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1 Introduction

In this work, we study the existence of positive solutions of a nonlinear
two-point boundary value problem (BVP) for the following fourth-order dif-
ferential equation:

u′′′′(t) + f(u(t)) = 0, t ∈ (0, 1), (1.1)

u′(0) = u′(1) = u′′(0) = 0, u(0) =

∫ 1

0

a(s)u(s)ds, (1.2)

where
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(H1) f ∈ C([0,∞), [0,∞));

(H2) a ∈ C([0, 1], [0,∞)) and 0 <
∫ 1

0
a(s)ds < 1.

Fourth-order ordinary differential equations are models for bending or de-
formation of elastic beams, and therefore have important applications in
engineering and physical sciences. Recently, the two-point and multi-point
boundary value problems for fourth-order nonlinear differential equations
have received much attention from many authors. Many authors have stud-
ied the beam equation under various boundary conditions and by different
approaches. In 2009, Graef et al.[5] considered the fourth order three-point
boundary value problem

u′′′′(t) = g(t)f(u(t)), t ∈ (0, 1), (1.3)

together with the boundary conditions

u(0) = u′(0) = u′′(β) = u′′(1) = 0. (1.4)

In 2006, Anderson and Avery [2], studied the following fourth order right
focal four-point boundary value problem

u′′′′(t) + f(u(t)) = 0, 0 < t < 1, (1.5)

u(0) = u′(q) = u′′(r) = u′′′(1) = 0. (1.6)

In 2011, Xiading Han et al.[6], considered the nonlocal fourth-order bound-
ary value problem with variable parameter

u′′′′(t) + B(t)u′′(t) = λf(t, u(t), u′′(t)), 0 < t < 1, (1.7)

u(0) = u(1) =

∫ 1

0

p(s)u(s)ds, u′′(0) = u′′(1) =

∫ 1

0

q(s)u′′(s)ds. (1.8)

In 2013, Yan Sun and Cun Zhu [14], considered the singular fourth-order
three-point boundary value problem

u′′′′(t) + f(t, u(t)) = 0, 0 < t < 1, (1.9)

u(0) = u′(0) = u′′(0) = 0, u′′(1)− αu′′(η) = λ. (1.10)

In 2014, Xiaorui Liu and Dexiang Ma [10], considered the third-order two-
point boundary value problem

u′′′(t) + f(u(t)) = 0, 0 < t < 1, (1.11)
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u′(0) = u′(1) = 0, u(0) =

∫ 1

0

k(s)u(s)ds, (1.12)

and in 2015, Wenguo shen [13], studied the fourth-order second-point non-
homogeneous singular boundary value problem

u′′′′(t) + a(t)f(u(t)) = 0, 0 < t < 1, (1.13)

u(0) = α, u(1) = β, u′(0) = λ, u′(1) = −µ. (1.14)

For some other results on boundary value problem, we refer the reader to
the papers [1, 3, 4, 7, 8, 11, 12, 15–19]. To the authors’ knowledge, there are
few papers that have considered the existence of solutions for fourth-order
two-point boundary value problem with integral condition. Motivated by the
works mentioned above, the aim of this paper is to establish some sufficient
conditions for the existence of at least one positive solutions of the BVP (1.1)
and (1.2).

We shall first construct the Green’s function for the associated linear
boundary value problem and then determine the properties of the Green’s
function for associated linear boundary value problem. Finally, existence
results for at least one positive solution for the above problem are estab-
lished when f is superlinear or sublinear. As applications, some interesting
examples are presented to illustrate the main results.

2 Preliminaries

We shall consider the Banach space C([0, 1]) equipped with the sup norm

‖u‖ = supt∈[0,1]|u(t)|

Definition 2.1. Let E be a real Banach space. A nonempty, closed, convex
set K ⊂ E is a cone if it satisfies the following two conditions:

(i) x ∈ K, λ ≥ 0 imply λx ∈ K;

(ii) x ∈ K, −x ∈ K imply x = 0.

Definition 2.2. An operator T : E → E is completely continuous if it is
continuous and maps bounded sets into relatively compact sets.

To prove some of our results, we will use the following fixed point theorem,
which is due to Krasnoselskii’s [9].
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Theorem 2.1. [9]. Let E be a Banach space, and let K ⊂ E, be a cone.
Assume that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let

A : K ∩ (Ω2\Ω1) → K

be a completely continuous operator such that
(i) ‖Au‖ ≤ ‖u‖ , u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖ , u ∈ K ∩ ∂Ω2; or
(ii) ‖Au‖ ≥ ‖u‖ , u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖ , u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

Consider the two-point boundary value problem

u′′′′(t) + y(t) = 0, t ∈ (0, 1), (2.1)

u′(0) = u′(1) = u′′(0) = 0, u(0) =

∫ 1

0

a(s)u(s)ds. (2.2)

Lemma 2.2. The problem (2.1)-(2.2) has a unique solution

u(t) =

∫ 1

0

(
G(t, s) +

1

1− α

∫ 1

0

a(τ)G(τ, s)dτ
)
y(s)ds,

where G(t, s) : [0, 1]× [0, 1] → R is the Green’s function defined by

G(t, s) =
1

6

{
t3(1− s)2 − (t− s)3, 0 ≤ s ≤ t ≤ 1;

t3(1− s)2, 0 ≤ t ≤ s ≤ 1,
(2.3)

and

α =

∫ 1

0

a(t)dt.

Proof. Integrating (2.1) over the interval [0, t] for t ∈ [0, 1], we obtain

u′′′(t) = −
∫ t

0

y(s)ds+ C1,

u′′(t) = −
∫ t

0

(t− s)y(s)ds+ C1t+ C2,

u′(t) = −1

2

∫ t

0

(t− s)2y(s)ds+
1

2
C1t

2 + C2t+ C3,

u(t) = −1

6

∫ t

0

(t− s)3y(s)ds+
1

6
C1t

3 +
1

2
C2t

2 + C3t+ C4. (2.4)
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From the boundary conditions (2.2) we get

C2 = C3 = 0, C1 =

∫ 1

0

(1− s)2y(s)ds,

and

C4 = u(0)

=

∫ 1

0

a(τ)
(
− 1

6

∫ τ

0

(τ − s)3y(s)ds+
1

6
τ 3

∫ 1

0

(1− s)2y(s)ds+ C4

)
dτ

= C4

∫ 1

0

a(τ)dτ − 1

6

∫ 1

0

a(τ)
(∫ τ

0

(τ − s)3y(s)ds
)
dτ

+
1

6

∫ 1

0

a(τ)τ 3
(∫ 1

0

(1− s)2y(s)ds
)
dτ,

which implies

C4 =
1

6(1− α)

(∫ 1

0

a(τ)τ 3
(∫ 1

0

(1− s)2y(s)ds
)
dτ

−
∫ 1

0

a(τ)
(∫ τ

0

(τ − s)3y(s)ds
)
dτ

)
.

Replacing these expressions in (2.4), we get

u(t) = −1

6

∫ t

0

(t− s)3y(s)ds+
1

6
t3
∫ 1

0

(1− s)2y(s)ds

+
1

6(1− α)

[ ∫ 1

0

a(τ)τ 3
(∫ 1

0

(1− s)2y(s)ds
)
dτ

−
∫ 1

0

a(τ)
(∫ τ

0

(τ − s)3y(s)ds
)
dτ

]

=
1

6

∫ t

0

[
t3(1− s)2 − (t− s)3

]
y(s)ds+

1

6

∫ 1

t

t3(1− s)2y(s)ds

+
1

6(1− α)

[ ∫ 1

0

a(τ)
(∫ τ

0

[
τ 3(1− s)2 − (τ − s)3

]
y(s)ds

+

∫ 1

τ

τ 3(1− s)2y(s)ds
)
dτ

]
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=
1

6

∫ t

0

[
t3(1− s)2 − (t− s)3

]
y(s)ds+

1

6

∫ 1

t

t3(1− s)2y(s)ds

+
1

1− α

∫ 1

0

(1
6

∫ τ

0

a(τ)
[
τ 3(1− s)2 − (τ − s)3

]
y(s)ds

+
1

6

∫ 1

τ

a(τ)τ 3(1− s)2y(s)ds
)
dτ

=

∫ 1

0

G(t, s)y(s)ds+
1

1− α

∫ 1

0

(∫ 1

0

a(τ)G(τ, s)y(s)ds
)
dτ

=

∫ 1

0

(
G(t, s) +

1

1− α

∫ 1

0

a(τ)G(τ, s)dτ
)
y(s)ds.

Lemma 2.3. Let θ ∈]0, 1
2
[ be fixed. Then

(i) G(t, s) ≥ 0, for all t, s ∈ [0, 1];

(ii) 1
6
θ3s(1− s)2 ≤ G(t, s) ≤ 1

6
s(1− s)2, for all (t, s) ∈ [θ, 1− θ]× [0, 1].

Proof. (i) We will show that G(t, s) ≥ 0, for all (t, s) ∈ [0, 1]× [0, 1]. Since
it is obvious for t ≤ s, we only need to prove the case s ≤ t. Now we suppose
that s ≤ t. Then

G(t, s) =
1

6

[
t3(1− s)2 − (t− s)3

]
=

1

6

[
t(t− ts)2 − (t− s)3

]

≥ 1

6

[
t(t− s)2 − (t− s)3

]

≥ 1

6
(t− s)2

[
t− (t− s)

]

=
1

6
s(t− s)2 ≥ 0.

(2.5)

(ii) If s ≤ t, from (2.3) we have

G(t, s) =
1

6

[
t3(1− s)2 − (t− s)3

]
≥ 1

6

[
t3(1− s)3 − (t− s)3

]

=
1

6

[
(t− ts)3 − (t− s)3

]

=
1

6
s(1− t)

[
t2(1− s)2 + t(1− s)(t− s) + (t− s)2

]

≥ 1

6
t2(1− t)s(1− s)2.

(2.6)
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On the other hand

G(t, s)− 1

6
s(1− s)2 =

1

6
t3(1− s)2 − 1

6
(t− s)3 − 1

6
s(1− s)2

=
1

6
s
(
− 2t3 + t3s+ 3t2 − 3ts− 1 + 2s

)

=
1

6
s(t− 1)2

[
(s− 2)t+ 2s− 1

]

≤ 1

6
s(t− 1)2

[
(s− 2)t+ 2t− 1

]

=
1

6
s(t− 1)2(st− 1) ≤ 0.

(2.7)

If t ≤ s, from (2.3), we have

G(t, s) =
1

6
t3(1− s)2 ≥ 1

6
t3s(1− s)2, (2.8)

and,

G(t, s) =
1

6
t3(1− s)2 ≤ 1

6
s3(1− s)2 ≤ 1

6
s(1− s)2. (2.9)

Let

ρ(t) =
1

6
min{t3, t2(1− t)} =

1

6

{
t3, t ≤ 1

2
;

t2(1− t), t ≥ 1
2
.

From (2.6), (2.7), (2.8) and (2.9) we have

ρ(t)s(1− s)2 ≤ G(t, s) ≤ 1

6
s(1− s)2, for all (t, s) ∈ [0, 1]× [0, 1].

For θ ∈]0, 1
2
[, we have

θ3

6
s(1− s)2 ≤ G(t, s) ≤ 1

6
s(1− s)2, for all (t, s) ∈ [θ, 1− θ]× [0, 1].

Lemma 2.4. Let y(t) ∈ C([0, 1], [0,∞)) and θ ∈]0, 1
2
[. The unique solution

of (2.1)-(2.2) is nonnegative and satisfies

min
t∈[θ,1−θ]

u(t) ≥ θ3(1− α + β)‖u‖,

where β =
∫ 1−θ

θ
a(t)dt, α =

∫ 1

0
a(t)dt.
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Proof. From Lemma 2.2 and Lemma 2.3, u(t) is nonnegative. For t ∈ [0, 1],
from Lemma 2.2 and Lemma 2.3, we have that

u(t) =

∫ 1

0

(
G(t, s) +

1

1− α

∫ 1

0

a(τ)G(τ, s)dτ
)
y(s)ds

≤ 1

6

∫ 1

0

s(1− s)2
(
1 +

α

1− α

)
y(s)ds

=
1

6(1− α)

∫ 1

0

s(1− s)2y(s)ds.

Then

‖u‖ ≤ 1

6(1− α)

∫ 1

0

s(1− s)2y(s)ds, (2.10)

and for t ∈ [θ, 1− θ], we have

u(t) =

∫ 1

0

(
G(t, s) +

1

1− α

∫ 1

0

a(τ)G(τ, s)dτ
)
y(s)ds

≥ θ3

6

∫ 1

0

[
s(1− s)2 +

1

1− α

∫ 1−θ

θ

s(1− s)2a(τ)dτ
]
y(s)ds

=
θ3

6

∫ 1

0

s(1− s)2
(
1 +

β

1− α

)
y(s)ds

=
θ3

6
· 1− α + β

1− α

∫ 1

0

s(1− s)2y(s)ds.

(2.11)

From (2.10), (2.11), we obtain

min
t∈[θ,1−θ]

u(t) ≥ θ3(1− α + β)‖u‖.

Let θ ∈]0, 1
2
[. We define the cone

K =

{
u ∈ C([0, 1],R), u ≥ 0 : min

t∈[θ,1−θ]
u(t) ≥ θ3(1− α + β)‖u‖

}
,

and the operator A : K → C[0, 1] by

Au(t) =

∫ 1

0

(
G(t, s) +

1

1− α

∫ 1

0

a(τ)G(τ, s)dτ
)
f(u(s))ds. (2.12)
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Remark 2.1. By Lemma 2.2, problem (1.1), (1.2) has a positive solution
u(t) if and only if u is a fixed point of A.

Lemma 2.5. The operator A defined in (2.12) is completely continuous and
satisfies AK ⊂ K.

Proof. From Lemma 2.4, we obtain AK ⊂ K. A is completely continuous
by an application of Arzela-Ascoli theorem.

In what follows, we will use the following notations

f0 = lim
u→0+

f(u)

u
, f∞ = lim

u→∞

f(u)

u
.

We note that the case f0 = 0 and f∞ = ∞ corresponds to the superlinear
case and f0 = ∞ and f∞ = 0 corresponds to the sublinear case.

3 Existence of positive solutions

In this section, we will state and prove our main results.

Theorem 3.1. Assume that f0 = 0 and f∞ = ∞. Then BVP (1.1) and
(1.2) has at least one positive solution.

Proof. Since f0 = 0, there exists ρ1 > 0 such that f(u) ≤ ǫu, for 0 < u ≤ ρ1,
where ǫ > 0 satisfies

ǫ

6(1− α)
≤ 1.

Thus, if we let
Ω1 = {u ∈ C[0, 1] : ‖u‖ < ρ1} ,

then, for u ∈ K ∩ ∂Ω1, we have

Au(t) =

∫ 1

0

(
G(t, s) +

1

1− α

∫ 1

0

a(τ)G(τ, s)dτ
)
f(u(s))ds

≤ 1

6

∫ 1

0

(
s(1− s)2 +

1

1− α

∫ 1

0

s(1− s)2a(τ)dτ
)
ǫu(s)ds

≤ 1

6
· ǫ

1− α
‖u‖

∫ 1

0

s(1− s)2ds

≤ 1

6
· ǫ

1− α
‖u‖

≤ ‖u‖.

(3.1)
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Therefore
‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1.

Further, since f∞ = ∞, there exists ρ̂2 > 0 such that f(u) ≥ δu, for u > ρ̂2,
where δ > 0 is chosen so that

δ
θ6

36
· (1− α + β)2

1− α
(1− 2θ)(

1

2
+ θ − θ2) ≥ 1.

Let ρ2 = max
{
2ρ1,

ρ̂2
θ3(1−α+β)

}
and Ω2 = {u ∈ C[0, 1] : ‖u‖ < ρ2}. Then

u ∈ K ∩ ∂Ω2 implies that

min
t∈[θ,1−θ]

u(t) ≥ θ3(1− α + β)‖u‖ = θ3(1− α + β)ρ2 ≥ ρ̂2,

so, by (2.12) and for t ∈ [θ, 1− θ], we obtain

Au(t) =

∫ 1

0

(
G(t, s) +

1

1− α

∫ 1

0

a(τ)G(τ, s)dτ
)
f(u(s))ds

≥
∫ 1−θ

θ

[θ3
6
s(1− s)2 +

1

1− α

∫ 1−θ

θ

θ3

6
s(1− s)2a(τ)dτ

]
δu(s)ds

=
θ3

6
δ

∫ 1−θ

θ

s(1− s)2
(
1 +

β

1− α

)
u(s)ds

=
θ3δ

6
· (1− α + β)

1− α

∫ 1−θ

θ

s(1− s)2u(s)ds

≥ θ3δ

6
· (1− α + β)

1− α
min

t∈[θ,1−θ]
u(t)

∫ 1−θ

θ

s(1− s)2ds

≥ δ
θ6

36
· (1− α + β)2

1− α
(1− 2θ)(

1

2
+ θ − θ2)‖u‖

≥ ‖u‖.
(3.2)

Hence, ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2. By Theorem 2.1, the operator A has
a fixed point in K ∩ (Ω2 \ Ω1) such that ρ1 ≤ ‖u‖ ≤ ρ2.

Theorem 3.2. Assume that f0 = ∞ and f∞ = 0. Then BVP (1.1) and
(1.2) has at least one positive solution.

Proof. Since f0 = ∞, there exists ρ1 > 0 such that f(u) ≥ λu, for 0 < u ≤ ρ1,
where λ > 0 is chosen so that

λ
θ6

36
· (1− α + β)2

1− α
(1− 2θ)(

1

2
+ θ − θ2) ≥ 1.
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Thus, for u ∈ K ∩ ∂Ω1 with

Ω1 = {u ∈ C[0, 1] : ‖u‖ < ρ1} ,
we have from (3.2)

Au(t) =

∫ 1

0

(
G(t, s) +

1

1− α

∫ 1

0

a(τ)G(τ, s)dτ
)
f(u(s))ds

≥
∫ 1−θ

θ

[θ3
6
s(1− s)2 +

1

1− α

∫ 1−θ

θ

θ3

6
s(1− s)2a(τ)dτ

]
λu(s)ds

≥ λ
θ6

36
· (1− α + β)2

1− α
(1− 2θ)(

1

2
+ θ − θ2)‖u‖

≥ ‖u‖.
Then, Au(t) ≥ ‖u‖ for t ∈ [θ, 1− θ] , which implies that

‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1.

Next we construct the set Ω2. We discuss two possible cases:
Case 1. If f is bounded. Then, there exists L > 0 such that f(u) ≤ L.

Set Ω2 = {u ∈ C[0, 1] : ‖u‖ < ρ2}, where ρ2 = max
{
2ρ1,

L
6(1−α)

}
.

If u ∈ K ∩ ∂Ω2, similar to the estimates of (3.1), we obtain

Au(t) ≤ 1

6
· L

1− α

∫ 1

0

s(1− s)2ds (3.3)

≤ 1

6
· L

1− α
≤ ρ2 = ‖u‖, (3.4)

and consequently, ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.
Case 2. Suppose that f is unbounded, since f∞ = 0, there exists ρ̂2 > 0

(ρ̂2 > ρ1) such that f(u) ≤ ηu for u > ρ̂2, where η > 0 satisfies

η

6(1− α)
≤ 1.

On the other hand, from condition (H1), there is σ > 0 such that f(u) ≤ ησ,
with 0 ≤ u ≤ ρ̂2.

Now, set Ω2 = {u ∈ C[0, 1] : ‖u‖ < ρ2}, where ρ2 = max{σ, ρ̂2}.
If u ∈ K ∩ ∂Ω2, then we have f(u) ≤ ηρ2. Similar to (3.1), we obtain

Au(t) ≤ 1

6
· ηρ2

1− α

∫ 1

0

s(1− s)2ds (3.5)

≤ 1

6
· ηρ2

1− α
≤ ρ2 = ‖u‖, (3.6)

so, ‖Au‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ω2. Therefore by Theorem 2.1, A has at least
one fixed point, which is a positive solution of (1.1) and (1.2).
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4 Examples

Example 4.1. Consider the boundary value problem

u′′′′(t) + u2(e−u + 1) = 0, 0 < t < 1, (4.1)

u′(0) = u′(1) = u′′(0) = 0, u(0) =

∫ 1

0

s2u(s)ds, (4.2)

where f(u) = u2(e−u + 1) ∈ C([0,∞), [0,∞)) and a(t) = t2 ≥ 0,
∫ 1

0
a(s)ds =∫ 1

0
s2ds = 1

3
.

We have

lim
u→0+

f(u)

u
= lim

u→0+

u2(e−u + 1)

u
= 0,

lim
u→+∞

f(u)

u
= lim

u→+∞

u2(e−u + 1)

u
= +∞.

From Theorem 3.1, the problem (4.1) and (4.2) has at least one positive
solution.

Example 4.2. Consider the boundary value problem

u′′′′(t) +
√
1 + u+ sin u = 0, 0 < t < 1, (4.3)

u′(0) = u′(1) = u′′(0) = 0, u(0) =

∫ 1

0

su(s)ds, (4.4)

where f(u) =
√
1 + u+sin u ∈ C([0,∞), [0,∞)) and a(t) = t ≥ 0,

∫ 1

0
a(s)ds =∫ 1

0
sds = 1

2
.

We have

lim
u→0+

f(u)

u
= lim

u→0+

√
1 + u+ sin u

u
= +∞,

lim
u→+∞

f(u)

u
= lim

u→+∞

√
1 + u+ sin u

u
= 0.

Therefore, by Theorem 3.2, the problem (4.3) and (4.4) has at least one
positive solution.

Acknowledgement

The authors would like to thank the anonymous referee for his valuable sug-
gestions which lead to improve the manuscript.



Vol. LIV (2016) Positive solutions of a fourth-order ... 85

References

[1] E. Alves, T. F. Ma, and M. L. Pelicer, Monotone positive solutions for a fourth
order equation with nonlinear boundary conditions, Nonlinear Anal., 71, (2009),
3834–3841.

[2] D. R. Anderson and R. I. Avery, A fourth-order four-point right focal boundary
value problem, Rocky Mountain J. Math., 36, (2006), 367–380.

[3] J. R. Graef, C. Qian, and B. Yang, A three point boundary value problem
for nonlinear fourth order differential equations, J. Math. Anal. Appl., 287, (2003),
217–233.

[4] J. R. Graef and B. Yang, Existence and nonexistence of positive solutions of fourth
order nonlinear boundary value problems, Appl. Anal., 74, (2000), 201–214.

[5] J. R. Graef, J. Henderson, and B. Yang, Positive solutions to a fourth-order
three point boundary value problem, Discrete Contin. Dyn. Syst., Supplement,
(2009), 269–275.

[6] X. Han, H. Gao, and J. Xu, Existence of positive solutions for nonlocal fourth-
order boundary value problem with variable parameter, Fixed Point Theory Appl.,

2011, (2011), Art. ID 604046, 11 pages.

[7] J. Henderson and D. Ma, Uniqueness of solutions for fourth-order nonlocal bound-
ary value problems, Bound. Value Probl., 2006, (2006), Art. ID 23875, 12 pages.

[8] N. Kosmatov, Countably many solutions of a fourth-order boundary value problem,
Electron. J. Qual. Theory Differ. Equ., 12, (2004), 1–15.

[9] M. A. Krasnoselskii, Positive Solutions of Operator Equations, P. Noordhoff,
Groningen, The Netherlands, 1964.

[10] X. Liu and D. Ma, The existence of positive solution for a third-order two-point
boundary value problem with integral boundary conditions, Scientific Journal of

Mathematics Research, 4 (1), (2014), 1–7.

[11] R. Ma, Multiple positive solutions for a semipositone fourth-order boundary value
problem, Hiroshima Math. J., 33, (2003), 217–227.

[12] R. Ma and W. Haiyan, On the existence of positive solutions of fourth-order
ordinary differential equations, Appl. Anal., 59, (1995), 225–231.

[13] W. Shen, Positive solutions for fourth-order second-point nonhomogeneous singular
boundary value problems, Adv. Fixed Point Theory., 5(1), (2015), 88–100.

[14] Y. Sun and C. Zhu, Existence of positive solutions for singular fourth-order three-
point boundary value problems, Adv. Difference Equ., 51, (2013), 13 pages.

[15] J. R. Webb, G. Infante, and D. Franco, Positive solutions of nonlinear fourth-
order boundary value problems with local and nonlocal boundary conditions, Proc.
Roy. Soc. Edinburgh Sect. A., 138, (2008), 427–446.

[16] B. Yang, Positive solutions for a fourth-order boundary value problem, Electron. J.
Qual. Theory Differ. Equ., 3, (2005), 1–17.



86 S. Benaicha and F. Haddouchi An. U.V.T.

[17] Q. Yao, Local existence of multiple positive solutions to a singular cantilever beam
equation, J. Math. Anal. Appl., 363, (2010), 138–154.

[18] S. Yong-Ping, Existence and multiplicity of positive solutions for an elastic beam
equation, Appl. Math. J. Chinese. Univ., 3(26), (2011), 253–264.
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