
there are few papers which deal with the coupled integral boundary value problems for systems of nonlinear
Hadamard fractional differential equations.

Coupled boundary value problems have wide applications in various fields of sciences and engineering,
for example, the Sturm-Liouville problems, heat equation, reaction-diffusion equations, mathematical biol-
ogy and so on. In recent years, there have been some significant developments in the study of ordinary
differential equations and partial differential equations involving fractional derivatives with coupled bound-
ary conditions, as shown by the papers [26, 27, 32, 38, 42, 43] and the references therein. For example, by
mixed monotone method, Cui et al. [15] established sufficient conditions for the existence and uniqueness
of positive solutions to a singular differential system with integral boundary value conditions. By using
the properties of the Green’s function and the Guo-Krasnosel’skii fixed point theorem, Wang et al. [35]
obtained some existence results of positive solutions for higher-order singular semipositone fractional differ-
ential systems with coupled integral boundary conditions and parameters under some conditions concerning
the nonlinear functions.

Due to the fact that fractional-order models are more accurate than integer-order models (that is, there
are more degrees of freedom in the fractional-order models), the subject of fractional differential equations
has recently developed into a interesting topic for many researchers in view of its numerous applications in
the field of physics, engineering, mechanics, chemistry, and so forth. For some recent work on the topic, see
[1, 4, 6, 11, 16, 19, 28, 30, 31, 37]. Specially, the study of coupled systems of fractional order differential
equations has been addressed extensively by several researchers, see [3, 5, 18, 20, 21, 29, 33, 36, 40] and the
references cited therein. For instance, By applying some standard fixed point theorems, Jiang et al. [23]
and Yuan et al. [41] considered the existence of positive solutions to the four-point coupled boundary value
problems for systems of nonlinear semipositone fractional differential equations under different conditions,
respectively. In [20], Hao and Zhai studied the existence of at least one positive solution to a coupled system
of fractional boundary value problems by using Schauder fixed point theorem.

However, we should point out that most of the work on the topic is based on Riemann-Liouville and
Caputo type fractional differential equations in the last few years. In 1892, Hadamard introduced another
kind of fractional derivatives, i.e., Hadamard type fractional differential equations, which differs from the
preceding ones in the sense that the kernel of the integral and derivative contain logarithmic function of
arbitrary exponent. Details and properties of Hadamard fractional derivative and integral can be found
in [12, 13, 14, 17, 22, 24]. Recently, there are some results on Hadamard type fractional differential equa-
tions/inclusions, see [9, 10] and the references cited therein. For example, by applying some standard fixed
point theorems, Ahmad and Ntouyas [7, 8] studied the existence and uniqueness of solutions for fractional
integral boundary value problem involving Hadamard type fractional differential equations/systems with in-
tegral boundary conditions, respectively. In [34], based on some classical fixed point theorems, Thiramanus
et al. investigated the existence and uniqueness of solutions for a fractional boundary value problem involv-
ing Hadamard-type fractional differential equations and nonlocal fractional integral boundary conditions.
In [39], by applying some inequalities associated with Green’s function and Guo-Krasnosel’skii fixed point
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theorems, the author showed the existence of positive solutions for a class of singular four-point coupled
boundary value problem of nonlinear semipositone Hadamard fractional differential equations.

Motivated by the results mentioned above and wide applications of coupled boundary value conditions, we
consider the existence of positive solutions for singular Hadamard fractional differential equations boundary
value problem (1.1). In Section 2, we present some preliminaries and lemmas that will be used to prove our
main results. And we obtain the corresponding Green’s function for boundary value problem (1.1) and some
of its properties. The main theorems are formulated and proved in Section 3. At last, several illustrative
examples were given to illustrate the main results in Section 4.

2. Preliminaries

For the convenience of the reader, we firstly present some basic concepts of Hadamard type fractional
calculus to facilitate analysis of problem (1.1).

Definition 2.1. [24] The Hadamard derivative of fractional order q for a function g : [1,∞)→ R is defined
as

Dqg(t) =
1

Γ(n− q)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−q−1
g(s)

ds

s
, n− 1 < q < n,

where n = [q] + 1, [q] denotes the integer part of the real number q and log(·) = loge(·).

Definition 2.2. [24] The Hadamard fractional integral of order q for a function g : [1,∞)→ R is defined as

Iqg(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
g(s)

ds

s
, q > 0,

provided the integral exists.

Now we derive the corresponding Green’s function for boundary value problem (1.1), and obtain some
properties of the Green’s function.

Lemma 2.3. Let x, y ∈ C[0, 1] be given functions. Then the boundary value problem

Dαu(t) + x(t) = 0, Dβ
q v(t) + y(t) = 0, t ∈ (1, e),

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n− 2, u(e) = µ

∫ e

1
v(s)

ds

s
, v(e) = ν

∫ e

1
u(s)

ds

s
,

(2.1)

has an integral representation
u(t) =

∫ e

1
G1(t, s)x(s)

ds

s
+

∫ e

1
H1(t, s)y(s)

ds

s
,

v(t) =

∫ e

1
G2(t, s)y(s)

ds

s
+

∫ e

1
H2(t, s)x(s)

ds

s
,

(2.2)

where

G1(t, s) =


(log t)α−1(1− log s)α−1(αβ − µν + µν log s)

(αβ − µν)Γ(α)
− (log(t/s))α−1

Γ(α)
, 1 ≤ s ≤ t ≤ e,

(log t)α−1(1− log s)α−1(αβ − µν + µν log s)

(αβ − µν)Γ(α)
, 1 ≤ t ≤ s ≤ e,

(2.3)

G2(t, s) =


(log t)β−1(1− log s)β−1(αβ − µν + µν log s)

(αβ − µν)Γ(β)
− (log(t/s))β−1

Γ(β)
, 1 ≤ s ≤ t ≤ e,

(log t)β−1(1− log s)β−1(αβ − µν + µν log s)

(αβ − µν)Γ(β)
, 1 ≤ t ≤ s ≤ e,

(2.4)

H1(t, s) =
µα(log t)α−1(1− log s)β−1 log s

(αβ − µν)Γ(β)
, H2(t, s) =

νβ(log t)β−1(1− log s)α−1 log s

αΓ(α)
. (2.5)
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Proof. As argued in [24], the solution of Hadamard differential system in (2.1) can be written the following
equivalent integral equations

u(t) = c11(log t)α−1 + c12(log t)α−2 + · · ·+ c1n(log t)α−n − 1

Γ(α)

∫ t

1

(
log

t

s

)α−1
x(s)

ds

s
,

v(t) = c21(log t)β−1 + c22(log t)β−2 + · · ·+ c2n(log t)β−n − 1

Γ(β)

∫ t

1

(
log

t

s

)β−1
y(s)

ds

s
.

(2.6)

From Dj
qu(0) = Dj

qv(0) = 0, 0 ≤ j ≤ n − 2, we have cin = ci(n−1) = · · · = ci2 = 0 (i = 1, 2). Thus, (2.6)
reduces to

u(t) = c11(log t)α−1 − 1

Γ(α)

∫ t

1

(
log

t

s

)α−1
x(s)

ds

s
,

v(t) = c21(log t)β−1 − 1

Γ(β)

∫ t

1

(
log

t

s

)β−1
y(s)

ds

s
.

(2.7)

Using the boundary conditions u(e) = µ
∫ e
1 v(s)dss and v(e) = ν

∫ e
1 u(s)dss , from (2.7), we obtain

c11 = µ

∫ e

1
v(s)

ds

s
+

∫ e

1

(1− log s)α−1

Γ(α)
x(s)

ds

s
,

c21 = ν

∫ e

1
u(s)

ds

s
+

∫ e

1

(1− log s)β−1

Γ(β)
y(s)

ds

s
.

(2.8)

Combining (2.7) and (2.8), we have

u(t) = (log t)α−1
(
µ

∫ e

1
v(s)

ds

s
+

∫ e

1

(1− log s)α−1

Γ(α)
x(s)

ds

s

)
− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1
x(s)

ds

s
,

v(t) = (log t)β−1
(
ν

∫ e

1
u(s)

ds

s
+

∫ e

1

(1− log s)β−1

Γ(β)
y(s)

ds

s

)
− 1

Γ(β)

∫ t

1

(
log

t

s

)β−1
y(s)

ds

s
.

(2.9)

Integrating the above equations (2.9) from 0 to 1, we obtain∫ e

1
u(s)

ds

s
=

∫ e

1
(log t)α−1

(
µ

∫ e

1
v(s)

ds

s
+

∫ e

1

(1− log s)α−1

Γ(α)
x(s)

ds

s

)
dt

t

−
∫ e

1

(
1

Γ(α)

∫ t

1

(
log

t

s

)α−1
x(s)

ds

s

)
dt

t

=
µ

α

∫ e

1
v(s)

ds

s
+

∫ e

1

(1− log s)α−1

αΓ(α)
x(s)

ds

s
−
∫ e

1

(1− log s)α

αΓ(α)
x(s)ds

=
µ

α

∫ e

1
v(s)

ds

s
+

∫ e

1

(1− log s)α−1 log s

αΓ(α)
x(s)

ds

s
,

and ∫ e

1
v(s)

ds

s
=

∫ e

1
(log t)β−1

(
ν

∫ e

1
u(s)

ds

s
+

∫ e

1

(1− log s)β−1

Γ(β)
y(s)

ds

s

)
dt

t

−
∫ e

1

(
1

Γ(β)

∫ t

1

(
log

t

s

)β−1
y(s)

ds

s

)
dt

t

=
ν

β

∫ e

1
u(s)

ds

s
+

∫ e

1

(1− log s)β−1

βΓ(β)
y(s)

ds

s
−
∫ e

1

(1− log s)β

βΓ(β)
y(s)ds

=
ν

β

∫ e

1
u(s)

ds

s
+

∫ e

1

(1− log s)β−1 log s

βΓ(β)
y(s)

ds

s
.
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Solving for
∫ e
1 u(s)dss and

∫ e
1 v(s)dss , we have∫ e

1
u(s)

ds

s
=

αβ

αβ − µν

(
µ

α

∫ e

1

(1− log s)β−1 log s

βΓ(β)
y(s)

ds

s
+

∫ e

1

(1− log s)α−1 log s

αΓ(α)
x(s)

ds

s

)
,∫ e

1
v(s)

ds

s
=

αβ

αβ − µν

(
ν

β

∫ e

1

(1− log s)α−1 log s

αΓ(α)
x(s)

ds

s
+

∫ e

1

(1− log s)β−1 log s

βΓ(β)
y(s)

ds

s

)
.

(2.10)

Combining (2.7), (2.8) and (2.10), we get

u(t) =
µαβ(log t)α−1

αβ − µν

(
ν

β

∫ e

1

(1− log s)α−1 log s

αΓ(α)
x(s)

ds

s
+

∫ e

1

(1− log s)β−1 log s

βΓ(β)
y(s)

ds

s

)
+

∫ e

1

(log t)α−1(1− log s)α−1

Γ(α)
x(s)

ds

s
− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1
x(s)

ds

s

=

∫ e

1

µν(log t)α−1(1− log s)α−1 log s

(αβ − µν)Γ(α)
x(s)

ds

s
+

∫ e

1

(log t)α−1(1− log s)α−1

Γ(α)
x(s)

ds

s

− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1
x(s)

ds

s
+

∫ e

1

µα(log t)α−1(1− log s)β−1 log s

(αβ − µν)Γ(β)
y(s)

ds

s
,

and

v(t) =
ναβ(log t)β−1

αβ − µν

(
µ

α

∫ e

1

(1− log s)β−1 log s

βΓ(β)
y(s)

ds

s
+

∫ e

1

(1− log s)α−1 log s

αΓ(α)
x(s)

ds

s

)
+

∫ e

1

(log t)β−1(1− log s)β−1

Γ(β)
y(s)

ds

s
− 1

Γ(β)

∫ t

1

(
log

t

s

)β−1
y(s)

ds

s

=

∫ e

1

µν(log t)β−1(1− log s)β−1 log s

(αβ − µν)Γ(β)
y(s)

ds

s
+

∫ e

1

(log t)β−1(1− log s)β−1

Γ(β)
y(s)

ds

s

− 1

Γ(β)

∫ t

1

(
log

t

s

)β−1
y(s)

ds

s
+

∫ e

1

νβ(log t)β−1(1− log s)α−1 log s

αΓ(α)
x(s)

ds

s
.

Hence, we have
u(t) =

∫ e

1
G1(t, s)x(s)

ds

s
+

∫ e

1
H1(t, s)y(s)

ds

s
,

v(t) =

∫ e

1
G2(t, s)y(s)

ds

s
+

∫ e

1
H2(t, s)x(s)

ds

s
.

This completes the proof of the lemma.

From Lemma 2.3, the system (1.1) can be expressed the following integral form
u(t) = λ

(∫ e

1
G1(t, s)f(s, u(s), v(s))

ds

s
+

∫ e

1
H1(t, s)g(s, u(s), v(s))

ds

s

)
,

v(t) = λ

(∫ e

1
G2(t, s)g(s, u(s), v(s))

ds

s
+

∫ e

1
H2(t, s)f(s, u(s), v(s))

ds

s

)
.

(2.11)

Lemma 2.4. For t, s ∈ [1, e], the functions G1(t, s) and H1(t, s) defined by (2.3) and (2.5) satisfy

µν

(αβ − µν)Γ(α)
(log t)α−1ρ1(s) ≤ G1(t, s) ≤

max{(αβ − µν)(α− 1) + µν, αβ}
(αβ − µν)Γ(α)

ρ1(s), (2.12)

µν

(αβ − µν)Γ(β)
(log t)α−1ρ2(s) ≤ H1(t, s) ≤

αβ

(αβ − µν)Γ(β)
ρ2(s), (2.13)
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G1(t, s) ≤
max{(αβ − µν)(α− 1) + µν, αβ}

(αβ − µν)Γ(α)
(log t)α−1, H1(t, s) ≤

αβ

(αβ − µν)Γ(β)
(log t)α−1, (2.14)

where

ρ1(s) = (1− log s)α−1 log s, ρ2(s) = (1− log s)β−1 log s. (2.15)

Proof. First, we will show that (2.12) is true. On the one hand, when 1 ≤ s ≤ t ≤ e, we have

G1(t, s) =
(log t)α−1(1− log s)α−1(αβ − µν + µν log s)− (log t− log s)α−1(αβ − µν)

(αβ − µν)Γ(α)

=
(log t)α−1(1− log s)α−1(αβ − µν + µν log s)− (log t)α−1(1− log s/ log t)α−1(αβ − µν)

(αβ − µν)Γ(α)

≥(log t)α−1(1− log s)α−1(αβ − µν + µν log s)− (log t)α−1(1− log s)α−1(αβ − µν)

(αβ − µν)Γ(α)

=
µν(log t)α−1(1− log s)α−1 log s

(αβ − µν)Γ(α)
=

µν

(αβ − µν)Γ(α)
(log t)α−1ρ1(s), t, s ∈ [1, e],

and

G1(t, s) =
(αβ − µν)[(log t− log t log s)α−1 − (log t− log s)α−1] + µν(log t)α−1(1− log s)α−1 log s

(αβ − µν)Γ(α)

≤
(αβ − µν)(α− 1)

∫ log t−log t log s
log t−log s xα−2dx+ µν(log t)α−1(1− log s)α−1 log s

(αβ − µν)Γ(α)

≤(αβ − µν)(α− 1)(log t− log t log s)α−2[(log t− log t log s)− (log t− log s)]

(αβ − µν)Γ(α)

+
µν(log t)α−1(1− log s)α−1 log s

(αβ − µν)Γ(α)

=
(αβ − µν)(α− 1)(log t)α−2(1− log s)α−2(1− log t) log s+ µν(log t)α−1(1− log s)α−1 log s

(αβ − µν)Γ(α)

=
(αβ − µν)(α− 1)(log t)α−2(1− log s)α−2(1− log s) log s+ µν(log t)α−1(1− log s)α−1 log s

(αβ − µν)Γ(α)

≤ [(αβ − µν)(α− 1) + µν](1− log s)α−1 log s

(αβ − µν)Γ(α)

≤max{(αβ − µν)(α− 1) + µν, αβ}
(αβ − µν)Γ(α)

ρ1(s), t, s ∈ [1, e],

On the other hand, when 1 ≤ t ≤ s ≤ e, since 0 < µ < β and 0 < ν < α, we also have

G1(t, s) ≥
µν(log t)α−1(1− log s)α−1 log s

(αβ − µν)Γ(α)
=

µν

(αβ − µν)Γ(α)
(log t)α−1ρ1(s), t, s ∈ [1, e],

and

G1(t, s) =
(log t)α−1(1− log s)α−1(αβ − µν + µν log s)

(αβ − µν)Γ(α)
≤ αβ(log s)α−1(1− log s)α−1

(αβ − µν)Γ(α)

≤αβ(1− log s)α−1 log s

(αβ − µν)Γ(α)
≤ [(αβ − µν)(α− 1) + µν](1− log s)α−1 log s

(αβ − µν)Γ(α)

≤max{(αβ − µν)(α− 1) + µν, αβ}
(αβ − µν)Γ(α)

ρ1(s), t, s ∈ [1, e],

Next we show that (2.13) holds for t, s ∈ [1, e]. In fact, since 0 < µ < β and 0 < ν < α, we get

H1(t, s) ≥
µν(log t)α−1(1− log s)β−1 log s

(αβ − µν)Γ(β)
=

µν

(αβ − µν)Γ(β)
(log t)α−1ρ2(s), t, s ∈ [1, e],
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and

H1(t, s) ≤
αβ(1− log s)β−1 log s

(αβ − µν)Γ(β)
=

αβ

(αβ − µν)Γ(β)
ρ2(s), t, s ∈ [1, e].

Finally, we will prove (2.14) is valid for any t, s ∈ [1, e]. Noticing (1 − log s)α−2(1 − log t) ≤ 1, (1 −
log s)α−1 log s ≤ 1, and (1− log s)β−1 log s ≤ 1, when 1 ≤ s ≤ t ≤ e, we have

G1(t, s) ≤
(αβ − µν)(α− 1)(log t)α−2(1− log s)α−2(1− log t) log s+ µν(log t)α−1(1− log s)α−1 log s

(αβ − µν)Γ(α)

≤(αβ − µν)(α− 1)(log t)α−2(1− log s)α−2(1− log t) log t+ µν(log t)α−1(1− log s)α−1 log s

(αβ − µν)Γ(α)

≤ [(αβ − µν)(α− 1) + µν](log t)α−1

(αβ − µν)Γ(α)

≤max{(αβ − µν)(α− 1) + µν, αβ}
(αβ − µν)Γ(α)

(log t)α−1, t, s ∈ [1, e],

and when 1 ≤ t ≤ s ≤ e, since 0 < µ < β and 0 < ν < α, we also have

G1(t, s) ≤
αβ(log t)α−1

(αβ − µν)Γ(α)
≤ max{(αβ − µν)(α− 1) + µν, αβ}

(αβ − µν)Γ(α)
(log t)α−1, t, s ∈ [1, e].

And we have

H1(t, s) =
µα(log t)α−1(1− log s)β−1 log s

(αβ − µν)Γ(β)
≤ αβ

(αβ − µν)Γ(β)
(log t)α−1, t, s ∈ [1, e].

This completes the proof of the lemma.

Similarly, we have

Lemma 2.5. For t, s ∈ [1, e], the functions G1(t, s) and H1(t, s) defined by (2.4) and (2.5) satisfy

µν

(αβ − µν)Γ(β)
(log t)β−1ρ2(s) ≤ G2(t, s) ≤

max{(αβ − µν)(β − 1) + µν, αβ}
(αβ − µν)Γ(β)

ρ2(s),

µν

(αβ − µν)Γ(α)
(log t)β−1ρ1(s) ≤ H2(t, s) ≤

αβ

(αβ − µν)Γ(α)
ρ1(s),

G2(t, s) ≤
max{(αβ − µν)(β − 1) + µν, αβ}

(αβ − µν)Γ(β)
(log t)β−1, H2(t, s) ≤

αβ

(αβ − µν)Γ(α)
(log t)β−1,

where ρ1(s) and ρ2(s) are defined in (2.15).

Remark 2.6. From Lemmas 2.4 and 2.5, for t, s ∈ [1, e], we have

a(log t)α−1ρ1(s) ≤ G1(t, s) ≤ bρ1(s), G1(t, s) ≤ b(log t)α−1, a(log t)α−1ρ2(s) ≤ H1(t, s) ≤ bρ2(s),
H1(t, s) ≤ b(log t)α−1, a(log t)β−1ρ2(s) ≤ G2(t, s) ≤ bρ2(s), G2(t, s) ≤ b(log t)β−1,

a(log t)β−1ρ1(s) ≤ H2(t, s) ≤ bρ1(s), H2(t, s) ≤ b(log t)β−1,

where

a =
µν

(αβ − µν) max{Γ(α),Γ(β)}
,

b = max

{
max{(αβ − µν)(α− 1) + µν, αβ}

(αβ − µν)Γ(α)
,
max{(αβ − µν)(β − 1) + µν, αβ}

(αβ − µν)Γ(β)

}
.

In the rest of the paper, we always suppose the following assumptions hold:
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(H1) f(t, u, v), g(t, u, v) ∈ C([1, e] × [0,+∞) × [0,+∞), (−∞,+∞)), moreover there exists two functions
q1(t), q2(t) ∈ L1([1, e], (0,+∞)) such that f(t, u, v) ≥ −q1(t) and g(t, u, v) ≥ −q2(t) for any t ∈ [1, e],
u, v ∈ [0,+∞).

(H∗1) f(t, u, v), g(t, u, v) ∈ C((1, e) × [0,+∞) × (0,+∞), (−∞,+∞)), f, g may be singular at t = 1, e,
moreover there exists two functions q1(t), q2(t) ∈ L1((1, e), (0,+∞)) such that f(t, u, v) ≥ −q1(t) and
g(t, u, v) ≥ −q2(t) for any t ∈ (1, e), u, v ∈ [0,+∞).

(H2) f(t, 0, 0) > 0 and g(t, 0, 0) > 0 for t ∈ [1, e].

(H3) There exists [θ1, θ2] ⊂ (1, e) such that lim inf
u↑+∞

min
t∈[θ1,θ2]

f(t,u,v)
u = +∞ and lim inf

v↑+∞
min

t∈[θ1,θ2]
g(t,u,v)

v = +∞.

(H∗3) There exists [θ1, θ2] ⊂ (1, e) such that lim inf
v↑+∞

min
t∈[θ1,θ2]

f(t,u,v)
v = +∞ and lim inf

u↑+∞
min

t∈[θ1,θ2]
g(t,u,v)

u = +∞.

(H4)
∫ e
1 ρi(s)qi(s)

ds
s < +∞ (i = 1, 2),

∫ e
1 ρ1(s)f(s, u, v)dss < +∞,

∫ e
1 ρ2(s)g(s, u, v)dss < +∞ for any u, v ∈

[0,m], m > 0 is any constant.

Lemma 2.7. Assume the condition (H1) or (H∗1) holds, then the boundary value problem

−Dαω1(t) = λq1(t), −Dβω2(t) = λq2(t), t ∈ (1, e), λ > 0,

ω
(j)
1 (1) = ω

(j)
2 (1) = 0, 0 ≤ j ≤ n− 2, ω1(e) = µ

∫ e

1
ω2(s)

ds

s
, ω2(e) = ν

∫ e

1
ω1(s)

ds

s
,

have an unique solution
ω1(t) = λ

(∫ e

1
G1(t, s)q1(s)

ds

s
+

∫ e

1
H1(t, s)q2(s)

ds

s

)
,

ω2(t) = λ

(∫ e

1
G2(t, s)q2(s)

ds

s
+

∫ e

1
H2(t, s)q1(s)

ds

s

)
,

(2.16)

which satisfy
ω1(t) ≤ λb(log t)α−1

∫ e

1
(q1(s) + q2(s))

ds

s
, t ∈ [1, e],

ω2(t) ≤ λb(log t)β−1
∫ e

1
(q1(s) + q2(s))

ds

s
, t ∈ [1, e].

(2.17)

Proof. It follows from Lemma 2.3, Remark 2.6 and the condition (H1) or (H∗1) that (2.16) and (2.17) hold.

Let E = [1, e]× [1, e], then E is a Banach space with the norm

‖(u, v)‖1 = ‖u‖+ ‖v‖, ‖u‖ = max
t∈[1,e]

|u(t)|, ‖v‖ = max
t∈[1,e]

|v(t)|

for any (u, v) ∈ E. Let

P = {(u, v) ∈ E : u(t) ≥ ω(log t)α−1‖u‖, v(t) ≥ ω(log t)β−1‖v‖ for t ∈ [1, e]},

where 0 < ω = a/b < 1. Then P is a cone of E.
Next we only consider the following singular boundary value problem

Dαx(t) + λ(f(t, [x(t)− ω1(t)]
∗, [y(t)− ω2(t)]

∗) + q1(t)) = 0, t ∈ (1, e), λ > 0,

Dβy(t) + λ(g(t, [x(t)− ω1(t)]
∗, [y(t)− ω2(t)]

∗) + q2(t)) = 0, t ∈ (1, e), λ > 0,

x(j)(1) = y(j)(1) = 0, 0 ≤ j ≤ n− 2, x(e) = µ

∫ e

1
y(s)

ds

s
, y(e) = ν

∫ e

1
x(s)

ds

s
,

(2.18)

where a modified function [z(t)]∗ for any z ∈ C[1, e] by [z(t)]∗ = z(t), if z(t) ≥ 0, and [z(t)]∗ = 0, if z(t) < 0.
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Lemma 2.8. If (x, y) ∈ C[1, e] × C[1, e] with x(t) > ω1(t) and y(t) > ω2(t) for any t ∈ (1, e) is a positive
solution of the singular system (2.18), then (x − ω1, y − ω2) is a positive solution of the singular system
(1.1).

Proof. In fact, if (x, y) ∈ C[1, e] × C[1, e] is a positive solution of the singular system (2.18) such that
x(t) > ω1(t) and y(t) > ω2(t) for any t ∈ (1, e], then from (2.18) and the definition of [·]∗, we have

Dαx(t) + λ(f(t, x(t)− ω1(t), y(t)− ω2(t)) + q1(t)) = 0, t ∈ (1, e), λ > 0,

Dβy(t) + λ(g(t, x(t)− ω1(t), y(t)− ω2(t)) + q2(t)) = 0, t ∈ (1, e), λ > 0,

x(j)(1) = y(j)(1) = 0, 0 ≤ j ≤ n− 2, x(e) = µ

∫ e

1
y(s)

ds

s
, y(e) = ν

∫ e

1
x(s)

ds

s
.

(2.19)

Let u = x − ω1 and v = y − ω2, then Dαu(t) = Dαx(t) − Dαω1(t) and Dβv(t) = Dβy(t) − Dβω2(t) for
t ∈ (1, e), which imply that

−Dαu(t) = −Dαx(t) +Dαω1(t) = −Dαx(t)− λq1(t), t ∈ (1, e),

−Dβv(t) = −Dβy(t) +Dβω2(t) = −Dβy(t)− λq2(t), t ∈ (1, e).

Thus (2.19) becomes

Dαu(t) + λf(t, u(t), v(t)) = 0, Dβv(t) + λg(t, u(t), v(t)) = 0, t ∈ (1, e), λ > 0,

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n− 2, u(e) = µ

∫ e

1
v(s)

ds

s
, v(e) = ν

∫ e

1
u(s)

ds

s
,

i.e., (x− ω1, y − ω2) is a positive solution of the singular system (1.1). This proves Lemma 2.8.

Employing Lemma 2.3, the singular system (2.18) can be expressed as

u(t) =λ

∫ e

1
G1(t, s)(f(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q1(s))

ds

s

+ λ

∫ e

1
H1(t, s)(g(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q2(s))

ds

s
, t ∈ [1, e],

v(t) =λ

∫ e

1
G2(t, s)(g(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q2(s))

ds

s

+ λ

∫ e

1
H2(t, s)(f(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q1(s))

ds

s
, t ∈ [1, e].

(2.20)

By a solution of the singular system (2.18), we mean a solution of the corresponding system of integral
equation (2.20). Defined an operator T : P → P by

T (x, y) = (T1(x, y), T2(x, y)),

where operators Ti : P → C[1, e] (i = 1, 2) are defined by

T1(x, y)(t) =λ

∫ e

1
G1(t, s)(f(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q1(s))

ds

s

+ λ

∫ e

1
H1(t, s)(g(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q2(s))

ds

s
, t ∈ [1, e],

T2(x, y)(t) =λ

∫ e

1
G2(t, s)(g(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q2(s))

ds

s

+ λ

∫ e

1
H2(t, s)(f(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q1(s))

ds

s
, t ∈ [1, e].

(2.21)

Clearly, if (x, y) ∈ P is a fixed point of T , then (x, y) is a solution of the singular system (2.18).
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Lemma 2.9. Assume the condition (H1) or (H∗1) holds, then

T : P → P

is a completely continuous operator.

Proof. For any fixed (x, y) ∈ P , there exists a constant L > 0 such that ‖(x, y)‖1 ≤ L. And then,

[x(s)− ω1(s)]
∗ ≤ x(s) ≤ ‖x‖ ≤ ‖(x, y)‖1 ≤ L, [y(s)− ω2(s)]

∗ ≤ y(s) ≤ ‖y‖ ≤ ‖(x, y)‖1 ≤ L, s ∈ [1, e].

For any t ∈ [1, e], it follows from (2.20) and Remark 2.6 that

T1(x, y)(t) =λ

∫ e

1
G1(t, s)

(
f(s, [x(s)− w1(s)]

∗, [y(s)− w2(s)]
∗) + q1(s)

)ds
s

+ λ

∫ e

1
H1(t, s)

(
g(s, [x(s)− w1(s)]

∗, [y(s)− w2(s)]
∗) + q2(s)

)ds
s

≤λ
∫ e

1
bρ1(s)

(
f(s, [x(s)− w1(s)]

∗, [y(s)− w2(s)]
∗) + q1(s)

)ds
s

+ λ

∫ e

1
bρ2(s)

(
g(s, [x(s)− w1(s)]

∗, [y(s)− w2(s)]
∗) + q2(s)

)ds
s

≤λMb

∫ e

1
(ρ1(s) + ρ1(s))

ds

s
+ λMµ

∫ e

1
(ρ1(s)q1(s) + ρ2(s)q2(s))

ds

s

≤2λMb+ λMµ

∫ e

1
(q1(s) + q2(s))

ds

s
< +∞,

where

M = max

{
max

t∈[1,e],u,v∈[0,L]
f(t, u, v), max

t∈[1,e],u,v∈[0,L]
g(t, u, v)

}
+ 1.

Similarly, we have

|T2(x, y)(t)| ≤ 2λMb+ λMµ

∫ e

1
(q1(s) + q2(s))

ds

s
< +∞,

Thus T : P → E is well defined.
Next, we show that T : P → P . For any fixed (x, y) ∈ P , t ∈ [1, e], by (2.21) and Remark 2.6, we have

T1(x, y)(t) ≤λb
∫ e

1
ρ1(s)(f(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q1(s))

ds

s

+ λb

∫ e

1
ρ2(s)(g(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q2(s))

ds

s
,

T2(x, y)(t) ≤λb
∫ e

1
ρ2(s)(g(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q2(s))

ds

s

+ λb

∫ e

1
ρ1(s)(f(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q1(s))

ds

s
,

which implies that

‖T1(x, y)‖ ≤λb
∫ e

1
ρ1(s)(f(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q1(s))

ds

s

+ λb

∫ e

1
ρ2(s)(g(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q2(s))

ds

s
,

‖T2(x, y)‖ ≤λb
∫ e

1
ρ2(s)(g(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q2(s))

ds

s

+ λb

∫ e

1
ρ1(s)(f(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q1(s))

ds

s
.
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On the other hand, from (2.20) and Remark 2.6, we also obtain

T1(x, y)(t) ≥λa(log t)α−1
∫ e

1
ρ1(s)(f(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q1(s))

ds

s

+ λa(log t)β−1
∫ e

1
ρ2(s)(g(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q2(s))

ds

s
,

T2(x, y)(t) ≥λa(log t)β−1
∫ e

1
ρ2(s)(g(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q2(s))

ds

s

+ λa(log t)α−1
∫ e

1
ρ1(s)(f(s, [x(s)− ω1(s)]

∗, [y(s)− ω2(s)]
∗) + q1(s))

ds

s
.

So we have

T1(x, y) ≥ ω(log t)α−1‖T1(x, y)‖, T2(x, y) ≥ ω(log t)β−1‖T2(x, y)‖, t ∈ [1, e].

This implies that T (P ) ⊂ P . According to the Ascoli-Arzela theorem, we can easily get that T : P → P is
completely continuous. This completes the proof of the lemma.

The following nonlinear alternative of Leray-Schauder type and Krasnoselskii’s fixed point theorem will
play major role in our next analysis.

Theorem 2.10 (Nonlinear alternative of Leray-Schauder type, see [2]). Let X be a Banach space with
Ω ∈ X closed and convex. Assume U is a relatively open subset of with 0 ∈ U , and let

S : U → Ω

be a compact, continuous map. Then either

(a) S has a fixed point in U , or

(b) there exists u ∈ ∂U and v ∈ (0, 1), with u = vSu.

Theorem 2.11 (Krasnoselskii’s fixed point theorem, see [25]). Let X be a Banach space, and let P ⊂ X
be a cone in X. Assume Ω1,Ω2 are open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : P → P be a
completely continuous operator such that, either

(a) ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω2, or

(b) ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω2.

Then S has a fixed point in P ∩ (Ω2\Ω1).

3. Main results

Theorem 3.1. Suppose that (H1) and (H2) hold. Then there exists a constant λ∗ > 0 such that the boundary
value problem (1.1) has at least one positive solution for any 0 < λ ≤ λ∗.

Proof. Fix δ ∈ (0, 1). From (H2), let 0 < ε < 1 be such that

f(t, u, v) ≥ δf(t, 0, 0) and g(t, u, v) ≥ δg(t, 0, 0), for 1 ≤ t ≤ e, 0 ≤ u, v ≤ ε. (3.1)

Let f(ε) = max
1≤t≤e,0≤u,v≤ε

{f(t, u, v) + q1(t)}, g(ε) = max
1≤t≤e,0≤u,v≤ε

{g(t, u, v) + q2(t)}, and ci =
∫ e
1 bρi(s)

ds
s

(i = 1, 2), we have

lim
z↓0

f(z)

z
= +∞ and lim

z↓0

g(z)

z
= +∞.

Suppose 0 < λ < ε/(8ch(ε)) := λ∗, where c = max(c1, c2) and h(ε) = max(f(ε), g(ε)). Since

lim
z↓0

h(z)

z
= +∞ and

h(ε)

ε
<

1

8cλ
,
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then exists a R0 ∈ (0, ε) such that

h(R0)

R0
=

1

8cλ
.

Let U = {(u, v) ∈ P |‖(u, v)‖1 < R0}, (u, v) ∈ ∂U and θ ∈ (0, 1) be such that (u, v) = θT (u, v), i.e.,
u = θT1(u, v) and v = θT2(u, v). we claim that ‖(u, v)‖1 6= R0. In fact, for (x, y) ∈ ∂U and ‖(u, v)‖1 = R0,
we have

u(t) =θT1(u, v)(t) ≤ λ
∫ e

1
G1(t, s)

(
f(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q1(s)

)ds
s

+ λ

∫ e

1
H1(t, s)

(
g(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q2(s)

)ds
s

≤λ
∫ e

1
G1(t, s)f(R0)

ds

s
+ λ

∫ e

1
H1(t, s)g(R0)

ds

s
≤ λ

∫ e

1
bρ1(s)f(R0)

ds

s
+ λ

∫ e

1
bρ2(s)g(R0)

ds

s

≤λ
∫ e

1
bρ1(s)

ds

s
f(R0) + λ

∫ e

1
bρ2(s)

ds

s
g(R0) ≤ 2cλh(R0),

(3.2)

and similarly, we also have

v(t) = θT2(u, v)(t) ≤ 2cλh(R0). (3.3)

It follows that R0 = ‖(u, v)‖1 ≤ 4cλh(R0), that is

h(R0)

R0
≥ 1

4λc
>

1

8cλ
=
h(R0)

R0
,

which implies that ‖(u, v)‖1 6= R0. By the nonlinear alternative of Leray-Schauder type, T has a fixed point
(u, v) ∈ U . Moreover, combining (3.1)-(3.3) and the fact that R0 < ε, we obtain

u(t) =λ

∫ e

1
G1(t, s)

(
f(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q1(s)

)ds
s

+ λ

∫ e

1
H1(t, s)

(
g(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q2(s)

)ds
s

≥λ
∫ e

1
G1(t, s)

(
δf(s, 0, 0) + q1(s)

)ds
s

+ λ

∫ e

1
H1(t, s)

(
δg(s, 0, 0) + q2(s)

)ds
s

≥λ
∫ e

1
G1(t, s)q1(s)dqs+ λ

∫ e

1
H1(t, s)q2(s)

ds

s
= w1(t), for t ∈ (1, e),

and similarly, we also have

v(t) ≥ w2(t), for t ∈ (1, e).

Then T has a positive fixed point (x, y) and ‖(u, v)‖1 ≤ R0 < 1. Namely, (u, v) is positive solution of the
boundary value problem (3.1) with u(t) ≥ w1(t) and v(t) ≥ w2(t), for t ∈ (1, e).

Let x(t) = u(t)− w1(t) ≥ 0 and y(t) = u(t)− w2(t) ≥ 0. Then (x, y) is a nonnegative solution (positive
on (1, e)) of the boundary value problem (1.1).

Theorem 3.2. Suppose that (H∗1) and (H3)-(H4) hold. Then there exists a constant λ∗ > 0 such that the
boundary value problem (1.1) has at least one positive solution for any 0 < λ ≤ λ∗.

Proof. Let Ω1 = {(u, v) ∈ E × E : ‖u‖ < R1, ‖v‖ < R1}, where R1 = max(1, r), r = b2

a

∫ e
1

(
q1(s) + q2(s)

)
ds
s .

Choose

λ∗ = min

{
1,
R1

2
(R+ 1)−1,

R1

2r

}
,
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where R =
∫ e
1 bρ1(s)

(
max

0≤u,v≤R1

f(s, u, v) + q1(s)

)
ds
s +

∫ e
1 bρ2(s)

(
max

0≤u,v≤R1

g(s, u, v) + q2(s)

)
ds
s and R1 ≥ 0.

Then, for any (u, v) ∈ P ∩ ∂Ω1, we have ‖u‖ = R1 or ‖v‖ = R1. Moreover u(t)− w1(t) ≤ u(t) ≤ ‖u‖ ≤ R1,
v(t)− w2(t) ≤ v(t) ≤ ‖v‖ ≤ R1, and it follows that

‖T1(u, v)(t)‖ ≤λ
∫ e

1
bρ1(s)

(
f(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q1(s)

)ds
s

+ λ

∫ e

1
bρ2(s)

(
g(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q2(s)

)ds
s

≤λ
∫ e

1
bρ1(s)

(
max

0≤u,v≤R1

f(s, u, v) + q1(s)

)
ds

s

+ λ

∫ e

1
bρ2(s)

(
max

0≤u,v≤R1

g(s, u, v) + q2(s)

)
ds

s
= λR ≤ R1

2
,

and similarly, we also have ‖T2(u, v)(t)‖ ≤ R1/2. This implies

‖T (u, v)‖1 = ‖T1(u, v)‖+ ‖T2(u, v)‖ ≤ R1 ≤ ‖(u, v)‖1, for (u, v) ∈ P\∂Ω1.

On the other hand, choose two constants N1, N2 > 1 such that

λN1
a2

2b
γ

∫ θ2

θ1

ρ1(s)(log s)α−1
ds

s
≥ 1, λN2

a2

2b
γ

∫ θ2

θ1

ρ2(s)(log s)β−1
ds

s
≥ 1,

where γ = min
t∈[θ1,θ2]

{(log t)α−1}. By assumptions (H3) and (H4), there exists a constant B > R1 such that

f(t, u, v)

u
> N1, namely f(t, u, v) > N1u, for t ∈ [θ1, θ2], u > B, v > 0, (3.4)

and

g(t, u, v)

v
> N2, namely g(t, u, v) > N2v, for t ∈ [θ1, θ2], u > 0, v > B. (3.5)

Choose R2, let Ω1 = {(u, v) ∈ E×E : ‖u‖ < R2, ‖v‖ < R2}. Then for any (u, v) ∈ (P1×P2)∩ ∂Ω2, we have
‖u‖ = R2 or ‖v‖ = R2. If ‖u‖ = R2, we can state that

u(t)− w1(t) =u(t)−
(
λ

∫ e

1
G1(t, s)q1(s)

ds

s
+ λ

∫ e

1
H1(t, s)q2(s)

ds

s

)
≥u(t)−

(
λ

∫ e

1
b(log t)α−1q1(s)

ds

s
+ λ

∫ e

1
b(log t)α−1q2(s)

ds

s

)
=u(t)− λb(log t)α−1

∫ e

1

(
q1(s) + q2(s)

)ds
s

=u(t)− λa
b

(log t)α−1
b2

a

∫ e

1

(
q1(s) + q2(s)

)ds
s

= u(t)− λa
b

(log t)α−1r

≥u(t)− λru(t)

‖u‖
=

(
1− λr

R2

)
u(t) ≥ 1

2
u(t) ≥ 0, t ∈ [1, e],

and then

min
t∈[θ1,θ2]

{[u(t)− w1(t)]
∗} = min

t∈[θ1,θ2]
{u(t)− w1(t)} ≥ min

t∈[θ1,θ2]

{
1

2
u(t)

}
≥ min
t∈[θ1,θ2]

{ ω

2∆
(log t)α−1‖u‖

}
=

a

2b
R2 min

t∈[θ1,θ2]

{
(log t)α−1

}
≥ B + 1 > B.

Since B > R1 ≥ r, from (3.4), we have

f(t, [u(t)− w1(t)]
∗, [v(t)− w2(t)]

∗) ≥ N1[u(t)− w1(t)]
∗ ≥ N1

2
u(t), for t ∈ [θ1, θ2]. (3.6)
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It follows from (3.6) that

T1(u, v)(t) =λ

∫ e

1
G1(t, s)

(
f(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q1(s)

)ds
s

+ λ

∫ e

1
H1(t, s)

(
g(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q2(s)

)ds
s

≥λ
∫ e

1
G1(t, s)

(
f(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q1(s)

)ds
s

≥λ
∫ θ2

θ1

G1(t, s)f(s, [u(s)− w1(s)]
∗, [v(s)− w2(s)]

∗)
ds

s

≥λ
∫ θ2

θ1

a(log t)α−1ρ1(s)
N1

2
u(s)

ds

s
≥ λaN1

2
(log t)α−1

∫ θ2

θ1

ρ1(s)
a

b
(log s)α−1‖u‖ds

s

≥λN1
a2

2b
min

t∈[θ1,θ2]
{(log t)α−1}

∫ θ2

θ1

ρ1(s)(log s)α−1
ds

s
R2

≥λN1
a2

2b
γ

∫ θ2

θ1

ρ1(s)(log s)α−1
ds

s
R2 ≥ R2, for t ∈ [θ1, θ2].

If ‖v‖ = R2, we obtain

v(t)− w2(t) = v(t)−
(
λ

∫ e

1
G2(t, s)q2(s)

ds

s
+ λ

∫ e

1
H2(t, s)q1(s)

ds

s

)
≥ 1

2
v(t) ≥ 0, t ∈ [1, e],

and then

min
t∈[θ1,θ2]

{[v(t)− w2(t)]
∗} = min

t∈[θ1,θ2]
{v(t)− w2(t)} ≥ min

t∈[θ1,θ2]

{
1

2
v(t)

}
≥ min

t∈[θ1,θ2]

{ a
2b

(log t)β−1‖v‖
}

=
a

2b
R2 min

t∈[θ1,θ2]

{
(log t)β−1

}
≥ B + 1 > B.

Since B > R1 ≥ r, from (3.5), one verifies that

g(t, [u(t)− w1(t)]
∗, [v(t)− w2(t)]

∗) ≥ N2[v(t)− w2(t)]
∗ ≥ N2

2
v(t), for t ∈ [θ1, θ2]. (3.7)

It follows from (3.7) that

T1(u, v)(t) =λ

∫ e

1
G1(t, s)

(
f(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q1(s)

)ds
s

+ λ

∫ e

1
H1(t, s)

(
g(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q2(s)

)ds
s

≥λ
∫ e

1
H1(t, s)

(
g(s, [u(s)− w1(s)]

∗, [v(s)− w2(s)]
∗) + q2(s)

)ds
s

≥λ
∫ θ2

θ1

H1(t, s)g(s, [u(s)− w1(s)]
∗, [v(s)− w2(s)]

∗)
ds

s

≥λ
∫ θ2

θ1

a(log t)α−1ρ2(s)
N2

2
v(s)

ds

s
≥ λaN2

2
(log t)α−1

∫ θ2

θ1

ρ2(s)
a

b
(log s)β−1‖v‖ds

s

≥λN2
a2

2b
min

t∈[θ1,θ2]
{(log t)α−1}

∫ θ2

θ1

ρ2(s)(log s)β−1
ds

s
R2

≥λN2
a2

2b
γ

∫ θ2

θ1

ρ2(s)(log s)β−1
ds

s
R2 ≥ R2, for t ∈ [θ1, θ2].

Thus, for any (u, v) ∈ (P1 × P2) ∩ ∂Ω2, we always have

T1(u, v)(t) ≥ R2, for t ∈ [θ1, θ2].
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Similarly, for any (u, v) ∈ (P1 × P2) ∩ ∂Ω2, it also holds

T2(u, v)(t) ≥ R2, for t ∈ [θ1, θ2].

This implies

‖T (u, v)‖1 = ‖T1(u, v)‖+ ‖T2(u, v)‖ ≥ 2R2 ≥ ‖(u, v)‖1, for (u, v) ∈ (P1 × P2)\∂Ω2.

Thus condition (b) of Krasnoeselskii’s fixed point theorem is satisfied. As a result T has a fixed point (u, v)
with r ≤ R1 < ‖u‖ < R2 and r ≤ R1 < ‖v‖ < R2.

Since r ≤ R1 < ‖u‖ < R2 and r ≤ R1 < ‖v‖ < R2, we get

u(t)− w1(t) =u(t)−
(
λ

∫ e

1
G1(t, s)q1(s)

ds

s
+ λ

∫ e

1
H1(t, s)q2(s)

ds

s

)
≥a
b
tα−1‖u‖ −

(
λ

∫ e

1
b(log t)α−1q1(s)

ds

s
+ λ

∫ e

1
b(log t)α−1q2(s)

ds

s

)
=
a

b
(log t)α−1‖u‖ − λb(log t)α−1

∫ e

1

(
q1(s) + q2(s)

)ds
s

≥a
b

(log t)α−1r − λa
b

(log t)α−1r = (1− λ)
a

b
(log t)α−1r ≥ 0, t ∈ (1, e),

and

v(t)− w2(t) =v(t)−
(
λ

∫ e

1
G2(t, s)q2(s)

ds

s
+ λ

∫ e

1
H2(t, s)q1(s)

ds

s

)
≥a
b
tβ−1‖v‖ −

(
λ

∫ e

1
b(log t)β−1q2(s)

ds

s
+ λ

∫ e

1
b(log t)β−1q1(s)

ds

s

)
=
a

b
tβ−1‖v‖ − λb(log t)β−1

∫ e

1

(
q1(s) + q2(s)

)ds
s

≥a
b

(log t)β−1r − λa
b

(log t)β−1r = (1− λ)
a

b
(log t)β−1r ≥ 0, t ∈ (1, e).

Thus, (u, v) is positive solution of the boundary value problem (3.1) with u(t) > w1(t) and v(t) > w2(t)
for t ∈ (1, e). Let x(t) = u(t)−w1(t) ≥ 0 and y(t) = v(t)−w2(t) ≥ 0. Then (x, y) is a nonnegative solution
(positive on (1, e)) of the boundary value problem (1.1). This concludes the proof.

From the proof of Theorem 3.2, clearly condition (H3) can be replaced by condition (H∗3). So we have
the following theorem.

Theorem 3.3. Suppose that (H∗1), (H∗3) and (H4) hold. Then there exists a constant λ∗ > 0 such that the
boundary value problem (1.1) has at least one positive solution for any 0 < λ ≤ λ∗.

Since condition (H1) implies conditions (H∗1) and (H4), then from the proof of Theorem 3.1 and 3.2, we
immediately have the following theorem.

Theorem 3.4. Suppose that (H1)-(H3) hold. Then the boundary value problem (1.1) has at least two positive
solutions for λ > 0 sufficiently small.

In fact, let 0 < λ < min{λ∗, λ∗}, then the boundary value problem (1.1) has at least two positive
solutions.

Similarly, we conclude

Theorem 3.5. Suppose that (H1)-(H2) and (H∗3) hold. Then the boundary value problem (1.1) has at least
two positive solutions for λ > 0 sufficiently small.
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4. Some examples

Example 4.1. Consider the following coupled integral boundary value problem

Dαu(t) + λ

(
ua +

1√
(1− log t) log t

cos(2πv)

)
= 0, t ∈ (1, e), λ > 0,

Dβv(t) + λ

(
vb +

1√
(1− log t) log t

sin(2πu)

)
= 0, t ∈ (1, e), λ > 0,

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n− 2, u(e) = µ

∫ e

1
v(s)

ds

s
, v(e) = ν

∫ e

1
u(s)

ds

s
,

(4.1)

where a, b > 1. Then, if λ > 0 is sufficiently small, (4.1) has a positive solution (u, v) with u > 0, v > 0 for
t ∈ (1, e).

Proof. From (4.1), then we have

f(t, u, v) = ua +
1√

(1− log t) log t
cos(2πv), g(t, u, v) = vb +

1√
(1− log t) log t

sin(2πv),

qi(t) = q(t) =
2√

(1− log t) log t
, i = 1, 2.

Clearly, for t ∈ (1, e), we get

f(t, u, v) + q(t) ≥ ua +
1√

(1− log t) log t
> 0, g(t, u, v) + q(t) ≥ vb +

1√
(1− log t) log t

> 0,

lim inf
u↑+∞

f(t, u, v)

u
= +∞, lim inf

v↑+∞

g(t, u, v)

v
= +∞, for t ∈ [θ1, θ2] ⊂ (1, e),

for u, v ≥ 0. Thus (H∗1) and (H3)-(H4) hold.

Let r = b2

a

∫ e
1

2√
(1−log t) log t

ds
s = 2b2π

a and R1 = 1 + r. We have

R =

∫ e

1
bρ1(s)

(
max

0≤u,v≤R1

f(s, u, v) +
2√

(1− log t) log t

)
ds

s

+

∫ e

1
bρ2(s)

(
max

0≤u,v≤R1

g(s, u, v) +
2√

(1− log t) log t

)
ds

s

≤
∫ e

1
b

(
Ra1 +

3√
(1− log t) log t

)
ds

s
+

∫ e

1
b

(
Rb1 +

3√
(1− log t) log t

)
ds

s
= b
(
Ra1 +Rb1 + 6π

)
.

Let

λ∗ = min

{
1,
R1

2
(R+ 1)−1,

R1

2r

}
,

Now, if λ < λ∗, Theorem 3.2 guarantees that (4.1) has a positive solution (u, v) with ‖u‖ ≥ 1 and ‖v‖ ≥
1.

Example 4.2. Consider the following coupled integral boundary value problem

Dαu(t) + λ

(
2

1 + log t
(v − a)(v − b) + cos

( π
2a
u
))

= 0, t ∈ (1, e), λ > 0,

Dβv(t) + λ

(
2

1 + log t
(u− c)(u− d) + sin

( π
2c
v
))

= 0, t ∈ (1, e), λ > 0,

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n− 2, u(e) = µ

∫ e

1
v(s)

ds

s
, v(e) = ν

∫ e

1
u(s)

ds

s
,

(4.2)
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where b > a > 0, d > c > 0. Then, if λ > 0 is sufficiently small, (4.2) has two solutions (u1, v1) and (u2, v2)
with ui(t) > 0 and vi(t) > 0 for t ∈ (1, e), i = 1, 2.

Proof. From (4.2), then we can see

f(t, u, v) =
2

1 + log t
(v − a)(v − b) + cos

( π
2a
u
)
, g(t, u, v) =

2

1 + log t
(u− c)(u− d) + sin

( π
2c
v
)
.

Clearly, there exists a constant q1(t) = q2(t) = m0 > 0 such that

f(t, u, v) +m0 > 0, g(t, u, v) +m0 > 0, for ∀t ∈ (1, e).

Let δ = 1
16(ab+cd+1) and ε = 1

4 min(1, a, c), c0 = max
{∫ e

1 bρ1(s)
ds
s ,
∫ e
1 bρ2(s)

ds
s

}
, we obtain

f(t, u, v) ≥ δf(t, 0, 0) ≥ δ(ab+ 1), g(t, u, v) ≥ δg(t, 0, 0) ≥ δcd, for t ∈ (1, e), 0 ≤ u, v ≤ ε.

Thus (H1)-(H2) and (H∗3) hold. Since

f(ε) = max
1≤t≤e,0≤u,v≤ε

{f(t, u, v) + e1(t)} ≤ 2(ab+ cd) +m0 + 1,

g(ε) = max
1≤t≤e,0≤u,v≤ε

{g(t, u, v) + e2(t)} ≤ 2(ab+ cd) +m0 + 1,

h(ε) = max(f(ε), g(ε)) ≤ 2(ab+ cd) +m0 + 1.

We can choose

λ∗ =
ε

8c0(2(ab+ cd) +m0 + 1)
.

Now, if λ < λ∗, Theorem 3.1 guarantees that (4.2) has a positive solution (u1, v1) with ‖u1‖ ≤ 1/4 and
‖v1‖ ≤ 1/4.

On the other hand, we have

lim inf
u↑+∞

f(t, u, v)

u
= +∞, lim inf

v↑+∞

g(t, u, v)

v
= +∞, for t ∈ [θ1, θ2] ⊂ (1, e),

for u, v ≥ 0. Thus (H1)-(H3) also hold. Let r = 2m0b2

a and R1 = 1 + r. We have

R =

∫ e

1
bρ1(s)

(
max

0≤u,v≤R1

f(s, u, v) +m0

)
ds

s
+

∫ e

1
bρ2(s)

(
max

0≤u,v≤R1

g(s, u, v) +m0

)
ds

s
,

and

λ∗ = min

{
1,
R1

2
(R+ 1)−1,

R1

2r

}
,

Now, if λ < λ∗, Theorem 3.2 guarantees that (4.2) has a positive solution (u2, v2) with ‖u2‖ ≥ 1 and
‖v2‖ ≥ 1.

Since all the conditions of Theorem 3.4 are satisfied, if λ < min(λ∗, λ
∗), Theorem 3.4 guarantees that

(4.2) has two solutions (u1, v1) and (u2, v2) with ui(t) > 0 and vi(t) > 0 for t ∈ (1, e), i = 1, 2.

Example 4.3. Consider the following coupled integral boundary value problem

Dαu(t) + λ(va + cos(2πu)) = 0, t ∈ (1, e), λ > 0,

Dβv(t) + λ(ub + cos(2πv)) = 0, t ∈ (1, e), λ > 0,

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n− 2, u(e) = µ

∫ e

1
v(s)

ds

s
, v(e) = ν

∫ e

1
u(s)

ds

s
,

(4.3)

where a, b > 1. Then, if λ > 0 is sufficiently small, (4.3) has two solutions (u1, v1) and (u2, v2) with ui(t) > 0
and vi(t) > 0 for t ∈ (1, e), i = 1, 2.
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Proof. From (4.3), then we can state that

f(t, u, v) = va + cos(2πu), g(t, u, v) = ub + cos(2πv), q1(t) = q2(t) = q(t) = 2.

Clearly, we get

f(t, u, v) + q(t) ≥ va + 1 > 0, g(t, u, v) + q(t) ≥ ub + 1 > 0, for t ∈ (1, e),

lim inf
v↑+∞

f(t, u, v)

v
= +∞, lim inf

u↑+∞

g(t, u, v)

u
= +∞, for t ∈ [θ1, θ2] ⊂ (1, e),

for u, v ≥ 0. And f(t, 0, 0) = g(t, 0, 0) = 1 > 0, for t ∈ [1, e]. Thus (H1)-(H2) hold.
Let δ = 1/2 and ε = 1/8, c0 = max

{∫ e
1 bρ1(s)

ds
s ,
∫ e
1 bρ2(s)

ds
s

}
, we obtain h(ε) = max(f(ε), g(ε)), where

f(ε) = max
1≤t≤e,0≤u,v≤ε

{f(t, u, v) + e1(t)} ≤ 8−a + 3,

g(ε) = max
1≤t≤e,0≤u,v≤ε

{g(t, u, v) + e2(t)} ≤ 8−a + 3.

Then ε
8c0h(ε)

≥ 1
64c0(1+3) = 1

256c0
. Let λ∗ = 1

256c0
. Now, if λ < λ∗, Theorem 3.1 guarantees that (4.3) has a

positive solution (u1, v1) with ‖u1‖ ≤ 1/8 and ‖v1‖ ≤ 1/8.
On the other hand, let r = 4b2/a and R1 = 1 + r. We have

R =

∫ e

1
bρ1(s)

(
max

0≤u,v≤R1

f(s, u, v) + 2

)
ds

s
+

∫ e

1
bρ2(s)

(
max

0≤u,v≤R1

g(s, u, v) + 2

)
ds

s
,

and

λ∗ = min

{
1,
R1

2
(R+ 1)−1,

R1

2r

}
,

Now, if λ < λ∗, Theorem 3.3 guarantees that (4.3) has a positive solution (u2, v2) with ‖u2‖ ≥ 1 and
‖v2‖ ≥ 1.

Since all the conditions of Theorem 3.5 are satisfied, if λ < min(λ∗, λ
∗), Theorem 3.5 guarantees that

(4.3) has two solutions (u1, v1) and (u2, v2) with ui(t) > 0 and vi(t) > 0 for t ∈ (1, e), i = 1, 2.

Example 4.4. Consider the following coupled integral boundary value problem

Dαu(t) + λ
(
eu + v2 + 7 cos(2π(t− 1)u)

)
= 0, t ∈ (1, e), λ > 0,

Dβv(t) + λ
(
ev + u2 + 7 cos(2π(t− 1)v)

)
= 0, t ∈ (1, e), λ > 0,

Dju(0) = Djv(0) = 0, 0 ≤ j ≤ n− 2, u(1) = µ

∫ e

1
v(s)

ds

s
, v(1) = ν

∫ e

1
u(s)

ds

s
.

(4.4)

Then, if λ > 0 is sufficiently small, (4.4) has two solutions (u1, v1) and (u2, v2) with ui(t) > 0 and vi(t) > 0
for t ∈ (1, e), i = 1, 2.

Proof. From (4.4), then we can see

f(t, u, v) = eu + v2 + 7 cos(2π(t− 1)u), g(t, u, v) = ev + u2 + 7 cos(2π(t− 1)v).

Clearly, there exists a constant q1(t) = q2(t) = 8 > 0 such that

f(t, 0, 0) = g(t, 0, 0) = 8, f(t, u, v) + 8 ≥ 1 > 0, g(t, u, v) + 8 ≥ 1 > 0, for ∀t ∈ (1, e).

Let δ = 1/100 and ε = 1/8, we obtain

f(t, u, v) ≥ δf(t, 0, 0), g(t, u, v) ≥ δg(t, 0, 0), for t ∈ (1, e), 0 ≤ u, v ≤ ε.

Thus (H1), (H2), and (H∗3) hold. Since

h(ε) = max

{
max

1≤t≤e,0≤u,v≤ε
{f(t, u, v) + q1(t)}, max

1≤t≤e,0≤u,v≤ε
{g(t, u, v) + q2(t)}

}
≤ e+ 16.
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Let c0 = max
{∫ e

1 bρ1(s)
ds
s ,
∫ e
1 bρ2(s)

ds
s

}
. We can choose

λ∗ =
ε

8c0(e+ 16)
.

Now, if λ < λ∗, Theorem 3.1 guarantees that (4.4) has a positive solution (u1, v1) with ‖u1‖ ≤ 1/8 and
‖v1‖ ≤ 1/8.

On the other hand, we have

lim inf
u↑+∞

f(t, u, v)

u
= +∞, lim inf

v↑+∞

g(t, u, v)

v
= +∞, for t ∈ [θ1, θ2] ⊂ (0, 1),

for u, v ≥ 0. Thus (H1), (H2), and (H3) also hold. Let r = 16b2

ω and R1 = 1 + r. We have

R =

∫ e

1
bρ1(s)

(
max

0≤u,v≤R1

f(s, u, v) +m0

)
ds

s
+

∫ e

1
bρ2(s)

(
max

0≤u,v≤R1

g(s, u, v) +m0

)
ds

s

≤
∫ e

1
bρ1(s)

(
eR1 +R2

1 + 7 + 8
) ds
s

+

∫ e

1
bρ2(s)

(
eR1 +R2

1 + 7 + 8
) ds
s

=c0
(
eR1 +R2

1 + 15
)
,

and

λ∗ = min

{
1,
R1

2
(R+ 1)−1,

R1

2r

}
,

Now, if λ < λ∗, Theorem 3.2 guarantees that (4.4) has a positive solution (u2, v2) with ‖u2‖ ≥ 1 and
‖v2‖ ≥ 1.

Since all the conditions of Theorem 3.4 are satisfied, if λ < min(λ∗, λ
∗), Theorem 3.4 guarantees that

(4.4) has two solutions (u1, v1) and (u2, v2) with ui(t) > 0 and vi(t) > 0 for t ∈ (1, e), i = 1, 2.
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