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Abstract: In this paper, the existence of positive solutions for systems of semipositone singular fractional
differential equations with a parameter and integral boundary conditions is investigated. By using fixed point
theorem in cone, sufficient conditions which guarantee the existence of positive solutions are obtained. An
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1 Introduction

The subject of fractional calculus has gained considerable popularity and importance during the past
decades, mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields
of science and engineering. In recent years, fractional differential equations have been widely used in optics
and thermal systems, electromagnetics, control engineering and robotic, and many other fields, see [1-6] and
the references therein. The research on fractional differential equations is very important in both theory
and applications. By using nonlinear analysis tools, some scholars established the existence, uniqueness,
multiplicity and qualitative properties of solutions, we refer the readers to [7-20] and the references therein
for fractional differential equations, and [21-33] for fractional differential systems.

Boundary value problems (BVPs for short) with integral boundary conditions for ordinary differential
equations represent a very interesting and important class of problems, and arise in the study of various
biological, physical and chemical processes [34-37], such as heat conduction, thermo-elasticity, chemical
engineering, underground water flow, and plasma physics. The existence of solutions or positive solutions
for such class of problems has attracted much attention (see [38-52] and the references therein).

In this paper, we study the systems of semipositone singualr fractional differential equations with a
parameter and integral boundary conditions
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DS (DB u(t)) + Mi(t, u(t), DS u(t), v(t)) =0, 0<t<1,
DY (DS-v(t)) + Mo (t, u(t), v(t), Dov(t)) =0, 0<t<1,

1
DZ.u(0) = DI 'u(0) =0, Dgflu(l):fD§+u(s)dA(s), 1)
0

1
D3.v(0) = D3'v(0) = o, Dgflv(l):/Dgw(s)dB(s),
0

where Dg‘fﬁ " D§+, Dg: % and Dg+ are the standard Riemann-Liouville fractional derivatives, A > O is a
parameter, 2 < a,7 <3, 0< 3,6 <1, a-8>2,v-6 > 2.f1, f2: (0,1) x [0,+00)> = (=00, +c0)
are continuous and may be singular at ¢t = 0, 1. A and B are nondecreasing functions of bunded variations,
fol Dg+ u(s)dA(s) and fol D3.v(s)dB(s) are Riemann-Stieltjes integrals.

The study of nonlinear fractional differential systems is important as this kind of systems occur in various
problems of applied mathematics. Recently, Wu et al. [26] considered the fractional differential systems

involving nonlocal boundary conditions

Dovu(t) + f(t,u(t),v(t)) =0, O0<t<1,1<a<2,

Déﬂv(t) +g(t,u(t),v(t))=0, O0<t<1l,1<pB<2,
1

u(0) =0, u(1):/u(s)dA(s), %)

0
v(0) = 0, v(l):fv(s)dB(s),
0

where Dg: and Dg+ are the standard Riemann-Liouville fractional derivatives, A, B are nondecreas-
ing functions of bunded variations, fol u(s)dA(s) and fol v(s)dB(s) are Riemann-Stieltjes integrals,
f(t,x,y), g(t,x,y) : (0,1) x (0, 0)* - [0, c0) are two continuous functions and may be singular at t = 0, 1
and x = y = 0. The existence of positive solutions is established by the upper and lower solutions technique
and Schauder fixed point theorem. For the special boundary conditions u(1) = fol o(s)u(s)ds, v(1) =
fol o(s)v(s)ds, where ¢, p € L(0, 1) are nonnegative, Liu et al. [27] investigated the existence of a pair of
positive solutions for nonlocal fractional differential systems (2) by constructing two cones and computing
the fixed point index in product cone. For the case f = a(t)f(t,u(t)), g = b(t)g(t,v(t)), u(1) =
fol o(s)u(s)ds, v(1) = f01 »(s)v(s)ds, Yang [28] established sufficient conditions for the existence and
nonexistence of positive solutions to fractional differential systems (2) by the Banach fixed point theorem,
nonlinear differentiation of Leray-Schauder type and the fixed point theorems of cone expansion and com-
pression of norm type.

In [29], Henderson, Luca and Tudorache discussed the systems of nonlinear fractional differential
equations with integral boundary conditions

Do u(t) + M(t, u(t),v(t))=0, O<t<l,n-1<a<n,
Dg+v(t)+pg(t,u(t),v(t)):O, O<t<l, m-1<pB<m,

u(0) =u'(0) = =u"?(0)=0, wu(1)= [ u(s)dA(s), 3)

v(0) =v'(0) = =v(™2(0)=0, v(1)= [ v(s)dB(s)

To—n o—.

where Dg: and D§+ are the standard Riemann-Liouville fractional derivatives, f, g : [0, 1] x [0, oo)2 — [0, 00)
are continuous. Under different combinations of superlinearity and sublinearity of the functions f and g,
various existence and nonexistence results for positive solutions are derived in terms of different value of
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A and p via the Guo-Krasnosel’skii fixed point theorem. For the multi-point boundary conditions u(1) =
YP  au(&), v(1) = ¥4, biv(n:), Henderson and Luca [30] proved the existence theorems for the positive
solutions with respect to a cone for nonlinear fractional differential systems (3) by the Guo-Krasnosel’skii
fixed point theorem. Under sufficient conditions on functions f and g, the authors [31] studied the existence
and multiplicity of positive solutions of nonlinear fractional differential systems (3) when A = ;4 = 1 and
f = f(t,v), g = &(t,u) by using the Guo-Krasnosel’skii fixed point theorem and some theorems from the
fixed point index theory.

In [32], Wang et al. investigated the fractional differential systems involving integral boundary conditions
arising from the study of HIV infection models

DS u(t) + M(t, u(t), DS u(t),v(t)) =0, 0<t<1,2<ac<3,
DJ.v(t) +Ag(t,u(t))=0, O0<t<1l,2<vy<3,

1
DZ.u(0) = Dl u(0) =0, D€+u(1):[Dg+u(s)dA(s), )
0

v(0) =V (0) = 0, v(l):fv(s)dB(s),
0

where A > 0 is a parameter, 0 < 8 < 1, a - 8 > 2, D§, Doﬁ+ and Dg+ are the standard Riemann-
Liouville fractional derivatives, A, B are nondecreasing functions of bunded variations, fol Déﬂu(s)dA(s)
and fol v(s)dB(s) are Riemann-Stieltjes integrals, f : (0,1) x [0, +o0)? — (=00, +00) and g : (0, 1) x
[0,+00) — (—o0,+00) are two continuous functions and may be singular at t = 0, 1. By using the fixed
point theorem in cone, existence results of positive solutions for systems (4) are established.

In [33], Jiang, Liu and Wu considered the following semipositone singular fractional differential systems:

Dgvu(t) + p(Of (L, u(t), v(t)) —q1(t) =0, O<t<1,2<a<3,
DI.v(t) +q(g(t,u(t),v(t)) - qa(t) =0, 0<t<1,2<B<3,

u(0)=u'(0)=0, u'(1)= | u(s)dA(s), 5)

v(0)=v'(0)=0, V'(1)= [ v(s)dB(s),

1
/
1
/
where D§. and Dg+ are the standard Riemann-Liouville fractional derivatives, f, g : [0, 1] x [0, <>o)2 — [0, c0)
are continuous, g1, ¢q> : (0,1) — [0, +o0) are Lebesgue integrable, A, B are suitable functions of bounded
variation, fol u(t)dA(t) and jol v(t)dB(t) involving Stieltjes integrals with signed measures. The existence
and multiplicity of positive solutions to systems (5) are obtained by using a well known fixed point theorem.
It should be noted that the nonlinearity in most of the previous works needs to be nonnegative to get the
positive solutions [22-32]. When the nonlinearity is allowed to take on both positive and negative values, such
problems are called semipositone problems in the literature. Motivated by the works mentioned above, we
consider the semipositone singular fractional differential systems (1). The existence of positive solutions is
established by applying the fixed point theorem in cone. In comparison with previous works, this paper has
several new features. Firstly, nonlinearities are allowed to change sign and tend to negative infinity. Secondly,
systems (1) involves a parameter and f1, f, involve fractional derivatives of unknown functions. Finally, the
nonlocal conditions are given by Riemann-Stieltjes integrals, which include two-point, three-point, multi-
point and some nonlocal conditions as special cases.
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2 Preliminaries and lemmas

For convenience of the reader, we present here some necessary definitions and properties about fractional
calculus theory.

Definition 2.1. The Riemann-Liouville fractional integral of order « of a function u : (0, +o0) — (—o0, +00) is
given by

t
Su(t) = —— [ (=51 us)as,
() J
provided the right-hand side is pointwise defined on (0, +0).

Definition 2.2 ([1,2]). The Riemann-Liouville fractional derivative of order o > 0 of a continuous function u :
(0, +00) — (—o00, +00) is given by
t
1 d\" e
D tzi(—) /t— " ly(s)ds,
6u0) = o () [ (-9 s

where n = [a] + 1, [a] denotes the integer part of the number «, provided the right-hand side is pointwise
defined on (0, +00).

Lemma 2.3 ([1,2]). Ifu € L(0, 1), p> o > 0 and n is a natural number, then

I0. 15 u(t) = I077u(t), Dg-I5.u(t)=1I5"u(t),

(e g d " (oa g
DS IS u(t) = u(t), (d?) (DZ-u(t)) = DX u(t).
Lemma 2.4 ([1,2]). Assume that u € C(0, 1) n L(0, 1) with a fractional derivative of order o > O that belongs
to C(0,1)nL(0,1). Then

I8:Dgu(t) = u(t) + et + et 2 4 e 4 oyt

for some c1, c2, -+, Cy € (—o00, +00), where N is the smallest integer greater than or equal to .

Lemma 2.5 ([33]). Given h ¢ C(0,1) nL(0, 1), then the BVP

Dg:ﬁx(t)‘Fh(t):O, O<t<1l,2<a-B<3,
x(0)=x'(0)=0, Xx'(1)=0,

has a unique solution

x(t) = / G (t, s)h(s)ds,
0

where

. 1 P 1-5)*P2 0<t<s<,
Gl(t,s) =

Fla=8) [P 1-5)*P2_(t-5)*P, o0<s<t<l,

and the Green function G (t, s) has the following properties:
(1) Gi(t,s)>0,t,se(0,1).
2) ki(t)Gi(1,s) < Gi(t,s) <Gi(1,s), t,se[0,1].

(3) Gi(t’ S) < FIE;(PB) , t,s¢€ [0’ 1], where ](1([’) = ta_ﬁ_l,
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By Lemma 2.4, the unique solution of the BVP

Dg‘fﬁx(t):o, O<t<1,
x(0)=x"(0)=0, Xx'(1)=1,

isy(t) = By [33], the Green function for the BVP
Dgfﬁx(t) +h(t)=0, O<t<l,

x(0) = X'(0) = 0, x'(l):fx(s)dA(s),
0

is given by

Gi(ts) = Gi(t, )+ X0 0 (),
1 -1
where

]1:/71(t)dA(t)¢1, Zl(s):fG’{(t,s)dA(t), se[0,1].
0 0

Similarly, the Green function for the BVP

Dg:‘;y(t)+h(t):0, 0<t<1,
1
y(0)=y'(0)=0, y'(1)= [ y(s)dB(s),
0

is given by
Ga(t,s) = G3(t,s) + %ez(s),
i

where
70N (1-5)"2, 0<t<s<1,

" 1
G>(t,s
2(t,5) = I'(y 6){ V(o) (p—s)Y 0 0<s<t<d,

t'y—571

1 1
]2:/72(t)dB(t)¢1, ez(s):f(;;(t,s)dB(t), a(t) =
0 0

Lemma 2.6 ([33]). The Green function G5 (t, s) has the following properties:
(1) G5(t,s)>0, t,se(0,1).
2) k(t)G5(1,s) <G5 (t,s) <G;(1,s), t,se[0,1].

* k .
3B) G3(t,s) < sz(f)s), t,s €[0,1], where ky(t) = t77°°1,

y-0-1

— 585

(6)

@)

Lemma 2.7 ([33]). Let )1, )2 € [0,1) and ¢1(s), £2(s) > O for s € [0, 1], the functions G1(t,s) and G (t,s)

given by (6) and (7) satisfy:
(1) Gi(t,s)>Gi(t,s)>0, t,se(0,1),i=1,2.
@) ki(t)GI(1, s) < Gi(t,s) < piGF(1,s), t sef0,1],i=1,2.
(B) Gi(t,s) < F(a Tamki(t), Ga(t,s) < 5)k2(t) t,s € [0, 1], where
1 1
. Jo dA(t)’ =1+ Jo dB(t).
1—]1 1—]2
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Now let us consider the following modified problem of systems (1)
DS Pw(t) + Mi(t, 1w (t), w(t), I5-2(t)) =0, 0<t<1,

DI70z(t) + Ma(t, ID.w(t), Ioez(t), 2(1)) =0, 0<t<1,

w(0)=w'(0)=0, W'(1)= | w(s)dA(s), (8

—

z(0)=2'(0)=0, Z'(1)= | z(s)dB(s).

O\
- o

Lemma 2.8. If (w,z) € C[0, 1] x C[0, 1] is a positive solution of systems (8), then (I@w, I3.z) is a positive
solution of systems (1).

Proof. Suppose (w, z) € C[0, 1] x C[0, 1] is a positive solution of systems (8), denote u(t) = Iéiw(t), v(t) =
13.z(t), then
DS (DB u(t)) = Do (DRI w(t)) = DS Pw(t)

== Mi(t, Igewo(t), w(t), I3 2(1))
= = Ma(t, u(t), Dgu(t), v(t)),
D72 (D3.v(t)) = DI (DY I+ 2(t)) = D0 2(t)
== Ma(t Igew(t), I3+ 2(8), 2(1))
== Ma(t, u(), v(t), Dy v(1)),

Dj.u(0) =(0) =0, Dy u(0) = L (DY u(t))lmo =(0) =0,
Dgflu(l):%(ng(t))h:l:w'(l):/w(s)dA(s):/D§+u(s)dA(s),
0 0

d
D3v(0) =z(0) =0, D3'v(0) = a(Dgw(t))hzo =7Z(0)=0,
d 1 1
DMV(1) = S (D3 (D)1 =2 (1) = f 2(s)dB(s) = f D3.v(s)dB(s).

0 0
On the other hand, if w(t) > 0, z(t) > 0, by Definition 2.1, we have u(t) > 0, v(t) > 0, t € (0,1), then
(u,v) = (Iéiw, I3.z) is a positive solution of systems (1). O
We impose the following assumptions:

(H1) A, B are increasing functions of bounded variations such that ¢;(s) > 0, ¢2(s) > O for s € [0, 1] and
0<)1, J2<1.

(H2) f1,f2:(0,1) x [0, +<><>)3 — (—o00, +00) are continuous and satisfy
-q1(t) <fi(t, ur, uz, uz) < p1(t)g1(t, us, uz, us),

-q2(t) <fo(t,v1,v2,v3) < pa(t)g2(t, v1, V2, V3),
where g; € C([0, 1] x [0, +00)?, [0, +00)), gi, pi € C((0, 1), [0, +00)) and

1 1
0<fp,-(s)ds<+oo, 0<fqi(s)ds<+oo, i=1,2.
0 0
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(H3) There exists a constant

20 [ 2
r>max{r(aﬁ)0/q1(s)ds, F(Wzé)ofqz(s)ds}

such that

f1(t, ui, up, ll3) >0, (t, ui, u, u3) € (0, 1) X [0, 21—'(5)’%—1)] X [0, %] X [0, +<>O),

fz(t, V1,V2,V3) >0, (t, V1,V2,V3) € (0, l) X [0, +oo) X [0, M] X [O, %] .

Define a modified function [z(t)]* for any z € C[0, 1] by

z(t), z(t) >0,
0, z(t)<O.

[z(O]" ={

Next we consider the following systems:

Do x(t) + ALf(t, I, [x(8) = a(t)]*, [x(£) - a(O)]*, 13- [y(t) - b(O)]*) + q1(£)] =0, 0 < t < 1,
DYy (6) + ALf2 (6, I [x(t) — a()]", I3[y (£) - ()], [y(t) = b(£)]") + q2(£)] = 0, O < £ < 1,

1

x(0) = X'(0) = 0, x'(l):fx(s)dA(s), )

0

y(0)=y'(0)=0, y'(1)= [ y(s)dB(s),
0

where a(t) = Afol Gi1(t,s)qi(s)dsand b(t) = A /01 G2 (t, s)q2(s)ds are the solutions of the following BVPs
(10) and (11), respectively,

D(‘)"fﬁa(t) +Aq1(t)=0, O<t<1,

; (10)
a(0) = a'(0) =0, a'(l):/a(s)dA(s),

0

DY°b(t) + Aq2(t) =0, 0<t<1,

, , ; (11)
b(0)=b'(0)=0, B'(1)= fb(s)dB(s).
0

Lemma 2.9 ([33]). Assume that condition (H;) holds. Then the positive solutions a(t) and b(t) of BVPs (10)
and (11) satisfy

Ap1 ;
a(t)swkl(t)bfm(t)dt, b(t) <

Ap2
I'y-

5)k2(t)ofq2(t)dt, te[o,1].

Lemma 2.10. If (x,y) € C[0,1] x C[0, 1] with x(t) > a(t), y(t) > b(t) forany t € (0,1) is a positive
solution of systems (9), then (w(t) = x(t) — a(t), z(t) = y(t) — b(t)) is a positive solution of systems (8), and
(u(t) = Iéiw(t), v(t) = I3 z(t)) is a positive solution of systems (1).
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Proof. Infact, if (x,y) € C[0, 1] x C[0, 1] is a solution of systems (9) with x(t) > a(t), y(t) > b(t), then from
systems (9) and the definition of []*, we get

D5 w(t) = Dy (x(t) - a(t)) = D x(t) - Dy Pa(t)
= - AL (I [x(8) - a(D)]", [x(8) = a(D)], B [y(8) = b(D)]) + q1(6)] - [-Aq1(8)]
== Mi(t I, [x(6) - a(®)]", [x(6) - a(®)]*, T+ [y(£) - b(6)]")
== Mi(t, Ige(t), w(t), I5:2(1)),

w(0) =x(0)-a(0)=0, «'(0)=x'(0)-d’(0)=0,
1

1 1
w’(l):x'(l)—a'(l):fx(s)dA(s)—fa(s)dA(s):fw(s)dA(s),
0 0

0

and
D3°z(t) = D3 (y(t) - b(t)) = D3 y(t) - D3 (1)

= AL (6 15 [x(t) - a()]", 8- [y(t) - b(O]", [y(t) - b(£)]) + q2(6)] - [-Aq2(8)]
= Mot I [x(t) — a(O)]", I [y(t) - ()], [y(£) - b(£)]")
= Mot IBow(t), I3-2(1), 2(t)),

z(0) =y(0) - b(0) =0, 2'(0)=y'(0)-b'(0) =0,

1 1 1
z'(1):y’(1)—b'(1):fy(s)dB(s)—fb(s)dB(s):fz(s)dB(s).
0 0 0

So (w, z) is a positive solution of systems (8). It follows from Lemma 2.8 that (u(t) = I@w(t), v(t) = I€+z(t))
is a positive solution of systems (1). O

Let X = C[0, 1] x C[0, 1], then X is a Banach space with the norm
= = = X.
I v)lla = Jul +[v],  Jul = maxfu(e)l, |v]=maxfv(e)], (u,v)e

Let
P={(uv) eX:u(®) > pi'ka(O)ul, V(D) > o3 a(D) V], te [0, 1]},

then P is a cone of X. Define an operator A : P — X by

A(x,y) = (A1(x,y), A2(%, ),

where A1, A, : P > ([0, 1] are defined by

1
A1(x,y)(t) = X f G1(t, s)(f1(s, 1§+ [x(s) —a(s)]", [x(s) —a(s)]", 1. [y(s) - b(s)]") +q1(s))ds,
0

1
A2(x,y)(8) = A f Ga(t, 5)(f2(s, 5. [x(5) = a(s)]", Lo+ [y(s) = b(s)]", [¥(s) = b(5)]") + 4a(5))ds.
0

Clearly, if (x, y) € P is a fixed point of A, then (x, y) is a solution of systems (9).
Lemma 2.11. Assume that conditions (H1) — (H3) hold, then A : P — P is a completely continuous operator.

Proof. For any (x,y) € P, there exists a constant L > O such that |(x,y)|1 < L, then
[x(s) —a(s)]" <x(s) < [x| < [(x,¥)[1 <L, se[0,1],

() -b()]" <y(s) <yl <[Cuy)1 <L, se[0,1],
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o o [ (=0 x(0) - a()]* L
12.[x(s) - a(s)] _Of ) ats sy

— 0%
Io-[y(s) ~b(s)) [(S 2 Fy((ét)) Bl dt < F(5L+1).

It follows from Lemma 2.7 that

A1 (x, y)(0)

A [ Gi(1,9)(P1()g1(5, 15, [x(5) - a(s)]", [x() - a(9)]", I [¥(s) - ($)]°) + qa(5))ds
0
Apn(M+1) [ Gi(1,8)(P1(s) + ai(s))ds < +oo,
0

Ax(x, y)(0)

A [ 2G5(1,9)(P2(8)g2(5 I3, [x(5) - a($)] " 1+ [y(5) = B(S)]", [¥(5) = b($)]°) + 42(5))ds
0

1
Ap2(M+1) [ G3(1,5)(p2(s) +a(s))ds < +oo,
0
where

te[0,1], OSu < ==— F(ﬁﬂ), 0<u,<IL, OSM3SF(5+1)

M:max{ max g1(t,u1, up, u3z),

max ga(t, V1,V2,V3)}.

L L
te[0,1], Osvlsm, Osvzsm, O<v3<L

Thus, A : P — X is well defined.
Next, we prove A(P) c P. Denote

Fi(s) = fi(s, I [x(s) = a(s)]", [x(s) = a(s)]", I+ [y(s) = b(s)]") + au(s), s€[0,1],
Fa(s) = f2(s, Ig. [x(s) = a(s)] ", I+ [y(s) = b(s)]", [y(s) = b(s)]") + da(s), s€[0,1].

For any (x, y) € P, we have

1
[41(x, )| = max A1 (x, y)()] < Aoy f Gi(1,8)F1(s)ds.
T 0

So

1
AL, y)(1) = A [ ki(£)GY (1, 8)F1(s)ds > pr k()| Ar(x, y)[, te[0,1].

Similarly, A>(x, y)(t) > p3 ka2 (t)|A2(x,y)], t € [0,1]. Thus, A(P) c P.
According to the Ascoli-Arzela theorem and the Lebesgue dominated convergence theorem, we can easily
get that A : P — P is completely continuous. O

Lemma 2.12 ([53]). Let P be a cone in Banach space E, (21 and 2, are bounded open setsinE, 0 € {21, (21 c
2, A:Pn (52\(21) — P is a completely continuous operator. If the following conditions are satisfied:

[Ax| < |x|, VxePnosy, |Ax|>|x|, YXePnog2,,or

[Ax| > |x|, Vxe Pnosy, |Ax|<|x|, VXxePnodf2,,

then A has at least one fixed point in P n (£22\$21).
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3 Main results

Theorem 3.1. Assume that conditions (H1) — (Hs) are satisfied. Further assume that the following condition
holds:
(Hs4) There exists [a, b] c (0, 1) such that

fi(t,u, u2,u3) f2(t,vi,v2,v3)

lim min ——————>""2% = 400, lim min ————""%2 = 400.
Uy—>+oo te[a,b] ur V3—+oo te[a,b] V3
uq,u320 vy,v220

Then there exists X > O such that for any 0 < X < ), systems (1) have at least one positive solution (i, V).

Proof. Let
D ={(y)eX:|(x,y)|1<r},

)\:min{l, - ! , T ! },
2p1(87 +1) [y Gi(1,8)[p1(s) +qu(s)]ds 2p2(g3 +1) [y G5(1,5)[p2(s) +qa2(s)]ds

* r r
= max S,U1,U,U3):0<8<1,0<Uy < ——,0<5u<r,0<u3< R
81 {gl( 1, U2, U3) 1 T(B+1) 2 3 F(6+1)}
* r r
= max S,V1,V2,V¥3):0<8<1,0<v1 < —,0<vy < ——,0<v3<ry.
53 {gz( 1,V2,V3) 1 FG+1) 2 rG+1) 3 }

Suppose 0 < A < ), then forany (x,y) € Pn a2, s € [0, 1], we have

0<[x(s)-a(s)]" <x(s) < x| <r, 0<[y(s)-b(s)]"<y(s) <yl <,

(s =1 x(r) —a(n)]* r
12.[x(s) - a(s)]" f ) dr < sy

13- [y(s) - b(s)]" f(S‘T)“y(T) PO e T

r(s) Tr@+1)°
Thus,

14106 )

2 [ ;G ) (s, - [x(5) ~ ()], [x(s) = a(9)]" . e [y(s) = b()]) + 4 (s)]ds
0
S / Gi(1,9)[p1(9)81(5, T [X(5) - a(5)]", [x(s) = a($)]", To- [y(s) = b(s)]") + g1(s)]ds

Gp1(gh +1) [ Gi(1,5)[p1(s) + qa(s)]ds <

N\*:



DE GRUYTER Positive solutions of semipositone nonlocal fractional differential systems =—— 591

and
14206, y)
1
9\[sz;(l,S)[fZ(S,Ig[X(S) —a(s)]", 15-[y(s) - b(s)]", [y(s) = b(s)]") + qa(s)]ds
0
1

S)\szGz(l’5)[Pz(5)gz(5xfg+[x(5)—a(S)]*,Ig+[J’(S)—b(S)]*’D’(S)—b(s)]*)JrQZ(S)]dS

</\P2(gz+1)[62(1 $)[pa(s) + @2(s))ds < 2.
So

1A V)1 = A1 Y) |+ [A206y)[ <7 =[(x,¥) |1, V(x,y) ePnos. (12)

On the other hand, let k; = minc[q) ki(t) and L > max{wsz"g:(l SYRBv= fb“gf(l S)ds}. By (H,), there

exists N > 0 such that
fi(t,ur,uz,u3) >Lua, tela,b], uy >N, ui,u3 >0,

fa(t,vi,va,v3) >Tvs, te [a,b], vs 2N, vi,v; > 0.

Let
R> maX{Zr 4p1N, 4p2N}
k1 k2
2 ={06y) e P:[(x,y)]1 <R}-
Forany (x,y) e Pn o2, |(x,y)|1 = R, wehave |x| > X or |y| > 2.1f |x| > £, we deduce
x(6) - a(t) 2p1 ke (6)|x] - ( kl(t)/ql(S)dS
Ixl —— pn /
=k (t d
( )[m gy | s
Zlg(i _ i)
2p1  4p1
:£R>N te[a,b],
4p1
then

fils, Ig. [x(s) = a(s)]", [x(s) = a(s)]", I5+ [y(s) = b(s)]")
=f1(s, I (x(s) - a(s)), (x(s) = a(5)), Io-[y(s) ~ b(s)]")
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Thus
141 (x, y)|
= max f Ga(t,)[f1(5, 15 [x(s) = ()], [x(5) = a()]", T [y(5) = B()]) + 4 (5)]ds
b
>trr[1§1x])\ ki(t)Gi(1,8)L(x(s) - a(s))ds

b ~
2>\k~1f[ Gi(1,5)-X Rds
4,01

)\k1

Rfal(l s)ds >R = [(x,y)|1.

If |y| > £, in a similar manner, we have y(t) - b(t) > %R >N, tea,b],and

/\k
142 (x,y) | > 252

Rsz(l s)ds >R = (x,y)|.

Thus
IACGY) = [A1Cay) |+ [A206 )| 2 [(xy) ], V(X y) e Pnos,. (13)

By (12), (13) and Lemma 2.12, A has a fixed point (X, ) with r < [(X,¥)]1 < R. Now, we will prove X(t) >
a(t), y(t) > b(t)(or X(t) = a(t), y(t) > b(t)), t € (0,1). We shall divide the proof into three cases: (i)
IF12 5 1712 55 G %] > 3, 191 < 5 G I¥] < 5, 71> 5.

Case (). If HxH > 3, from (H3) and Lemma 2.9, we get

X(6) 2p1 ke (8)[X] 2 pzlkl(t) > pr ke (8) o p( 5) f q1(s)ds
1

- ) |

_F(a_ﬁ)h(t)6[41(5)d52a(t), te(0,1)

Similarly, if ||| > 5 we obtain y(t) > b(t), t < (0,1).
Case (ii). For |X|| > 7, similar to (i), we have X(t) > a(t), t € (0, 1). For [y| < 5, we have

0<[y(s)-b(s)]" <¥(s) < [¥] < %

<Iy, [X(s) - a(s)]" = I (X(s) - a(s)) < ﬁ
I3, [¥(s) - b(s)]" < m

It follows from (H;) that

R r r
fZ(t9 Vi, V2, V3) 2 Oy (ty Vi, V2, V3) € (0) 1) X [0) J—W] X [09 2[‘(5“‘1)] X [09 5:| ’

then

1
y(t) =A f Ga(t, 5)[f2(s, 10, [X(s) - a(s)]", Io:-[7(5) = b(5)]", [F(5) = b(5)]") + q2(s)]ds
0

1
z/\f Ga(t,s)q2(s)ds = b(t), te(0,1).
0
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Case (iii). If | X|| < 5 and [y|| > 3, similar to (ii), we have X(¢t) > a(t), y(t) > b(t), t € (0, 1).
So by Lemma 2.10 we know that (u(t),v(t)) = (Ig+ (X(t) —a(t)), I3 (¥(t) - b(t))) is a positive solution
of systems (1). O

4 An Example

Example 4.1. Consider the following problem:

DE. (D4 u(t)) + — T [(l‘(f) -90) + (Dgu(t) -3)* +vA() 1
o+ o+

VL —t) 685/ 48

D (Div(D) + Apf( 1[u2(t)+(vm_33(c)>);z+ (D&V(t)_”z‘llz]:o’ te(0.1), (14)

D:.u(0) = Di.u(0)=0, D u(l)—%D“ (%6)

]:0, te(0,1),

Di.v(0) = Di.v(0) = 0, v(1)f—D8 (%)

Problem (14) can be regarded as a problem of the form (1) with o = 71 B = %, =

1 1
0, te[O,R), 0, te[O 16)

96 1 40 1
26 490 1
97° t€[16 1] Ak t€[16’ ]

S

, 6=

>

[

A(t) = B(t) =

VT (U1 -90) + (uz - 3)* + ul B v
NG 685 48\/t(1-t)
re) v%+(vz—30)2+(V3—3)2_ re)
Vi1 -t 30 12v/1-¢
Evidently, f1, f> : (0, 1) x [0, +o<>)3 — (—o00, +00) are continuous and singular at t = 0, 1,
By direct calculations, we get

fi(t,ur, uz, u3) =

fz(ts Vi, VZ)V3) =

](1([’) = t% kZ(t) = t%’ ’Yl(t) =

3 45
2 t) = —t
() = ¢

2,
3
11=f1V1(f)dA(t):7 § (16) &(s)=3—§6i(16,s)zo,
0
)= &

12_/ n (08800 = 33555

so condition (H) is satisfied. Let

~ VT B N C(u1-90)% + (u2 - 3)" +u3
fh(t)—m,pl(t)—m,gl(t,uz,uz,us)— 685 2,
[ 2 Cam2 a2
(0= a2 HD gt vn ) - IO (23

then

foou-Ea(L 1) facou-"D.
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gﬁp1U)dt:v?B(i,;), Ejjh(odp:p(Z)B(Z’;)’

so condition (H,) is satisfied. On the other hand,

1 1
251 293 _8
max T(a-7) !ql(S)ds’ F(W_é)ofqz(s)ds =3

Select r = 2, then

fl(ts Uz, uz, u3) >

JT [(u1—90)2+(u2—3)4+u§_1]>0
N '

685 48
(t,u1, u, u3) € (0, 1) x [o, 15] % [0,1] x [0, +0),
r(z)

(2 2 _ 2 LY
(6, vi,va,v3) 2 (%) [v1+(vZ 30)% + (v3 - 3) _1])0’

V1 -t 30 12
1

(6,v1,v2,v3) € (0,1) x [0, +00) x [0’ e

:| x [0, 1].
Hence, condition (H3) is satisfied. In addition, for any [a, b] c (0, 1),

fi(t, ui, uz, us) _ fa(t,vi,va,v3) _

lim min +00, lim min +00,
Uy —+oo te[a,b] us v3—+oo te[a,b] V3
u1,u320 vy,v220

condition (H,) is satisfied. Hence, problem (14) has at least one positive solution by Theorem 3.1.
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