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Abstract. We establish existence results for singular semilinear ellip-
tic systems on bounded domains with homogeneous Dirichlet boundary
conditions. The systems considered are the paradigmatic mathematical
models of chemical reactions, morphogenesis (singular Gierer-Meinhardt
system) and population dynamics. In these systems the operator need
not be in divergence form and the systems need not be cooperative. The
results have been obtained by the method of sub and supersolutions (ap-
propriately modified) and Schauder’s fixed point theorem. Some unique-
ness results have been obtained extending a “concavity” argument used
for a single equation. We extend some existence results to general ellip-
tic operators and more general nonlinearities and we prove existence for
systems that have not been considered in the literature.

1. Introduction

Reaction-diffusion equations (and then systems) have been intensively
studied during the last forty years. The main reason for this study is that
they provide rather simple, but however interesting, mathematical models
when considering very different kinds of phenomena arising in a large vari-
ety of fields in applications: chemical reactions, combustion, transmission of
nerve impulses (Fitzhugh-Nagumo systems), morphogenesis and, of course,
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population dynamics, where Lotka-Volterra systems have played an impor-
tant role. A simple example of a parabolic reaction-diffusion equation is

∂u

∂t
−∆u = f(x, u) in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ), u(x, 0) = u0(x) on Ω̄, (1.1)

where Ω ⊂ RN is a domain (maybe unbounded), T > 0, the Laplacian
∆ models the diffusion of the corresponding quantity u(x, t), and f(x, u)
accounts for the reaction taking place in the domain Ω. The initial datum
u0 is smooth. Needless to say, the model (1.1) can be generalized in several
directions.

Some very general local existence and uniqueness results for classical or
weak solutions of (1.1) have been obtained (see the references below). Global
existence (i.e, solutions defined for 0 ≤ t < +∞) depends on the nonlinear
term f(x, u) and can be obtained using a priori estimates and comparison
arguments. The asymptotic behavior (as t → +∞) of solutions has been
studied for many equations. In particular, existence and properties of trav-
eling waves in unbounded domains have attracted a lot of attention. (The
reader will find many references and results in the books by Smoller [32] and
Pao [28]. See also [30, 14, 16, 38, 37, 39, 40].)

An interesting associated question is the existence of equilibria to the
stationary problem corresponding to (1.1), i.e., solutions to the semilinear
elliptic problem

−∆u = f(x, u) in Ω, u = 0 on ∂Ω. (1.2)

More precisely, existence of solutions to (1.2) (often depending on a parame-
ter λ as well) is important. In particular, the stability properties of equilibria
are studied using either linearized stability theorems or comparison argu-
ments. Several methods (sub and supersolutions, bifurcation, continuation,
etc.) have been used in this context. Very often positive (or non-negative)
solutions are the only meaningful ones for the corresponding problem. The
surveys by Amann [1] and P.L. Lions [26] include a large overview concerning
results and methods for these problems. See also [16] and [30].

However, the mathematical study of most of the interesting problems
requires systems with more than one equation. A typical example could be

∂u

∂t
− a∆u = f(x, u, v) in Ω× (0, T ),

∂v

∂t
− b∆v = g(x, u, v) in Ω× (0, T ),
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u(x, t) = v(x, t) = 0 on ∂Ω× (0, T ), (1.3)

u(x, 0) = u0(x), v(x, 0) = v0(x), on Ω̄,

where Ω ⊂ RN is a domain, T > 0, a, b > 0 are the diffusion coefficients, f
and g represent the interaction between both species u and v, and u0 and
v0 are the initial data. Again, (1.3) can be generalized in many ways.

The above considerations concerning the interesting problems when deal-
ing with (1.1) can be extended, with suitable modifications, to (1.3) and the
associated stationary system

−a∆u = f(x, u, v) in Ω,

−b∆v = g(x, u, v) in Ω,
u = v = 0 on ∂Ω.

(1.4)

Existence and multiplicity of positive solutions to (1.4) have been studied
using the same methods mentioned above, in particular sub and supersolu-
tions. Many more developments and references can be found in the books by
Smoller[32] and Pao [28], and also in [1, 16, 30, 14]. An excellent reference
for the Lotka-Volterra system is the recent book by Cantrell and Cosner [2].

Usually, the nonlinear term f(x, u) arising in (1.3) is smooth and satisfies
f(x, 0) ≥ 0 (for any x). However nonlinearities such that f(x, u) → +∞
if u → 0 and u > 0 also arise in some applications [10, 9, 8, 11]. After
the pioneering paper by Fulks and Maybee [10], rather general existence re-
sults for positive solutions were proved in [6] and [33] (see also [25, 31]) and
later by several authors. In [18] the authors prove a rather general existence
theorem (for classical solutions) in the interval between ordered sub and su-
persolutions, trying to get an existence theorem as close as possible to the
well-known ones in the non-singular case [1]. They also obtain results con-
cerning the differentiability of the Green (solution) operator at the interior
of the positive cone in the space C1

0 (Ω̄) and these results lead to a linearized
stability theorem and smoothness of branches of positive solutions depend-
ing on parameters. These results were applied in [19] to a series of examples,
extending and simplifying most of the preceding results in the literature. A
local existence (of classical solutions) and uniqueness result for the singular
parabolic problem was obtained in [18] working in the framework of secto-
rial operators [14]. A similar result for weak solutions in weighted Sobolev
spaces was given by Takáč [34], where he also obtained some “stabilization”
results. See [17] for a recent survey of the field.

The situation concerning systems (both parabolic and elliptic) with sin-
gular nonlinearities is quite different from the one described above in the



860 Jesús Hernández, Francisco J. Mancebo, and José M. Vega

sense that the list of available examples is rather short, and some of them
even look a bit “artificial” (see details below). Moreover, some of the results
in the literature have been obtained under strong additional restrictions (Ω
a ball or even Ω =]0, 1[, radial solutions, etc.).

As is well known, the method of sub and supersolutions giving mono-
tone sequences converging to a minimal (respectively maximal) solution can
be used for cooperative systems (i.e., systems such that f(x, u, v) (respec-
tively g(x, u, v)) is increasing in v (respectively in u) for any x). This is
already done in [30], see also [32, 16, 28, 1]. For non-cooperative systems
simple counterexamples (see, e.g., pages 66-67 in [16]) show that it is not
necessarily true that there is a solution in the interval between ordered sub
and supersolutions if sub and supersolutions are defined in the “natural”
way. However this difficulty can be overcomed using a modified definition
of coupled sub- super-solution (which coincides with the usual one in the
cooperative case). This was done independently (and more or less simul-
taneously) in [15, 23, 35] and has been used also for nonlocal [36] and for
hyperbolic problems [27]. See also [16].

In Section 2 we show how to extend the arguments used for one single
equation in [18] in order to obtain existence for systems, both in the cooper-
ative and the non-cooperative situations. In the first case we get monotone
sequences just as in the case of one equation. In the non-cooperative case
we rely on the compactness of the solution operators (as in [15, 16]) and
Schauder’s fixed point theorem. Also, we extend to cooperative systems a
“concavity” argument already used in [19] for proving uniqueness in the case
of a single equation. Such an extension allows us to greatly extend most of
the preceding uniqueness results, which only apply to very special situations.

In Section 3 we apply the general results to several examples. Some of
them were already treated in fairly particular situations. Namely, the results
in [4, 5, 20, 21] were obtained using a decoupling argument which only works
in quite special situations (essentially, the nonlinear terms in both equations
must coincide) and requires considering many different cases. Instead, we
can deal with completely independent nonlinear terms and can treat all these
cases at the same time. See more details in Remark 4.

The associated parabolic systems have never been considered in the pre-
vious literature (to the best of our knowledge). Local existence for a single
parabolic equation was obtained in [18] by showing that the problem can
be formulated in the framework of fractional operators already defined by
Henry [14]. It is possible to develop similar arguments and get local existence
for systems. Then, appropriate maximum principles [18, Appendix] could
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be used to show that solutions whose initial conditions are between ordered
sub and supersolutions (for the elliptic system in the sense defined below)
remain in this interval for any time t > 0. This would provide existence
and uniqueness of classical solutions for all the systems arising in Section 3.
Linearized stability could be studied extending the results in [18] to general
(non-potential, non-selfadjoint) linear systems with singular coefficients.

2. General existence and uniqueness theorems

Let us state and prove the main general existence theorems for singular
semilinear elliptic systems. First, we extend to cooperative systems the con-
struction in [18, Theorem 4.1] giving monotone sequences converging to a
maximal (a minimal) positive solution in the interval between ordered sub
and supersolutions. This is the content of Theorem 2.1. Then we deal with
non-cooperative systems and show that using a stronger notion of coupled
sub and supersolutions and Schauder’s fixed point theorem produces an ex-
istence result for solutions in the corresponding interval. We also prove a
uniqueness theorem for positive solutions of cooperative systems under the
smoothness assumptions in Theorems 2.1 and 2.2, by using a “concavity”
argument which is classical in the regular case and was extended to singular
problems in [19].

More precisely, we consider the singular semilinear elliptic system

L1u = f(x, u, v) in Ω, (2.1)

L2v = g(x, u, v) in Ω, (2.2)

u = v = 0 on ∂Ω, (2.3)

where

Llu ≡ −
N∑

i,j=1

alij(x)
∂2u

∂xi∂xj
+

N∑
i=1

bli(x)
∂u

∂xi
(2.4)

for l = 1, 2 under the following assumptions:
(H.1) Ω ⊂ RN is a bounded domain, with a C3,γ boundary, for some

γ > 0, if N > 1.
(H.2) The second-order part of the operator Ll is uniformly, strongly

elliptic in Ω. Also, for all i, j, k′, l′ = 1, . . . , N , alij = alji ∈ C3(Ω)∩C(Ω̄), bli ∈
C2(Ω), and there is a constant κ such that |∂alij/∂xk′ |+ |bli| < κ[1 + d(x)α

∗
]

and |∂2alij/∂xk′∂xl′ |+ |∂bli/∂x′k| < κd(x)α
∗−1 for all x ∈ Ω and for l = 1, 2,

where α∗ is such that −1 < α∗ < 1.
(H.3) There is an integer m > 0 such that f, ∂jf/∂uj−k ∂vk, g,

∂jg/∂uj−k ∂vk, ∈ C(Ω × (0,∞) × (0,∞)) for all j = 1, . . . ,m + 1 and
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all k = 0, . . . , j, and moreover, ∂jf /∂uj−1−k∂vk∂xk′, ∂jg/∂uj−1−k∂vk∂xk′
∈ C(Ω× (0,∞)× (0,∞)) for all k′ = 1, . . . , N , all j = 1, . . . ,m+ 1 and all
k = 0, . . . , j − 1. If u, v : Ω → R are such that 0 < k1d(x) ≤ u ≤ k2d(x),
0 < k3d(x) ≤ v ≤ k4d(x), for all x ∈ Ω and for ki > 0, i = 1, . . . , 4, then
|f(x, u(x), v(x))|+ |g(x, u(x), v(x))| ≤ k5(1+d(x)α

∗
), and | ∂jf(x, u(x), v(x))

/∂uj−k∂vk|+ |∂jg(x, u(x), v(x))/ ∂uj−k∂vk| ≤ kjd(x)α
∗−j for all x ∈ Ω,

all j = 1, . . . ,m + 1 and all k = 0, . . . , j and
∑N

k′=1 |∂jf(x, u(x), v(x))/
∂uj−k−1∂vk ∂xk′ |+

∑N
k′=1 |∂jg(x, u(x), v(x)) /∂uj−k−1∂vk ∂xk′ |

≤ kjd(x)α
∗−j for all x ∈ Ω, all k′ = 1, . . . , N , all j = 1, . . . ,m + 1 and all

k = 0, . . . , j− 1 where kj (can depend on ki, i = 1, . . . , 4 but) is independent
of u and v.

Notice that assumption (H.3) is satisfied by the usual power law nonlinear-
ities f(x, u, v) =m(x)uα1 vα2 whenever α1 + α2 > −1 and m ∈ C1(Ω̄) (and
similarly for g) and, more generally, when m ∈ C1(Ω) and |m(x))| ≤ kd(x)α3

for some k > 0 and some α3 such that |α1 + α2 + α3| < 1.
Now we collect from [18] the two main results for linear problems which

are the essential ingredients in order to apply the method of sub and super-
solutions.

The first result concerns existence and uniqueness for a singular linear
problem, and a regularity estimate giving the appropriate compactness of
the associated Green (solution) operator.

Proposition 1. ([18, Proposition 2.3]) Let Ω and L satisfy assumptions
(H.1)-(H.2) and M(x) satisfy

(H.4) M ∈ C1(Ω) and for all k = 1, . . . , N , d(x)2−α∗ |∂M(x)/∂xk| is
bounded in Ω.

(As a consequence, the function x → d(x)2M(x) is in C0,δ(Ω̄) whenever
0 < δ < min{γ, 1 + α∗} and d(x)1−α∗M(x) is bounded in Ω.) Then if v ∈
C0,1

0 (Ω̄) there exists a unique solution u to the linear problem

Lu = M(x)v in Ω, u = 0 on ∂Ω, (2.5)

such that u ∈ C2(Ω)∩C1,δ
0 (Ω̄) for all δ such that 0 < δ < δ0 = min{γ, α∗+1}.

There is a constant K, which (can depend on δ but) is independent of u such
that

‖u‖C1,δ(Ω̄) ≤ K‖v‖C0,1(Ω̄). (2.6)

The second result is an extension to singular problems of the strong max-
imum principle.
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Proposition 2. ([18, Theorem B.2, Appendix B]) Let u ∈ C2(Ω)∩C1,δ
0 (Ω̄)

be such that
Lu+M(x)u ≥ 0 in Ω, (2.7)

where δ, Ω, L, and M(x) ≥ 0 for all x ∈ Ω are as in Proposition 1. If u ≥ 0
in Ω̄ and u(x0) = 0 for some x0 ∈ Ω̄, then the following properties hold:
i) If x0 ∈ Ω, then u ≡ 0 in Ω.
ii) If x0 ∈ ∂Ω and u > 0 in Ω, then ∂u

∂n(x0) < 0.

We say that (u0, v0) (respectively (u0, v0)), with u0, u
0, v0, v

0 ∈ C2(Ω) ∩
C (Ω̄), is a subsolution (respectively supersolution) to (2.1)-(2.3) if

L1u0 − f(x, u0, v0) ≤ 0 ≤ L1u
0 − f(x, u0, v0) in Ω, (2.8)

L2v0 − g(x, u0, v0) ≤ 0 ≤ L2v
0 − g(x, u0, v0) in Ω, (2.9)

u0 = u0 =v0 = v0 = 0 on ∂Ω. (2.10)

If, moreover,

0 < k1d(x) ≤ u0(x) ≤ u0(x) for all x ∈ Ω, (2.11)

0 < k2d(x) ≤ v0(x) ≤ v0(x) for all x ∈ Ω, (2.12)

then we say that the subsolution (u0, v0) and the supersolution (u0, v0) are
ordered.

The system (2.1)-(2.3) is called cooperative (or quasi-monotone) if

f(x, u, v)is increasing in u and v for any x ∈ Ω, (2.13)

g(x, u, v)is increasing inu and v for any x ∈ Ω. (2.14)

Remark 1. Conditions (2.10)-(2.12) are stronger than the usual ones in the
non-singular case and were already required in [18] when dealing with one
single equation.

Theorem 2.1. Assume that assumptions (H.1)-(H.3) are satisfied and that
there exist ordered sub and supersolutions (u0, v0)-(u0, v0) for the cooperative
system (2.1)-(2.3). Then there exist a minimal and a maximal solution in
the subset [u0, u

0] × [v0, v
0], (u, v) and (u, v), such that u, v, u, v ∈C2(Ω) ∩

C1,δ
0 (Ω̄) whenever 0 < δ < δ0 = min{γ, α∗ + 1} and u0 ≤ u ≤ u ≤ u0,

v0 ≤ v ≤ v ≤ v0 in Ω, in the sense that if (u, v) is a solution such that
u0 ≤ u ≤ u0, v0 ≤ v ≤ v0, then u ≤ u ≤ u, v ≤ v ≤ v. We also have
(u, v) (respectively u, v) as the C1,δ

0 (Ω̄)-limit from below (respectively from
above) of a monotone sequence of subsolutions (respectively supersolutions)
to (2.1)-(2.3). Moreover, ∂u/∂n < 0 ∂u/∂n < 0 on ∂Ω.
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Proof. We consider the sequences {un}, {un}, {vn}, {vn}, defined induc-
tively by

L1un+1 = f(x, un, vn) in Ω, (2.15)

L1u
n+1 = f(x, un, vn) in Ω, (2.16)

L2vn+1 = g(x, un, vn) in Ω, (2.17)

L2v
n+1 = g(x, un, vn) in Ω, (2.18)

un+1 = un+1 = vn+1 = vn+1 = 0 on ∂Ω, (2.19)

for n = 0, 1, . . . with u0, u
0, v0, v

0 as above. Indeed, by (H.3) we have

f(x, u, v) = M(x)ψ(x, u, v), (2.20)

where M(x) = d(x)α
∗−2 and ψ(x, u, v) ∈ C1(Ω̄) for all u, v > 0 and satisfies

‖ψ(x, u, v)‖C1(Ω̄) ≤ k1(‖u‖C1(Ω̄) + ‖v‖C1(Ω̄)), (2.21)

‖ψ(x, u, v)− ψ(x, ũ, ṽ)‖C1(Ω̄) ≤ k2(‖u− ũ‖C1(Ω̄) + ‖v − ṽ‖C1(Ω̄)) (2.22)

whenever u0 ≤ u, ũ ≤ u0, v0 ≤ v, ṽ ≤ v0 in Ω, where the constants k1, k2

are independent of u, ũ, v and ṽ.
Since ψ(x, u, v) = d(x)2−α∗f(x, u, v) satisfies (2.22) we can apply Propo-

sition 1 to obtain inductively that {un}, {un} ∈ C2(Ω) ∩ C1,δ
0 (Ω̄) for n =

1, 2, . . . and 0 < δ < δ0; and the maximum principle in Proposition 2 shows
that

u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ≤ un ≤ . . . ≤ u1 ≤ u0 in Ω. (2.23)

(A similar result holds for vn and vn.)
Hence, the stated result follows if we can prove that um and um converge

in C1,δ
0 (Ω̄) whenever 0 < δ < δ0. (Then, according to standard local, elliptic

estimates, the limits must be in C2(Ω).)
We only prove the result for un (the result for un is similar). Reasoning

as in [18] we observe invoking the dominated convergence theorem that un
converges in Lq(Ω) for all q > 1. Then, by Proposition 1 and (2.21)- (2.22),
we have

‖up − un‖C1,δ(Ω̄) ≤ K‖up−1 − un−1‖C1(Ω̄), (2.24)

where K is independent of n and p. By using the interpolation inequality

‖u‖C1(Ω̄) ≤ ε‖u‖C1,δ(Ω̄) + Cε,q‖u‖Lq(Ω) (2.25)
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which holds for any ε and all q > N+2 (see [24] page 80), keeping q > N+2
fixed, the inequality (2.21)(for ε well chosen) and (2.24) give

‖up − un‖C1(Ω̄) ≤
1
4
‖up−1 − un−1‖C1(Ω̄) + k1‖up − un‖Lq(Ω)

≤ 1
4

(‖up − un‖C1(Ω̄) + ‖up − up−1‖C1(Ω̄)

+ ‖un − un−1‖C1(Ω̄)) + k1‖up − un‖Lq(Ω) (2.26)

with k1 independent of n and p. Since un converges in Lq(Ω), the first
inequality in (2.26) (with p = n + 1) implies ‖un+1 − un‖C1(Ω̄) → 0 as
n → +∞. And, since un is a Cauchy sequence in Lq(Ω), (2.22) and (2.24)
imply that un is a Cauchy sequence in C1(Ω̄) and in C1,δ

0 (Ω̄). Thus {un}
converges in C1,δ

0 (Ω̄) to a limit u. The last statement follows from the strong
maximum principle.

Remark 2. Theorem 2.1 is the extension to cooperative singular elliptic
systems of the standard existence result in the regular case (see, e.g., [30] and
also [28]). In the singular case, most of the existence results were obtained
by approximating singular problems by regular ones, applying the method
of sub and supersolutions in the standard way, and then going to the limit.
An existence theorem for solutions in the interval between ordered sub and
supersolutions was proved by the authors [18, Theorem 4.1]. Many more
details and references for the singular problem can be found in [18, 17, 19].

However, since most of the systems arising in applications are not coop-
erative (for example, among systems in population dynamics only symbiosis
is cooperative, whereas competition and predator-prey are not) it is quite
natural to try to extend the method to such situations. Nevertheless it turns
out that it is easy to exhibit simple examples showing that with the above
definition of sub and supersolution it is not true that there is always a solu-
tion in the interval between ordered sub and supersolutions (see, e.g., pages
66-67 in [16]). This difficulty was circumvented by giving a more stringent
definition of coupled sub- super-solution which coincides with the above one
for cooperative systems.

Next we extend this idea to the singular case. First, we state the definition
of coupled sub-supersolution for (2.1)-(2.3).

We say that (u0, v0) (respectively (u0, v0)), where u0, u
0, v0, v

0 ∈ C2(Ω)∩
C (Ω̄) is a subsolution (respectively supersolution) to (2.1)-(2.3) if

L1u0 − f(x, u0, v) ≤ 0 ≤ L1u
0 − f(x, u0, v) in Ω, for all v ∈ [v0, v

0],
(2.27)
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L2v0 − g(x, u, v0) ≤ 0 ≤ L2v
0 − g(x, u, v0) in Ω, for all u ∈ [u0, u

0],
(2.28)

u0 = u0 =v0 = v0 = 0 on ∂Ω, (2.29)

where

[w, z] = {p ∈ C1(Ω̄) : w(x) ≤ p(x) ≤ z(x) for all x ∈ Ω}, (2.30)

and if moreover (2.11)-(2.12) are satisfied.
We have the following existence result.

Theorem 2.2. Assume that conditions (H.1)-(H.3) are satisfied and there
exists a coupled sub- supersolution (u0, v0)-(u0, v0) for the system (2.1)-(2.3).
Then there exists at least a solution (u, v) of (2.1)-(2.3) with u, v ∈ C2(Ω)∩
C1,δ

0 (Ω̄) for all 0 < δ < δ0 and such that u0 ≤ u ≤ u0 and v0 ≤ v ≤ v0.

Proof. It was shown in the proof of Theorem 4.1 in [18] that there exists a
function M1(x) (respectively M2(x)) Mi ∈ C1(Ω), i = 1, 2, satisfying (H.4)
and such that, for some constants Ki the functions ϕi, ψi : Ω→ R, i = 1, 2,
defined as

ϕ1(x, u, v) ≡M1(x)u+ f(x, u, v) ≡M1(x)ψ1(x, u, v), (2.31)

ϕ2(x, u, v) ≡M2(x)v + g(x, u, v) ≡M2(x)ψ2(x, u, v) (2.32)

are such that

if u0 ≤ u < ũ ≤ u0, then ϕ1(x, u, v) < ϕ1(x, ũ, v) for all v ∈ [v0, v
0],
(2.33)

if v0 ≤ v < ṽ ≤ v0, then ϕ2(x, u, v) < ϕ2(x, u, ṽ) for all u ∈ [u0, u
0], (2.34)

ψ1(x, u, v), ψ2(x, u, v) ∈ C1
0 (Ω̄) for all (u, v) ∈ [u0, u

0]× [v0, v
0], (2.35)

‖ψi(x, u, v)‖C1(Ω̄) ≤ ki(‖u‖C1(Ω̄) + ‖v‖C1(Ω̄)) (2.36)

for all (u, v) ∈ [u0, u
0]× [v0, v

0] for i = 1, 2, (2.37)

if u, ũ ∈ [u0, u
0], then ‖ψi(x, u, v)− ψi(x, ũ, v)‖C1(Ω̄) ≤ (2.38)

k1i‖u− ũ‖C1(Ω̄) for all v ∈ [v0, v
0], i = 1, 2, (2.39)

if v, ṽ ∈ [v0, v
0], then ‖ψi(x, u, v)− ψi(x, u, ṽ)‖C1(Ω̄) ≤ (2.40)

k2i‖v − ṽ‖C1(Ω̄) for all u ∈ [u0, u
0], i = 1, 2. (2.41)

Let D ≡ BR ∩ ([u0, u
0] × [v0, v

0]), where BR = {(u, v) ∈ C1
0 (Ω̄) × C1

0 (Ω̄) :
‖u‖C1(Ω̄) + ‖v‖C1(Ω̄) ≤ R}, with R large enough . Let us consider the non-
linear operator K : D → C1

0 (Ω̄)× C1
0 (Ω̄) defined by K(u, v) = (w, z) where,
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by Theorem 1, (w, z) is the unique solution of the system

L1w +M1(x)w = ϕ1(x, u, v) in Ω, (2.42)

L2z +M2(x)z = ϕ2(x, u, v) in Ω, (2.43)

w = z = 0 on ∂Ω. (2.44)

Note that (2.42)-(2.44) is equivalent to (2.1)-(2.3) if w = u and z = v, see
(2.29).

In order to prove that the operator K is such that K(D) ⊂ D we will
proceed in two steps.

i)If (u, v) ∈ [u0, u
0] × [v0, v

0] then K(u, v) ≡ (w, z) ∈ [u0, u
0] × [v0, v

0].
Indeed, according to (2.27) and (2.42)

L1(w − u0) +M1(x)(w − u0) ≥ (2.45)

M1(x)ψ1(x, u, v)−M1(x)u0 − f(x, u0, v) ≥ 0 in Ω, (2.46)

L1(w − u0) +M1(x)(w − u0) ≤ (2.47)

M1(x)ψ1(x, u, v)−M1(x)u0 − f(x, u0, v) ≤ 0 in Ω; (2.48)

taking into account that ψ1(x, ·, v) is increasing for all x ∈ Ω and for all
v ∈ [v0, v

0] , that M1 satisfies (H.4), (2.33) and the maximum principle it
follows that u0 ≤ w ≤ u0. The inequality v0 ≤ z ≤ v0 is proved in a
completely analogous way.

ii)Every (u, v) ∈ BR satisfies K(u, v) ≡ (w, z) ∈ BR. Indeed, according
to Proposition 1, (H.3) and (2.37), the functions w and z defined by (2.42)-
(2.44) are such that

‖w‖C1,δ(Ω̄) ≤ K1k1(‖u‖C1(Ω̄) + ‖v‖C1(Ω̄)), (2.49)

‖z‖C1,δ(Ω̄) ≤ K2k2(‖u‖C1(Ω̄) + ‖v‖C1(Ω̄)). (2.50)

From (2.25), for q > N + 2 fixed, (2.6) and the above considerations we get

‖w‖C1(Ω̄) + ‖z‖C1(Ω̄) ≤ ε(Kk1 +K2k2)(‖u‖C1(Ω̄) + ‖v‖C1(Ω̄))+

Cε,q(‖u‖Lq(Ω) + ‖v‖Lq(Ω)) ≤
ε(Kk1 +K2k2)(‖u‖C1(Ω̄) + ‖v‖C1(Ω̄)) + Cε,qK3. (2.51)

Hence, for ε = 1/(2K1k1 + 2K2k2), the inclusion K(BR) ⊂ BR is satisfied
for R > 0 large enough.

Finally, since w and z are actually in C1,δ
0 (Ω̄) and the imbedding of this

space into C1(Ω̄) is compact, the operator K is compact. It is easily seen
that D is convex and hence by Schauder’s fixed point theorem there is a
solution of the equation K(u, v) = (u, v).
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Uniqueness of positive solutions in sublinear elliptic equations follows in
the regular case using a “concavity” argument which was extended to sin-
gular problems in [19] invoking a generalization of the strong maximum
principle in [18]. Here, we extend this argument to the singular system
(2.1)-(2.3).

We say the nonlinearity (f, g) is concave if we have

f(x, tu, tv) > tf(x, u, v) for all x ∈ Ω, and for all u > 0, v > 0, (2.52)

g(x, tu, tv) > tg(x, u, v) for all x ∈ Ω, and for all u > 0, v > 0 (2.53)

for any t ∈ (0, 1).

Theorem 2.3. Assume that conditions (H.1)-(H.3) are satisfied and that
the nonlinear term (f, g) is cooperative and concave. If (u1, v1) and (u2, v2)
are solutions to (2.1)-(2.3) with the regularity in Theorem 2.1 or 2.2, then
u1 ≡ u2 and v1 ≡ v2.

Proof. If (u1, v1) and (u2, v2) are two such solutions, we define

Λ = {t ∈ [0, 1] : tu1 ≤ u2, tv1 ≤ v2}. (2.54)

From the smoothness of the solutions it follows that [0, δ[⊂ Λ for some δ > 0.
We claim that 1 ∈ Λ. Assume, for contradiction, that t0 = sup{t ∈ Λ} < 1.
Then, according to (2.13), we have

L1(u2 − t0u1) = f(x, u2, v2)− t0f(x, u1, v1) >

f(x, u2, v2)− f(x, t0u1, t0v1) ≥ 0 in Ω, (2.55)

u2 − t0u1 = 0 on ∂Ω. (2.56)

From the strong maximum principle in [18] it follows that either u2−t0u1 ≡ 0
in Ω or u2 − t0u1 > 0 in Ω, ∂(u2 − t0u1)/∂n < 0 on ∂Ω. In the latter case
u2 − t0u1 > εu1 in Ω and ∂(u2 − t0u1)/∂n < ε∂u1/∂n on ∂Ω for some
ε > 0 small enough, a contradiction. A similar argument works for v2− t0v1.
Finally, if u2 − t0u1 ≡ v2 − t0v1 ≡ 0 in Ω then, from (2.1) and concavity,

0 = f(x, u2, v2)−t0f(x, u1, v1) = f(x, t0u1, t0v1)−t0f(x, u1, v1) > 0, (2.57)

which is again a contradiction, and completes the proof.

Remark 3. For the case of one equation, see [19] and the references therein
(see also [16, 17, 28, 30]). An extension of Krasnoselski’s idea (see [22])to
cooperative systems was given in [7]. An abstract version of this result can
be found in [1, Theorem 24.2].
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3. Applications

In this section we apply the general existence theorems in Section 2 to
several examples.
Example 1. We first consider the system

L1u = λupvq in Ω, (3.1)

L2v = µurvs in Ω, (3.2)

u = v = 0 on ∂Ω, (3.3)

where Ω satisfies (H.1), L1 and L2 are differential operators satisfying (H.2),
λ and µ are real parameters and p, q, r, s are such that

−1 < p+ q < 1, (3.4)

−1 < r + s < 1. (3.5)

As is well known (see [18], Theorem 2.6), the following linear eigenvalue
problems posses principal eigenvalues λ1, µ1 > 0 with eigenfunctions ϕ1,
ψ1 ∈ C1

0 (Ω̄) such that ϕ1, ψ1 > 0 in Ω, and ∂ϕ1

∂n , ∂ψ1

∂n < 0 on ∂Ω, satisfying

L1ϕ1 = λ1ϕ1 in Ω, (3.6)

L2ψ1 = µ1ψ1 in Ω, (3.7)

ϕ1 = ψ1 = 0 on ∂Ω. (3.8)

Now we consider the intended coupled sub-super-solution (u0, u
0) - (v0,v0),

defined as

u0 ≡ aϕ1 u0 ≡ cu1, (3.9)

v0 ≡ bψ1, v0 ≡ dv1, (3.10)

where u1 and v1 are the unique solutions of the linear problems

L1u1 = ϕp+q1 in Ω, (3.11)

L2v1 = ψr+s1 in Ω, (3.12)

u1 = v1 = 0 on ∂Ω, (3.13)

given in [18](or Corollary 2.1 in [19]) since (3.4)-(3.5) are satisfied. Notice
that u1, v1 > 0 in Ω, and ∂u1

∂n , ∂v1
∂n < 0 on ∂Ω. Notice also that under

(3.4)-(3.5), the system (3.1)-(3.3) is not cooperative in general.
Let us check that (u0, u

0) − (v0, v
0) is actually a sub-super-solution. To

this end, we note the following.
i) For any v ∈ [v0, v

0] we have

L1u0 − λup0v
q = aλ1ϕ1 − λapϕp1v

q = apϕp1(λ1a
1−pϕ1−p

1 − λvq) ≤ 0 (3.14)
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provided that
λ1a

1−pϕ1−p
1 ≤ λvq, (3.15)

thus, it is then sufficient to have

λ1a
1−pϕ1−p

1 ≤ λbqψq1. (3.16)

It follows from the smoothness of ϕ1 and ψ1 that there exists k1 > 0 such
that ψ1 ≥ k1ϕ1, and we only need to show that

λ1a
1−pϕ1−p

1 ≤ λbqkq1ϕ
q
1. (3.17)

If we set a = b, then the condition (3.17) can be written as

λ1a
1−p−qϕ1−p−q

1 ≤ λkq1, (3.18)

which (by (3.4)), for any λ > 0 fixed, is satisfied for a = b > 0 small enough.
ii) Again, for any v ∈ [v0, v

0] we have

L1u
0 − λ(u0)pvq = cL1u1 − λcpup1v

q = cϕp+q1 − λcpup1v
q =

cp(c1−pϕp+q1 − λup1v
q) ≥ 0, (3.19)

provided that v is such that

λ1u
p
1v
q ≤ c1−pϕp+q1 , (3.20)

which in turn holds whenever

λ1u
p
1d
qvq1 ≤ c

1−pϕp+q1 . (3.21)

Setting c = d, this inequality is written as

λ1u
p
1v
q
1 ≤ c

1−p−qϕp+q1 . (3.22)

As above, it follows from the smoothness of u1 and v1 that there exists ρ1 > 0
such that ϕ1 ≥ ρ1u1, ψ1 ≥ ρ1v1, which yields

λ1u
p
1v
q
1 ≤ c

1−p−qρp+q1 up1v
q
1, (3.23)

or, equivalently,
λ ≤ c1−p−qρp+q1 . (3.24)

For any λ > 0 fixed, this condition is satisfied for c = d > 0 large enough.
iii) Now for any u ∈ [u0, u

0] we have (with a = b)

L2v0 − µurvs0 = bµ1ψ1 − µurbsψs1 = bsψs1(µ1b
1−sψ1−s

1 − µur) ≤ 0 (3.25)

provided that
µ1a

1−sψ1−s
1 ≤ µur, (3.26)

and it is enough to get

µ1a
1−sψ1−s

1 ≤ µarϕr1. (3.27)
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Noting that there exists k2 > 0 such that ψ1 ≤ k2ϕ1, condition (3.27) reads

k1−s
2 µ1a

1−r−sϕ1−r−s
1 ≤ µ, (3.28)

which, invoking (3.5), is satisfied for any µ > 0 fixed, for a = b > 0 small
enough.

iv) Again for u ∈ [u0, u
0], we have, with c = d,

L2v
0 − µur(v0)s = cL2v1 − µurcsvs1 = cψr+s1 − µcsurvs1 =

cs(c1−sψr+s1 − µurvs1) ≥ 0 (3.29)

if
µurvs1 ≤ c1−sψr+s1 , (3.30)

and it is enough to get
µcrur1v

s
1 ≤ c1−sψr+s1 , (3.31)

or in turn
µur1v

s
1 ≤ c1−r−sψr+s1 . (3.32)

Using again the smoothness of ψ1, u1 and v1, there exists σ1 > 0 such that
ψ1 ≥ σ1u1, ψ1 ≥ σ1v1 and then it is enough that

µ ≤ c1−r−sσr+s1 , (3.33)

which, for µ > 0 given, is satisfied for c = d > 0 large.
Note that we can always pick the constant a (respectively b) sufficiently

small and c (respectively d) large enough in such a way that u0 ≤ u0, v0 ≤ v0.
Invoking Theorem 2.2, we have the following.

Theorem 3.1. Assume that (3.4) and (3.5) are satisfied. Then for any
λ > 0 and any µ > 0 there exists a solution (u, v) to (3.1)-(3.3) such that
u, v ∈ C1,δ

0 (Ω) for some 0 < δ < 1, u, v > 0 in Ω and ∂u
∂n , ∂v

∂n < 0 on ∂Ω.
Moreover, if q > 0 and r > 0, the solution is unique.

Proof. Existence follows from Theorem 2.2. If q > 0 and r > 0, then the
system is cooperative and since, for f(u, v) = λupvq, g(u, v) = µurvs we
have

f(tu, tv) = tp+qf(u, v) > f(u, v), g(tu, tv) = tr+sf(u, v) > g(u, v) (3.34)

for any t ∈]0, 1[ by (3.4) (3.5) and we apply Theorem 2.3.

Remark 4. A very particular instance of problem (3.1)-(3.3), namely L1u =
−∆u+ u, L2v = −∆v+αv, p = −q = r = −s = 1, was studied in [4]. Exis-
tence was proved by using Schauder’s fixed point theorem and different α’s
were treated separately (α > 1, α = 1, α < 1) with very specific arguments.
Theorem 3.1 also extends the results in [12, 20, 21], which are obtained
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for L1u= −∆u + αu, L2v= −∆v + βv with α, β > 0, p, r > 0 q, s < 0,
p+ q = r+ s, by using an approximation argument. Uniqueness was proved
only in the one-dimensional case, using intricate properties of the zeroes of
the solutions.

Remark 5. Systems like (3.1)-(3.3) arise in the Gierer-Meinhardt [13] mod-
els for morphogenesis. Choi and McKenna [5] prove existence for N = 1 and
N = 2, Ω a ball, using Schauder’s theorem in the case (in our notation)
p = r, q = −1, s = 0, with r > 1. These results can be extended to general
domains if some essential estimate (in Lemma 9 in [5]) holds. Notice that
Theorem 3.1 covers this result only for 0 < r < 1. On the other side, the
main instances in [13], namely p = 2, q = −1, r = 2, s = 0 and p = 2,
q = −4, r = 2, s = −4 are covered neither by Theorem 3.1 nor in [5].

Remark 6. Some more general results in [19] allow us to deal with more
general situations; for example, Theorem 3.2 in [19] allows us to replace in
(3.1) upvq by d(x)δupvq with −1 < δ+ p+ q < 1, etc. Similar remarks apply
for all examples in this section and will not be repeated for each considered
problem.

Let us now treat a series of variants of the usual Lotka-Volterra systems
for population dynamics. The first one is the following.
Example 2. We first consider the system

L1u = u(λ− αur − βv) in Ω, (3.35)

L2v = µv − vs

uδ
in Ω, (3.36)

u = v = 0 on ∂Ω, (3.37)

where Ω, L1, and L2 are as above, α, β > 0, λ, µ are real parameters and

r > 0, s− 1 > 0, s− δ > 1. (3.38)

We prove first the following.

Lemma 3.2. Under the assumptions above,if there is a nontrivial positive
solution of (3.35)-(3.37), then

λ > λ1, µ > µ1. (3.39)

Proof. This follows from well-known comparison arguments on eigenvalues
of linear problems (see [18]). (In the case of operators in divergence form,
the argument reduces to an integration by parts.)

Now, we can prove the following result.
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Theorem 3.3. If (3.38) is satisfied then for any λ > λ1 any α and any
µ > µ1 there exists a β0 > 0 such that for 0 < β < β0 there exists a positive
solution u, v > 0 to (3.35)-(3.37) with the same regularity as in Theorem 3.1.

Proof. We use again Theorem 2.2 this time with

u0 ≡ cϕ1, u0 ≡ w, (3.40)

v0 ≡ cψ1, v0 ≡ Cz, (3.41)

where ϕ1, ψ1 > 0 are as above, the constants c, C > 0 will be chosen later,
w > 0 is the unique positive solution for λ > λ1 to the logistic equation

L1w + αwr+1 = λw in Ω,
w = 0 on ∂Ω

(3.42)

and z > 0 is the unique positive solution (for µ > µ1) of

L2z + zs−δ = µz in Ω,
z = 0 on ∂Ω.

(3.43)

(Notice that s− δ > 1.)
We check the conditions:
i) If u0 ≡ aϕ1, then for all v ∈ [v0, v

0]

L1u0 − λu0 + α(u0)r+1 + βu0v =

cλ1ϕ1 − cλϕ1 + αcr+1ϕr+1
1 + βcϕ1v ≤ 0,

(3.44)

which follows, for λ > λ1 fixed, for c, β > 0 small enough if v0 is bounded
independently of β, which will be the case (see point iv) below).

ii) If u0 ≡ w, then for any β > 0, v ≥ 0

L1w + αwr+1 − λw + βwv ≥ 0. (3.45)

iii) If v0 ≡ cψ1 and u ∈ [u0, u
0], then

L2v0 − µv0 +
(v0)s

uδ
= cµ1ψ1 − µcψ1 +

csψs1
uδ

=

cψ1(µ1 − µ+
cs−1ψs−1

1

uδ
) ≤ 0,

(3.46)

for µ > µ1 fixed, and c > 0 small, from s− δ − 1 > 0 since k1ψ1 ≤ u ≤ k2ψ1

for some k1, k2 > 0, and C as in iv) below.
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iv) Now for v0 = Cz and u ∈ [u0, u
0] we obtain

L2v
0 − µv0 +

(v0)s

uδ
= C(µz − zs−δ) +

Cszs

uδ
− µCz =

Cszs − Czs−δuδ

uδ
≥ 0

(3.47)

if
uδzs−δ ≤ Cs−1zs. (3.48)

Since, again by the smoothness, u ≤ u0 ≤ w ≤ k3z, the condition is satisfied
for a small and C large, thus we have a sub-super-solution, and this ends
the proof.
Example 3. The following system is a slight variant of the preceding one.

L1u = u(λ− αur − βv) in Ω, (3.49)

L2v = µvα − vs

uδ
in Ω, (3.50)

u = v = 0 on ∂Ω, (3.51)

where Ω, L1 and L2 are as above, β > 0, λ and µ are real parameters and

r > 0, −1 < α < 1 < s, s− δ > α. (3.52)

Reasoning as in Lemma 3.2 we have the following.

Lemma 3.4. Under the above assumptions, if there is a nontrivial positive
solution of (3.49)-(3.51), then λ > λ1 and µ > 0.

Theorem 3.5. If (3.52) is satisfied, then for any λ > λ1 and any µ > 0
there exists a β0 > 0 such that for any 0 < β < β0 there exists a positive
solution u, v > 0 to (3.49)-(3.51) with the same regularity as in Theorem 3.1.

Proof. This is rather similar to the proof of Theorem 3.3, this time with

u0 ≡ cϕ1, u0 ≡ w, (3.53)

v0 ≡ cψ1, v0 ≡ Cz̃, (3.54)

where ϕ1, ψ1, a, C are as in the proof of the preceding theorem, w is again
given by (3.42) and z̃ is the unique positive solution (given by Theorem 3.3
in [19]) of

L1z̃ + z̃s−δ = µz̃α in Ω,
z̃ = 0 on ∂Ω.

(3.55)

i) It is clear that u0 ≡ w satisfies the condition.
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ii) If u0 ≡ aϕ1 then the fact that for any v ∈ [v0, v
0]

L1u0 − λu0 + ur+1
0 + βu0v ≤ 0 (3.56)

for any β > 0 small enough is proved as before.
iii) If v0 ≡ aψ1 and u ∈ [u0, u

0], then the fact that

L2v0 − µ(v0)α +
vs0
uδ

= cαψ1
α(µ1c

1−αψ1
1−α − µ+

cs−αψ1
s−α

uδ
) ≤ 0 (3.57)

for any µ > 0 and a > 0 small enough, follows from the fact that s− δ > α
since k3ψ1 ≤ u ≤ k4ψ1 for some k3, k4 > 0.

iv) Now for v0 ≡ Cz̃ and u ∈ [u0, u
0] we get

L2v
0 − µ(v0)α +

(v0)s

uδ
= µCαz̃α(C1−α − 1) +

Csz̃s − Cuδ z̃s−δ

uδ
≥ 0 (3.58)

if
uδ z̃s−δ ≤ Cs−1z̃s (3.59)

since, from (3.52), and again by the smoothness u ≤ u0 ≤ w ≤ k5z̃, the
condition is satisfied for C > 0 large (notice that 1− α > 0 and s− 1 > 0).
Example 4 (singular competition system). We consider next the sys-
tem

L1u = λuα − uδ − aupvq in Ω, (3.60)

L2v = µvβ − vγ − burvs in Ω, (3.61)

u = v = 0 on ∂Ω, (3.62)

where Ω, L1 and L2 are as above, a, b > 0 are constants, λ and µ are real
parameters, and

−1 < α < 1, α < δ, α < p, p− α+ q > 0, (3.63)

−1 < β < 1, β < γ, β < s, s− β + r > 0. (3.64)

Theorem 3.6. If (3.63)-(3.64) are satisfied, then for any λ > 0 and any
µ > 0 there exists a positive solution u, v > 0 of (3.60)-(3.62) with the
regularity of Theorem 3.1.

Proof. We apply Theorem 2.2 with

u0 ≡ cϕ1, u0 ≡ w, (3.65)

v0 ≡ cψ1, v0 ≡ z, (3.66)

where ϕ1, ψ1 > 0 are as above and w > 0 (respectively z > 0) is the unique
positive solution of

L1w + wδ = λwα in Ω, w = 0 on ∂Ω (3.67)
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(respectively

L2z + zγ = µzβ in Ω, z = 0 on ∂Ω) (3.68)

given by Theorem 3.3 in [19] (since δ > α and γ > β).
i) For any v ∈ [v0, v

0]

L1u0 − λu0
α + u0

δ + au0
pvq =

cδϕ1
δ + acpϕ1

pvq = (3.69)

cαϕ1
α(λ1c

1−αϕ1
1−α − λ+ cδ−αϕ1

δ−α + acp−αϕ1
p−αvq) ≤ 0 (3.70)

for c > 0 small enough by (3.63) since k1ϕ1 ≤ v ≤ k2ϕ1 with k1, k2 > 0.
ii) For any v ∈ [v0, v

0] we have

L1u
0 − λ(u0)α + (u0)δ + a(u0)pvq ≥ L1w − λwα + wδ = 0. (3.71)

iii) For any u ∈ [u0, u
0] we have

L2v0 − µvβ0 + vγ0 + burvs0 =

cβψβ1 (µ1c
1−βψ1−β

1 − µ+ cγ−βψγ−β1 + bcs−βψs−β1 ur) ≤ 0 (3.72)

for c > 0 small by (3.64) since k3ϕ1 ≤ u ≤ k4ϕ1 with k3, k4 > 0.
iv) For any u ∈ [u0, u

0]

L2v
0 − µ(v0)β + (v0)γ + bur(v0)s ≥ L2z − µzβ − zγ = 0. (3.73)

Remark 7. Notice that the proof still works for α = 1 if δ > 1, p > 1 and
q > 0. The classical competition Lotka-Volterra system, where α = 1, δ = 2,
p = 1, is not included.

Remark 8. A competition system of this type on the whole space RN was
studied in [3] for 0 < α < 1, δ ≥ 1, p ≥ 1 and some q’s. In this case, we
extend to the singular case for a bounded domain the existence result in [3].
The singular case was studied in [29].

Remark 9. Systems similar to (3.60)-(3.62) (the same observation holds
for Examples 5 and 6) arise if linear diffusion is replaced in the usual Lotka-
Volterra systems by a nonlinear diffusion −∆um, with m > 1. This could
give terms such as uα, 0 < α < 1, etc., after a change of variables, but not
with −1 < α < 0.

Example 5 (singular predator-prey system). Consider the system

L1u = λuα − uδ − aupvq in Ω, (3.74)

L2v = µvβ − vγ + burvs in Ω, (3.75)
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u = v = 0 on ∂Ω, (3.76)

where Ω, L1 and L2 are as above, a, b > 0 are constants and λ and µ are
real parameters. Moreover

−1 < α < 1, α < δ, α < p, p− α+ q > 0, (3.77)

−1 < β < 1, β < s < γ < r + s, 1 < γ. (3.78)

Theorem 3.7. If (3.77)-(3.78) are satisfied, then for any λ > 0 and any
µ > 0 there exists a positive solution u, v > 0 of (3.74)-(3.76) with the
regularity of Theorem 3.1.

Proof. We apply Theorem 2.2 with

u0 ≡ cϕ1, u0 ≡ w, (3.79)

v0 ≡ cψ1, v0 ≡ Cz, (3.80)

where ϕ1, ψ1 > 0 are as defined in (3.6)-(3.8), w, z are as defined in (3.67)-
(3.68) and c, C > 0 will be chosen later.

Proceeding as in in the proof of Theorem 3.6 it is obtained that the two
inequalities in (2.27) are satisfied.

Moreover, we have the following.
iii) For any u ∈ [u0, u

0] we have

L2v0 − µvβ0 + vγ0 − bu
rvs0 =

cβψβ1 (µ1c
1−βψ1−β

1 − µ+ cγ−βψγ−β1 − bcs−βψs−β1 ur) ≤ 0 (3.81)

for c > 0 small by (3.78) since k1ψ1 ≤ u ≤ k2ψ1 is bounded for some
k1, k2 > 0, by smoothness. (Notice that the minus sign in the last term is
not relevant.)

iv) For any u ∈ [u0, u
0] we have

L2v
0 − µ(v0)β + (v0)γ − bur(v0)s =

C(µzβ − zγ)− µCβzβ + Cγzγ − burCszs =

µCβzβ(C1−β − 1) + C(Cγ−1 − 1)zγ − burCszs ≥ 0. (3.82)

Taking into account the fact that there exist k3, k4 such that k3z ≤ u ≤ k4z,
and that γ − s > 0, γ > 1 and r+ s− γ > 0; i.e., s < γ < r+ s, by (3.78) it
is easily seen that the inequality (3.82) is satisfied for C > 0 large enough.
Example 6 (singular symbiosis system). Consider now the system

L1u = λuα − uδ + aupvq in Ω, (3.83)

L2v = µvβ − vγ + burvs in Ω, (3.84)
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u = v = 0 on ∂Ω, (3.85)

where Ω, L1 and L2 are as above, a, b > 0 are constants and λ and µ are
real parameters. Moreover

−1 < α < 1, α < p < δ < p+ q, 1 < δ, (3.86)

−1 < β < 1, β < s < γ < r + s, 1 < γ. (3.87)

Theorem 3.8. If (3.86)-(3.87) are satisfied, then for any λ > 0 and any
µ > 0 there exists a positive solution u, v > 0 of (3.83)-(3.85) with the
regularity of Theorem 3.1. Moreover, if q > 0 and r > 0, it is unique.

Proof. We apply Theorem 2.2 with

u0 ≡ cϕ1, u0 ≡ Cw, (3.88)

v0 ≡ cψ1, v0 ≡ Cz, (3.89)

where ϕ1, ψ1 > 0, w > 0 and z > 0 are as defined in (3.6)-(3.8), (3.67)-(3.68)
and c, C > 0 will be chosen as in Theorem 3.7.

Proceeding as in the proof of Theorem 3.7 we obtain the first inequality
of (2.27).

Moreover, for any v ∈ [v0, v
0] we have

L1u
0 − λ(u0)α + (u0)δ − a(u0)pvq =

λCαwα(C1−α − 1) + C(Cδ−1 − 1)wδ − aCpwpvq ≥ 0. (3.90)

By (3.86) the first term on the right-hand side is positive for C > 1. Taking
into account the fact that δ − p > 0 and p + q − δ < 0; i.e., p < δ < p + q,
it is easily seen that the second inequality in (2.27) is satisfied for C large
enough.

Finally, proceeding as in the proof of steps iii) and iv) in Theorem 3.7 we
obtain the fact that the two inequalities in (2.28) are satisfied. Uniqueness
is proved as in Theorem 3.1.
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