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POSITIVE SOLUTIONS FOR SOME
SEMI-POSITONE PROBLEMS VIA BIFURCATION THEORY

A. AMBROSETTI', D. ARCOYA?, AND B. BUFFONI®
Scuola Normale Superiore, Pisa, 56100 Italy

Dedicated to the memory of Peter Hess

Abstract. Bifurcation Theory is used to prove the existence of positive solutions of some classes
of semi-positone problems.

1. Introduction. In this paper we deal with the existence of positive solutions of
Dirichlet boundary value problems like

—Au = Af(x, u), Q,
{ u f(x, u) x € o

u=020, x € 092,

where Q ¢ R¥, N > 1, is a bounded domain with smooth boundary 92, A > 0 and
f:QxRY— R.If f(x,0) > 0then (1) is called a positone problem and has been
extensively studied; see, e.g., [3], [10], [11], and the survey [1].

On the contrary we deal here with the so called semi-positone (or non-positone)
problem, when f is such that

(fi) f&x,00 <0, Vxe.

Recently some existence results concerning semi-positone problems have been
proved; see [4], [6], [7], and [12]. With the exception of [6] (that deals with sub-
linear problems and uses sub and super-solutions) the common feature of the papers
mentioned above is that they are obtained by means of ODE techniques, such as the
shooting method, and hence they handle the case where €2 is an annulus, a ball or a
set close to aball and f(x, u) = f(u).

The main purpose of the present paper is to show that Bifurcation theory can
be easily used to study semi-positone problems, like the positone ones. The same
abstract setting is employed to handle both asymptotically linear, superlinear as well as
sublinear problems on general domains (hence genuine partial differential equations).
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Roughly, we first show that there exists a global branch of solutions of (1) “ema-
nating from infinity”’; next we prove that for A near the bifurcation value, solutions
of large norm are indeed positive.

After some notation and preliminaries listed in Section 2, we deal in Section 3 with
asymptotically linear problems and use techniques close to [3] to prove an existence
result that is new in the frame of semi-positone problems. In Section 4 we discuss
superlinear problems. A ‘blow-up’ argument jointly with some a priori estimates of
[9] allows one to show that (1) possesses positive solutions for 0 < A < A,. Similar
arguments can be used in the sublinear case, discussed in Section 5, to show that (1)
has positive solutions provided A is large enough.

2. Notation and preliminaries. Standard notation will be used for Lebesgue and
Sobolev spaces. The norm in L" (£2) will be denoted by | - |, and the scalar product
in L2(Q) by (- | ). We will work in X = C(Q) or ¥ = C¥(Q), the space of
continuous, C! with Hoélder continuous first derivative respectively, functions. The
usual norm in such spaces will be denoted by || - || = | - |ec and || - ||1,,; We also set
B, = {u € X : |lu|| < r}. The first eigenvalue of —A with zero Dirichlet boundary
conditions is denoted by A;; ¢; is the corresponding eigenfunction such that ¢; > 0
in @ and |@;|, = 1. We also set Rt = [0, 00).

Welet K : X — X denote the Green operator of —A with zero Dirichlet boundary
conditions, i.e., v = Ku if and only if

—Au = v, x € Q,
u=20, x € 082.

In Section 5 we will consider K as a map into Y.
By a solution of (1) we mean au € H>"(Q) N Hy*(K2), Y r > 1, which solves
(1) weakly. With the above notation, problem (1) is equivalent to

u—AKf@w) =0, ucX. )

Hereafter we will use the same symbol to denote both the function and the associated
Nemitski operator.

‘We say that A is a bifurcation from infinity for (2) if there exist u, — A and
u, € X, such that u, — u,Kf(u,) = 0 and |lu,|| — oco. Extending the preceding
definition, we will say that Ao, = 400 is a bifurcation from infinity for (2) if solutions
(tp, un) of (2) exist with u, — oo and |lu,| — —+oo. This is the case we will
meet in Section 5.

In some situations, like the specific ones we will discuss later, an appropriate
rescaling permits one to find bifurcation from infinity by means of Leray-Schauder
topological degree deg(:, -, -). Recall that K : X — X is (continuous and) compact,
and hence it makes sense to consider the topological degree of I — AK f, I identity
map.

3. Asymptotically linear problems. In this section we suppose that feC@x
R*, R) satisfies (f;) and
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(f2) 3Im > 0 such that
1- f(x7 u) ._
im =m
u——+00 u

Let Ao = %} and define

a(x) = luig_lir{g(f(x, u) —mu), A(x)=Ilimsup (f(x,u) —mu).

U—>-4-00

‘We will show

Theorem 1. Suppose that f satisfies (f1) and (f>). Then there exists € > 0 such
that (1) has positive solutions provided either

(1) a > 0 (possibly +00) in Q and ) € [Aoo — €, Aol; OF
(i) A < 0 (possibly —o0) in Q and A €] o, Ao + €].

Actually, Theorem 1 is a particular case of a somewhat more general result; see
the Remarks at the end of this section.

The proof of Theorem 1 will be carried out in several steps. First of all, we extend
f(x, ) to all of R by setting

F(x,u) = f(x, [u]).
Let X = C() and set, foru € X,
O, u) :=u—AKF(u).

Plainly, any u > 0 such that ® (A, u) = 0 is a positive solution of (1). The following
two Lemmas are closely related to [3].

Lemma 2. For every compact interval A C R* \ {Aoo} there exists r > 0 such that
P, u)#0, YA e A, V|u|| =r. Moreover,

@) ifa > 0 then we can also take A = [Aeo, A), YA > Ao,
(i) if A < O then we can also take A = [0, o).

Proof. Let i, - >0, 4 # Ao, and |u,|] = oo be such that
Un = n K F(up).
Setting w, = u,||u,] !, we find
Wn = || n| T K F ().

Assumption ( f2), elliptic theory and the definition of F yield that, up to a subsequence,
w, — w in C1(82), where w is such that ||jw| = 1 and satisfies

—Aw = pum|w|, x € Q,
w =0, x € 082,
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By the maximum principle it follows that w > 0. Since ||w| = 1 we infer that
um = Ai, namely . = Ao, a contradiction that proves the first statement.

The remaining arguments are the same as that of Lemmas 3.1, 3.6 of [3] and we
will only give a short sketch of (i). Taking i, 4 Ao, it follows that w > O satisfies
—Aw = Awin Q2 and w = 0 on 3$2 and hence there exists B > 0 such that w = B¢;.
Then one has u, = ||u,||w, - +oo forall x € Q2 and F(u,) = f(u,) for n large.
From ® (A, u,) = 0 it follows that

At (Un | @1) = pn(f (un) —muy, | é1) + pnm Uy | ¢1).

Since @, > rAe and (u, | ¢1) > 0 for n large, we infer that (f (u,) —mu, | ¢1) <0
for n large and the Fatou Lemma yields

0 = liminf(f (un) — mun | ¢1) = (a | ¢,

a contradiction if a > 0.

Lemma 3. If A > Ay there exists r > 0 such that
DA, u)FEtpy, V=0, |luf=r

Proof. Taking into account that F(x, u) ~ m]|u| as |u| — oo, one can repeat the
arguments of Lemma 3.3 of [3] with some minor changes. [

For u # 0, we set z = u||u| 2. Letting

— Z
Y, 2) = Ul 2@, w) = z = Alz|? KF(W)

one has that A, is a bifurcation from infinity for (2) if and only if it is a bifurcation
from the trivial solution z = 0 for ¥ = 0. From Lemma 2 it follows by homotopy
that

deg(\y(A‘: ')’ Bl/r: 0) = deg(\p(o’ ')) Bl/l‘) O) : (3)
=deg(l, Byr,0) =1, VA <.

Similarly, by Lemma 3 one infers, for all T € [0, 1] and for all A > Ao,

deg(W (%, ), Biyy, 0) = deg(W(A, ) — Ty, Biyr, 0) “
= deg(\If(A, ) - ¢1: Bl/r: O) =0.

Let us set
'2={()»,u)e]R+><X cu#0, ®(A,u) =0}

From (3) and (4) and the preceding discussion we deduce
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Lemma 4. A is a bifurcation from infinity for (2). More precisely there exists an
unbounded closed connected set Lo, C X that bifurcates from infinity. Moreover,
Yoo bifurcates to the left (to the right) provided a > 0O (respectively A < 0).

Proof of Theorem 1. By the above Lemmas, it suffices to show that if u, = Ay
and ||u,|| — oo then u, > 0in  for n large. Setting w, = u, ||u,|| "' and using
the preceding arguments, we find that, up to subsequence, w, — w in C Lv and
w = Bey, B > 0. Then, it follows that u,, > 0 in €2, for n large.

Remarks.

(1) The proof of Theorem 1 actually shows there exists k > O such that for all
(M, u) € Lo with |lu|| > k one has that u > 0 in Q. Thus such (A, u) are
solutions of (1).

(2) It is clear that the Laplace operator can be substituted by any uniformly
elliptic second order operator with smooth coefficients. Moreover we can
allow that m depends on x.

(3) Suppose that f(x,u) = f(u) and there exists ¢ > 0 such that f(c) = 0,
f(u) < O0and f(u) > Oforall0 < u < ¢,u > crespectively. The maximum
principle implies that u(xnax) > ¢ Whenever u is positive somewhere in €.
Since solutions on the branch %, are indeed positive for A — A, then a
continuity argument shows that ||u|| > c for all (A, ) € Y.

(4) In general, solutions on X, can change sign and the behavior of ¥, depends
on the definition of f for u < 0. However, independently of such definition,
there exists a branch ¥y C ¥ emanating from (0, 0) € R x X, consisting of
negative solutions of (1), and such that X, N ¥y = @. Let us point out that
this is in contrast with the positone case.

(5) The following example shows that, in general, (1) does not possess positive
solutions for A large. Let us consider the equation —u” = A(u — 1), x €
(0, m), u(0) = u@r) = 0. An explicit calculation shows that a positive
solution exists if and only if either 1 < A < 4 or A = 4k? (k € N) (although
such a problem has solutions for all A > 1).

4. Superlinear problems. We will study the existence of positive solutions of
problem (1) when f(x,.) is superlinear. Precisely, we suppose that f € C(Q x
R+, R) satisfies (1) and

(f3) 3b e C(Q),b > 0,such thatlim,_, o, u"? f(x, ) = b, uniformly in x € Q,

withl < p <2*—1,
where 2* = 2 if N > 3,2* = +o0if N =1,2.
Our main result is

Theorem 5. Let f € C(Q x RT, R) satisfy (fi) and (f3). Then 3 Ay > 0 such
that (1) has positive solutions for all 0 < A <-A,. More precisely, there exists a
connected set of positive solutions of (1) bifurcating from infinity at Aoo = 0.
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Proof. As before we set
F(x,u) = f(x, lu)

and let
G(x,u) = F(x,u) — blu|?.

For the remainder of the proof, we will omit the dependence with respect to x € Q.
In order to prove that A, = 0 is a bifurcation from infinity for

u—AKF(u) =0, (5)

we use the rescaling w = yu, A = yP71, y > 0. A direct calculation shows that
(A, u), A > 0, is a solution of (5) if and only if

w—KF(y,w) =0, (6)

where
F(y,w) :=blw|? +yPG(y ™ w). )

We can extend F to y = 0 by setting
F(0, w) = blw|?
and, by (f3), such an extension is continuous. We set
Sly,w)=w— Kﬁ(y, w), yeR".

Letus point out explicitly that S(y, -) = I — K, with K compact. For y = 0, solutions
of So(w) := S(0, w) = 0 are nothing but solutions of

®)

—Aw = b|w|?, on €2,
u=0, on 4%2.

Since 1 < p < 2*—1, we can use the a priori estimates of [9] and the degree theoretic
arguments of [8] to infer the existence of R > r > 0 such that

So(w) #0, Viw| €{r, R} ®

and :
deg (So, Bg — B,,0) = —1. (10)

Next we show
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Lemma 6. There exists vy > 0 such that
(i) deg(S(v,),Br—B,,0)=—1, Y0<y <y
i) S, w) =0,y €0, %] r <|lw| <R, thenw > 0in Q.

Proof. Clearly (i) follows if we show that S(y, w) # 0 for all |w|| € {r, R} and all
0 < y < yp. Otherwise, there exists a sequence (,, w,,) withy, — 0, |lw,|| € {r, R}
andw, = K F (Yn, wp). Since K is compact then, up to a subsequence, w, — w and
So(w) =0, |lw]|| € {r, R}, a contradiction with (9).

To prove (ii), we argue again by contradiction. As in the preceding argument,
we find a sequence w, € X, with {x € Q : w,(x) < 0} # &, such that w, — w,
|lw]| € [r, R] and Spo(w) = 0; namely, w solves (8). By the maximum principle
w > 0on 2 and dw/dn < 0 on 92. Moreover, elliptic theory implies that, without
relabeling, w, — w in C+”. Therefore w, > 0 on  for n large, a contradiction.

Proof of Theorem 5 completed. By Lemma 6, problem (6) has a positive solution
w, forall 0 < y < yo. As remarked before, for y > 0, the rescaling A = yl"l,
u = w/y gives a solution (A, u,) of (5) forall 0 < A < Ay := y(f’ﬁl. Since w,, > 0,
(A, uy) is a positive solution of (1). Finally ||w, || > r forall y € [0, y,] implies that
lluall = lwy ||/¥ — oo as y — 0. This completes the proof.

Remarks.

(1) The result of [5] shows that, in general, (1) has no positive solutions for A
large.

(2) Asin Remarks 3 and 4 concerning the asymptotically linear case, also here
a branch Xy emanating from (0, 0) € R x X exists and consists of negative
solutions. This branch is disconnected from the one emanating from infinity,
in contrast with the case f(x, 0) > 0; see, for example, the survey [1].

5. Sublinear problems. In this final section we deal with sublinear f, namely
f € C(Q x R*,R) that satisfy (f) and

(fy) b€ C(ﬁ), b > 0, such that lim,_, o, ™7 f (x, u) = b, uniformly in x € &,

with0 < g < 1.

‘We will show that in this case positive solutions of (1) branch off from co for Ay, =
+o0. First, some preliminaries are in order. Itis convenientto work on ¥ = C1¥(Q).
Following the same procedure as for the superlinear case, we employ the rescaling
w = yu, A, = y9~! and use the same notation, with ¢ instead of p and Y instead
of X. As before, (A, u) solves (5) if and only if (¥, w) satisfies (6). Note that now,
since 0 < g < 1, one has that

A—=>4oc0 & y—=>0. an
For future reference, we recall that it is well known that the problem

—Au = bw?, x €
(12)

u=0, x €082
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has a unique positive solution wy. Moreover, letting Al[bwg_l] denote the first
eigenvalue of the linearized problem

—Av = Abwgmlv, x e
(13)
v =20, x € 082,
(12) implies that v = wy is an eigenfunction corresponding to
Mbwi™=1. (14)

Concerning (13), it is worth pointing out that, although ¢ < 1, the spectral theory
can be carried over; see, for example, Remark 3.1 of [2]. N
Weset Ds ={weY : [|lw—woli, <8}andextend F to y =0 by

Fo(w) = F(0, w) := blw|?.

Lemma 7. There exists 8 > O such that K F [0, 00) X Ds — Y is (compact and)
CONtinuous.

Proof. When 0 < g < 1 the same arguments used for p > 1 show that Fis
continuous. Letg =0 and let 5§ > O be such that w > O for all w € Dj;. Plainly, it
suffices to show that K F Vny wp) > K Fo (w) whenever y,, - 0 and w, - winY.
Since w > 0 then y,~ Yw, — 400, pointwise in Q. By (f4) it follows that

Gy 'w,) >0 in L7, Vr>1.
Then the elliptic theory yields
K F (v, wa) = K Fo(wy) + K Gy wy) — K Fy(w),

in the Sobolev space H 27 Y r > 1, and the result follows in a standard way.

Theorem 8. Let f € C(Q x R*, R) satisfy (f1) and (f4). Then 3 A* > 0 such that
(1) has positive solutions for all .. > A*. More precisely, there exists a connected set
of positive solutions of (1) bifurcating from infinity for Ao, = +00.

Proof. By Lemma 7, degree theoretic arguments apply to S(y, w) = w—K F (y, w).
Moreover, note that Sy(w) = S(0, w) = w — K Fo(w) is C! on Da and its Fréchet
derivative S0 (wy) is given by

v—Klghwi™], if 0<g<1

Sh(wo)v =

Inparticular, forO0 < g < 1, (14) implies that all the characteristic values of  — S0 (wo)
are greater than 1. Therefore, we infer that

deg(So, D5, 0) =1, Vg €l0,1).
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By continuation, we deduce that there exists a connected subset I of solutions of
S(y,w) = 0 (y > 0), such that (0, wp) € I'. Moreover, 3 y, > 0 such that these
solutions are positive provided 0 < y < y,. By the rescaling A = y97!, u = w/y,
I" is transformed into a connected subset X, of solutions of (1). These solutions are
indeed positive for all A > A* := g -1 and, according to (11), ¥, bifurcates from
infinity for Ae = +00.

Remark. We suspect that, if ¥, crosses A = Aj, then (1) has positive solutions for
X € (A1, A1 + €]. For aresult in this direction, see [6].
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