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POSITIVE SOLUTIONS FOR SOME 

SEMI-POSITONE PROBLEMS VIA BIFURCATION THEORY 

A. AMBROSETTI1, D. ARCOYA2 , AND B. BUFFONI3 

Scuola Normale Superiore, Pis a, 56100 Italy 

Dedicated to the memory of Peter Hess 

Abstract. Bifurcation Theory is used to prove the existence of positive solutions of some classes 
of semi-positone problems. 

1. Introduction. In this paper we deal with the existence of positive solutions of 
Dirichlet boundary value problems like 

{ 
-1:1u = ) . .j(x, u), 

u =0, 

XED, 

x E an, (1) 

where D c ~N, N 2: 1, is a bounded domain with smooth boundary aD, ).. > 0 and 
f : D x JR+ -+ JR. If f (x, 0) 2: 0 then (1) is called a positone problem and has been 
extensively studied; see, e.g., [3], [10], [11], and the survey [1]. 

On the contrary we deal here with the so called semi-positone (or non-positone) 
problem, when f is such that 

Ur) f(x, 0) < 0, Vx ED. 

Recently some existence results concerning semi-positone problems have been 
proved; see [4], [6], [7], and [12]. With the exception of [6] (that deals with sub
linear problems and uses sub and super-solutions) the common feature of the papers 
mentioned above is that they are obtained by means of ODE techniques, such as the 
shooting method, and hence they handle the case where D is an annulus, a ball or a 
set close to a ball and f(x, u) = f(u). 

The main purpose of the present paper is to show that Bifurcation theory can 
be easily used to study semi-positone problems, like the positone ones. The same 
abstract setting is employed to handle both asymptotically linear, super linear as well as 
sub linear problems on general domains (hence genuine partial differential equations). 
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Roughly, we first show that there exists a global branch of solutions of (1) "ema
nating from infinity"; next we prove that for A near the bifurcation value, solutions 
of large norm are indeed positive. 

After some notation and preliminaries listed in Section 2, we deal in Section 3 with 
asymptotically linear problems and use techniques close to [3] to prove an existence 
result that is new in the frame of semi-positone problems. In Section 4 we discuss 
superlinear problems. A 'blow-up' argument jointly with some a priori estimates of 
[9] allows one to show that (1) possesses positive solutions for 0 < A < A*. Similar 
arguments can be used in the sublinear case, discussed in Section 5, to show that (1) 
has positive solutions provided A is large enough. 

2. Notation and preliminaries. Standard notation will be used for Lebesgue and 
Sobolev spaces. The norm in U (Q) will be denoted by I · lr and the scalar product 
in L2 (Q) by (- I ·). We will work in X = C(Q) or Y = C1·v(Q), the space of 
continuous, C 1 with Holder continuous first derivative respectively, functions. The 
usual norm in such spaces will be denoted by II· II =I· loo and II· llr,v; we also set 
Br = {u EX: !lull < r}. The first eigenvalue of-~ with zero Dirichlet boundary 
conditions is denoted by A 1; CfJI is the corresponding eigenfunction such that CfJI > 0 
in fJ and ICfJrlz = 1. We also setJR+ = [0, oo). 

We let K : X ~ X denote the Green operator of-~ with zero Dirichlet boundary 
conditions, i.e., v = K u if and only if 

{ -~u = v, 

u =0, 

X E fJ, 

X E afJ. 

In Section 5 we will consider K as a map into Y. 
By a solution of (1) we mean au E H 2·r (Q) n H~·2 (fJ), V r :=:: 1, which solves 

(1) weakly. With the above notation, problem (1) is equivalent to 

u- AKj(u) = 0, u EX. (2) 

Hereafter we will use the same symbol to denote both the function and the associated 
Nemitski operator. 

We say that Aoo is a bifurcation from infinity for (2) if there exist fLn ~ A00 and 
Un EX, such that Un- fLnKf(un) = 0 and llunll ~ oo. Extending the preceding 
definition, we will say that Aoo = +oo is a bifurcation from infinity for (2) if solutions 
(/Ln, un) of (2) exist with fLn ~ +oo and II Un II ~ +oo. This is the case we will 
meet in Section 5. 

In some situations, like the specific ones we will discuss later, an appropriate 
rescaling permits one to find bifurcation from infinity by means of Leray-Schauder 
topological degree deg(-, ·, ·). Recall that K : X~ X is (continuous and) compact, 
and hence it makes sense to consider the topological degree of I- AKj, I identity 
map. 

3. Asymptotically linear problems. In this section we suppose that f E C (Q x 
JR+, JR) satisfies (fr) and 
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(h) 3 m > 0 such that 

Let )..00 = 2:!. and define 
m 

1. f(x, u) · 
1m =m. 

u~+oo u 

a(x) = liminf(f(x, u)- mu), A(x) =lim sup (f(x, u)- mu). 
u~+oo u~+oo 

We will show 

657 

Theorem 1. Suppose that f satisfies Cf1) and Cfz). Then there exists E > 0 such 
that (1) has positive solutions provided either 

(i) a > 0 (possibly +oo) in Q and).. E [A.00 - E, A. 00 [; or 
(ii) A < 0 (possibly -oo) in S"2 and).. E]A.00 , A. 00 + E]. 

Actually, Theorem 1 is a particular case of a somewhat more general result; see 
the Remarks at the end of this section. 

The proof of Theorem 1 will be carried out in several steps. First of all, we extend 
f (x, ·) to all of JR. by setting 

F(x, u) = f(x, lui). 

Let X= C(Q) and set, for u EX, 

<P(A., u) := u- A.K F(u). 

Plainly, any u > 0 such that <P (A., u) = 0 is a positive solution of (1). The following 
two Lemmas are closely related to [3]. 

Lemma 2. For every compact interval A C JR.+\ {A.00 } there exists r > 0 such that 
<P(A., u) # 0, \f).. E A, Vllull 2':: r. Moreover, 

(i) if a > 0 then we can also take A= [A.00 , A.], \f).. > A.00; 

(ii) if A < 0 then we can also take A = [0, A.00]. 

Proof. Let f.Ln ---+ f.L 2':: 0, f.L # A. 00 , and II Un II ---+ oo be such that 

Assumption (f2), elliptic theory and the definition ofF yield that, up to a subsequence, 
Wn---+ win C 1·v(Q), where w is such that llwll = 1 and satisfies 

{ 
-..6..w = f.Lmlwl, 

w=O, 

X E Q, 

X E BQ. 
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By the maximum principle it follows that w 2: 0. Since llwll = 1 we infer that 
p.,m = A.r, namely p., = A-00 , a contradiction that proves the first statement. 

The remaining arguments are the same as that ofLemmas3.1, 3.6 of [3] and we 
will only give a short sketch of (i). Taking P.,n {. A- 00 , it follows that w 2: 0 satisfies 
- /:}. w = A. 1 w in Q and w = 0 on a Q and hence there exists f3 > 0 such that w = f3 ¢1. 

Then one has Un = iiunllwn---+ +oo for all x E Q and F(un) = f(un) for n large. 
From <I>(A.n, un) = 0 it follows that 

Since fJ-n > A00 and (un I ¢r) > 0 for n large, we infer that (f (un) - mun I ¢r) < 0 
for n large and the Fatou Lemma yields 

0 2: liminf(f(un)- mun I ¢r) 2: (a I ¢r), 

a contradiction if a > 0. 

Lemma 3. If A. > A00 there exists r > 0 such that 

<I>(A., u) =J t¢r, Vt 2:0, !lull 2: r. 

Proof. Taking into account that F(x, u) :::::: miui as lui ---+ oo, one can repeat the 
arguments of Lemma 3.3 of [3] with some minor changes. 0 

For u =/= 0, we set z = uiiull-2 . Letting 

one has that A- 00 is a bifurcation from infinity for (2) if and only if it is a bifurcation 
from the trivial solution z = 0 for 'll = 0. From Lemma 2 it follows by homotopy 
that 

deg('li(A., ·), Brjr, O) = deg('li(O, ·), Brfr• 0) (3) 

= deg(/, Brjr, 0) = 1, VA. < Aoo. 

Similarly, by Lemma 3 one infers, for all r E [0, 1] and for all A. > A- 00 , 

deg('l!(A., ·), Br;r. 0) = deg('li(A., ·)- r¢r, Br;r. 0) (4) 

= deg('li(A., ·)- ¢r, Br;r. 0) = 0. 

Let us set 
2::: ={(A., u) E JR+ X X : u =J 0, <l>(A., u) = 0}. 

From (3) and (4) and the preceding discussion we deduce 
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Lemma 4. Aoo is a bifurcation from infinity for (2). More precisely there exists an 
unbounded closed connected set I:00 C I: that bifurcates from infinity. Moreover, 
}:;00 bifurcates to the left (to the right) provided a > 0 (respectively A < 0). 

Proof of Theorem 1. By the above Lemmas, it suffices to show that if f.Ln ---* Aoo 
and llunll ---* oo then Un > 0 in g for n large. Setting Wn = Un llunll-1 and using 
the preceding arguments, we find that, up to subsequence, Wn ---* w in ci,v, and 
W = fJifJr, {3 > 0. Then, it follOWS that Un > 0 in Q, for n large. 

Remarks. 

(1) The proof of Theorem 1 actually shows there exists k > 0 such that for all 
(A, u) E I:00 with llull 2::: k one has that u > 0 inn. Thus such (A, u) are 
solutions of (1). 

(2) It is clear that the Laplace operator can be substituted by any uniformly 
elliptic second order operator with smooth coefficients. Moreover we can 
allow that m depends on x. 

(3) Suppose that f(x, u) = f(u) and there exists c > 0 such that f(c) = 0, 
f(u) < Oandf(u) > OforallO:::; u < c, u > crespectively. Themaximum 
principle implies that u(xmax) > c whenever u is positive somewhere inn. 
Since solutions on the branch I:00 are indeed positive for A ---* A00 , then a 
continuity argument shows that llull > c for all (A, u) E I:00 • 

( 4) In general, solutions on I:00 can change sign and the behavior 6f I:00 depends 
on the definition off for u < 0. However, independently of such definition, 
there exists a branch I:o C I: emanating from (0, 0) E JR x X, consisting of 
negative solutions of (1), and such that I:00 n I:0 = 0. Let us point out that 
this is in contrast with the positone case. 

(5) The following example shows that, in general, (1) does not possess positive 
solutions for A large. Let us consider the equation -u" = A(u- 1), x E 

(0, rr), u(O) = u(rr) = 0. An explicit calculation shows that a positive 
solution exists if and only if either 1 < A :::; 4 or A = 4k2 (k EN) (although 
such a problem has solutions for all A > 1). 

4. Superlinear problems. We will study the existence of positive solutions of 
problem (1) when f(x, .) is superlinear. Precisely, we suppose that f E C(Q X 

JR+, JR) satisfies (f1) and 

(h) 3 bE C(Q), b > 0, such thatlimu--+oo u-P f(x, u) = b, uniformlyinx E Q, 
with 1 < p < 2* - 1, 

where 2* = ~l}'_2 if N 2::: 3, 2* = +oo if N = 1, 2. 
Our main result is 

Theorem 5. Let f E C(n x JR+, JR) satisfy Ur) and (h). Then 3 A* > 0 such 
that (1) has positive solutions for all 0 < A :::; A*. More precisely, there exists a 
connected set of positive solutions of (1) bifurcating from infinity at A00 = 0. 
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Proof. As before we set 

F(x, u) = f(x, lui) 

apd let 

G(x, u) = F(x, u)- bluiP. 

For the remainder of the proof, we will omit the dependence with respect to x E Q. 
In order to prove that J... 00 = 0 is a bifurcation from infinity for 

u-J...KF(u)=O, (5) 

we use the rescaling w = yu,).. = yP-I, y > 0. A direct calculation shows that 
(J..., u),).. > 0, is a solution of (5) if and only if 

w-KF(y,w)=O, (6) 

where 

(7) 
~ 

We can extend F to y = 0 by setting 

F(O, w) = blwiP 

and, by (!3), such an extension is continuous. We set 

S(y, w) = w- KF(y, w), y E JR+. 

Let us pointoutexplicitlythatS(y, ·) =I -K, withJC compact. For y = 0, solutions 
of So(w) := S(O, w) = 0 are nothing but solutions of 

{ 
-.!:J..w = biwiP, 

u =0, 

onQ, 

onCJQ. 
(8) 

Since 1 < p < 2* -1, we can use the a priori estimates of [9] and the degree theoretic 
arguments of [8] to infer the existence of R > r > 0 such that 

Sa(w)#O, Vllwll E{r,R} (9) 

and 

(10) 

Next we show 
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Lemma 6. There exists Yo > 0 such that 

(i) deg(S(y, ·), BR- Bn 0) = -1, V 0 :S y :S Yo; 
(ii) if S(y, w) = 0, y E [0, Yo], r :::; llw II :::; R, then w > 0 inn. 

Proof. Clearly (i) follows if we show that S(y, w) -=/= 0 for all II w II E {r, R} and all 
0:::; y :S Yo· Otherwise, there exists a sequence (yn, Wn) with Yn---* 0, llwnll E {r, R} 
and Wn = K F(yn, Wn). Since K is compact then, up to a subsequence, Wn ---* wand 
So(w) = 0, llwll E {r, R}, a contradiction with (9). 

To prove (ii), we argue again by contradiction. As in the preceding argument, 
we find a sequence Wn E X, with {x E Q : Wn(x) :::; 0} -=/= 0, such that Wn ---* w, 
llwll E [r, R] and So(w) = 0; namely, w solves (8). By the maximum principle 
w > 0 on Q and awjan < 0 on an. Moreover, elliptic theory implies that, without 
relabeling, Wn---* Win C 1•v. Therefore Wn > 0 on Q for n large, a COntradiction. 

Proof of Theorem 5 completed. By Lemma 6, problem (6) has a positive solution 
wy for all 0 :::; y :::; y0. As remarked before, for y > 0, the rescaling).. = yP-1, 

u = w jy gives a solution (J..., u;..) of (5) for all 0 < ).. < )..* := Y6-1. Since Wy > 0, 
(J..., u;..) is a positive solution of (1). Finally llwr II ~ r for ally E [0, Yo] implies that 
llu;..ll = llwrii!Y---* ooasy---* 0. Thiscompletestheproof. 

Remarks. 

(1) The result of [5] shows that, in general, (1) has no positive solutions for).. 
large. 

(2) As in Remarks 3 and 4 concerning the asymptotically linear case, also here 
a branch JJ0 emanating from (0, 0) E lR x X exists and consists of negative 
solutions. This branch is disconnected from the one emanating from infinity, 
in contrast with the case f(x, 0) > 0; see, for example, the survey [1]. 

5. Sublinear problems. In-this final section we deal with sublinear f, namely 
f E C(Q x JR+, JR) that satisfy Cf1) and 

Cf4) 3 bE C(Q), b > 0, such thatlimu-+oo u-q f(x, u) = b, uniformly inx E Q, 
with 0 :::; q < 1. 

We will show that in this case positive solutions of (1) branch off from oo for )..00 = 
+oo. First, some preliminaries are in order. It is convenient to work on Y = C1• v (Q). 
Following the same procedure as for the superlinear case, we employ the rescaling 
w = yu, ).. = yq-l and use the same notation, with q instead of p andY instead 
of X. As before, (A., u) solves (5) if and only if (y, w) satisfies (6). Note that now, 
since 0 :::; q < 1, one has that 

).. ---* +oo {} y ---* 0. 

For future reference, we recall that it is well known that the problem 

{ 
-/j._u = bwq, 

u =0, 

XED 

X E 3Q 

(11) 

(12) 
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has a unique positive solution w0 . Moreover, letting .A. 1 [bw6'-1J denote the first 
eigenvalue of the linearized problem 

{ 
-1-.v = .A.bw6'-1v, 

v =0, 

xEQ 

x E an, 
(12) implies that v = w0 is an eigenfunction corresponding to 

(13) 

(14) 

Concerning (13), it is worth pointing out that, although q < 1, the spectral theory 
can be carried over; see, for example, Remark 3.1 of [2]. 

We set Ds ={wE Y : llw- wolll,v::::; 8} and extend F toy= 0 by 

Fo(w) = F(O, w) := bJwJq. 

Lemma 7. There exists 8 > 0 such that K F: [0, oo) x Ds -+ Y is (compact and) 
continuous. 

,.._, 
Proof. When 0 < q < 1 the same arguments used for p > 1 show that F is 
continuous. Let q = 0 and let 8 > 0 be such that w > 0 for all w E D8. Plainly, it 
suffices to show that K F(yn, Wn)-+ K Fo(w) whenever Yn-+ 0 and Wn-+ winY. 
Since w > 0 then y;1wn-+ +oo, pointwise in Q. By (f4) it follows that 

G(yn-1wn) -+ 0 in U, V r 2: 1. 

Then the elliptic theory yields 

in the Sobolev space H 2·r, V r 2: 1, and the result follows in a standard way. 

Theorem 8. Let f E C(Q X~+, JR.) satisfy Cfi) and (f4). Then 3 .A.*> 0 such that 
(1) has positive solutions for all .A. 2: .A.*. More precisely, there exists a connected set 
of positive solutions of (1) bifurcating from infinity for A00 = +oo. 

Proof. ByLemma7,degreetheoreticargumentsa.£PlytoS(y, w) = w-KF(y, w). 
Moreover, note that S0 (w) = S(O, w) = w- KF0 (w) is C 1 on D8 and its Frechet 
derivative S~ ( Wo) is given by 

, { v- K[qbw6-1v], 
S0 (wo)v = . 

V, If q = 0. 

if 0 < q < 1 

In particular, for 0 < q < 1, (14) implies that allthe characteristic values of!-S~ ( wo) 
are greater than 1. Therefore, we infer that 

deg(So, Ds, 0) = 1, V q E [0, 1). 
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By continuation, we deduce that there exists a connected subset r of solutions of 
S(y, w) = 0 (y > 0), such that (0, wo) E r. More'over, 3 y0 > 0 such that these 
solutions are positive provided 0 < y ::::; Yo. By the rescaling )., = y q-1, u = w j y, 
r is transformed into a connected subset :E00 of solutions of (1). These solutions are 
indeed positive for all)., > )., * := y0q-1 and, according to (11), :E00 bifurcates from 
infinity for A00 = +oo. 

Remark. We suspect that, if :E00 crosses).,= A1, then (1) has positive solutions for 
)., E (A 1, )., 1 + E]. For a result in this direction, see [ 6]. 

Acknowledgment. The second and third authors would like to thank Scuola N ormale 
for hospitality. 
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