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Open quantum many-body systems play an important role in quantum optics and condensed matter
physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent
dynamics, and topological order generated by dissipation. We introduce a versatile and practical method
to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is
based on representing mixed quantum states in a locally purified form, which guarantees that positivity is
preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm.
Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes.
To exemplify the functioning of the approach, we study both stationary states and transient dissipative
behavior, for various open quantum systems ranging from few to many bodies.

DOI: 10.1103/PhysRevLett.116.237201

Open quantum systems are ubiquitous in physics. To
some extent any quantum system is coupled to an envi-
ronment, and in many instances this interaction signifi-
cantly alters the system’s dynamics. Traditionally, such
decoherence processes are seen as adversary to coherent
state manipulation. However, suitably engineered dissipa-
tion can also have beneficial effects and can be exploited
for state preparation [1–8], even of states containing strong
entanglement or featuring topological order. In condensed
matter physics, many concepts such as transport are often
studied within the closed systems paradigm, but it is
becoming increasingly clear that some familiar concepts
may have to be revisited in the open system setting [9],
where the interplay between Hamiltonian interactions and
dissipation leads to interesting physical effects.
Since few analytical methods are available for such

systems, the design of novel numerical tools for the
simulation of dissipative quantum many-body systems is
of the utmost importance. In this work, we present a new
algorithm that captures open many-body dynamics in one
spatial dimension—for both transient and steady regimes—
based on a locally purified tensor network Ansatz class.
It comprises a new approach in that the positivity of the
operators is maintained during the whole simulation.
Importantly, the approximation errors can be controlled
in a way that yields a trace-norm certificate. Hence, the
algorithm provides not only a conceptually new approach
to the problem, but also combines several desired features
of existing schemes and overcomes previous limitations.
Tensor-network Ansatz classes have proven to be suc-

cessful in capturing the physics of many-body states
[10–15] by parametrizing a very small but physically
relevant submanifold of quantum states with local corre-
lations. The density-matrix renormalization method [16]

can indeed be viewed as a variational principle over matrix-
product states [11,13,17–19]. Generalizing these ideas, a
number of exciting methods have been proposed [20–26],
some of which also allow us to study open quantum
systems. In most cases matrix-product operators (MPOs)
are at the heart of these methods. Indeed, several variants
have already been developed [27–35], many of which
exploit the well-known features of tensor network Ansätze

to encode the mixed many-body quantum states in a compact
matrix-product formulation, ultimately making the algorithm
efficient and stable both for transient [27–29] and steady
state physics [34].
However, in such a MPO description, the resulting

truncated operators may not be positive; in fact, this
property cannot even be tested locally, because it comprises
a computationally intractable problem [36]. In Ref. [27]
this is circumvented by dropping the positivity assumption
during the time evolution, which requires that the approxi-
mation errors remain sufficiently small. Alternatively,
quantum jump schemes make use of a stochastic unraveling
of the master equation [30,37,38] and then employ pure-
state techniques, at the expense of having to sample over
many realizations. The comparative performance of these
two approaches has been recently investigated [39].
Remarkably, the subset of matrix-product operators that

are cast in a locally purified tensor network (LPTN) form
[27,40] shows promising features: such operators are
positive by construction and exhibit all the helpful features
typical of tensor networks. However, while the LPTN
structure has been studied to represent boundary states
in projected entangled pair tensor networks [26,41,42] a
practical algorithm for one-dimensional open systems has
yet to be formulated. Here, we show that such a positivity-
preserving algorithm can actually be engineered for
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Markovian dynamics: this scheme has the computational
efficiency of tensor network methods, allows us to control
all approximation errors in the operationally relevant trace
norm, and preserves positivity by construction, thus ulti-
mately merging the advantages of previous techniques
while solving known issues.
Algorithm.—Our goal is to simulate the evolution of

spin chains under local Markovian dynamics, i.e., one-
dimensional lattice systems (at finite system size, with open
boundary conditions) governed by the Lindblad master
equation

dρ

dt
¼ LðρÞ ¼ −i½H; ρ� þDðρÞ: ð1Þ

Here, H ¼ P

jHj is the Hamiltonian and the dissipative
part of the Lindblad generator L takes the form

DðρÞ ¼ P

α
ðLαρL

†
α − fL†

αLα; ρg=2Þ, where the Lindblad
operators Lα model the coupling of the system with the
environment. We focus on the typical scenario, where the
elementary Hamiltonian terms Hj as well as the Lindblad
operators Lα are two local, meaning that they only couple
spins on neighboring sites, and denote them by H½l;lþ1� or
L½l;lþ1�, respectively.
We describe the variational mixed state of the system

as a tensor network representing the density matrix ρ. But
instead of expressing ρ directly as a MPO [27,43] we keep
it at every stage of our algorithm in its locally purified form
ρ ¼ XX†, where the purification operator X is decomposed
as a variational tensor network

½X�s1;…;sN
r1;…;rN ¼

X

m1;…;mN−1

A
½1�s1;r1
m1

A
½2�s2;r2
m1;m2

� � �A½N�sN ;rN
mN−1

ð2Þ

with 1 ≤ sl ≤ d, 1 ≤ rl ≤ K, and 1 ≤ ml ≤ D. Hence, we
represent ρ by a locally purified tensor network consisting
of rank-4 tensors A½l� with physical dimension d, bond
dimension D, and Kraus dimension K [see Fig. 1(a)].

Our algorithm is an extension of the time evolving block
decimation (TEBD) scheme [44], acting on the level of the
local tensor A½l� that also allows for dissipative channels,
and never requires us to contract the two tensor network
layers (X and X†) together. Similarly to TEBD, we split
the propagator eτL for a small time step τ into several
dissipative Trotter-Suzuki layers [45] of mutually commut-
ing operators. Let us consider the evolution from time t

to tþ τ in row-wise vectorization jρtþτ⟫ ¼ je⟫τL
ρt ¼

eτð−iH⊗1þi1⊗H̄þDÞjρt⟫, where jM⟫ denotes the vector given
as the row-wise concatenation of a matrix M. As usual, for
one spatial dimension (for possible generalizations to
higher dimensions see the Supplemental Material [46])
we define the operators Ho and He by splitting the
Hamiltonian H ¼

P

N
l¼1

H½l;lþ1� into two sums, one con-

taining the even interactions H½2l;2lþ1� and one containing
the odd interactions H½2l−1;2l�. If the Lindblad operators Lα

act only on site (the case of two-site Lindblad operators is
treated later on), we can approximate eτL using a second
order Trotter-Suzuki formula as (see the Supplemental
Material [46])

eτL ¼ eτHo=2eτHe=2eτDeτHe=2eτHo=2 þOðτ3Þ; ð3Þ

partially shown in Fig. 1(d), whereHν¼−iHν⊗1þi1⊗H̄ν

with ν ¼ o, e. The layers He and Ho implement the
coherent part of the evolution and are identical to the usual
TEBD layers. Expressing ρt as ρt ¼ XtX

†
t we find that by

setting Xt
0 ¼ e−iτHν=2Xt we recover exactly ρt

0 ¼ eτHν=2ρt.
Hence, for the coherent part of the dynamics, we can just
adapt the usual TEBD algorithm for nearest neighbor
Hamiltonians.
The dissipative layer requires a more careful treatment

and we exploit the fact that since the operators L½l� act

only on a single site, we find eτD ¼ ⊗
l
eτD

½l�
, with D½l� ¼

P

j½L
½l�
j ⊗ L̄

½l�
j − ðL½l�†

j L
½l�
j ⊗ 1þ 1 ⊗ L

½l�T
j L̄

½l�
j Þ�=2, where

FIG. 1. Markov dynamics of a quantum spin chain on the level of local tensors. Panel (a) shows the relationship between a density
matrix ρ in the MPO representation (top) and the locally purified tensor network (bottom) with tensors Al, physical dimension d, bond
dimensionD0, and Kraus dimension K. (b) Action of a local channel T acting exclusively on lattice site 2 on the level of the MPO and on
the level of the locally purified tensors. In the latter, the Kraus rank k2 of the quantum channel T is joined together with K.
(c) Compression schemes for the bond and Kraus dimension of a local tensor via singular value decompositions (SVD). (d) Locally
purified evolution of a time step eτL for a nearest neighbor Hamiltonian and on-site Lindblad operators. We only show three of the five
Trotter-Suzuki layers from Eq. (3).
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the sum runs over all Lindblad operators L
½l�
j acting on

site l. Since eτD
½l�
is completely positive, we can find a

set of Kraus operators fBl;qg satisfying eτD
½l� ¼

P

k
q¼1

Bl;q ⊗ B̄l;q. The action of eτD
½l�
on the level of the

local tensors is now given by a contraction of Bl;q into A
½l�
t ,

while joining the variational Kraus dimension K with the

Kraus rank k ≤ d2 of the quantum channel eτD
½l�
, as shown

in Fig. 1(b). The application of each Trotter-Suzuki layer
increases only the dimension of a single index of the local
tensors A½l�: the bond dimension D is increased by the
coherent layers, and the Kraus dimension K by the
dissipative layers. This allows for immediate compression
of the enlarged dimension similar to the standard density
matrix renormalisation group setting. In all compression
steps the Frobenius norm error introduced on the purifi-
cation operators can be kept track of. This translates into a
trace-norm error for the state itself. By taking also the error
from the Trotter-Suzuki approximation into account, we
obtain an explicit bound for the trace-norm error; see
Theorem 1 in the Supplemental Material [46].
Numerical results.—In order to verify the applicability of

our method we consider three prototypical benchmark
situations. The first one comprises a few-body scenario,
consisting of two qubits coupled via cavities with addi-
tional excitation losses [52]. As a genuine many body
example we study the steady state of an XXZ spin-1=2
chain with edge dissipation channels, which allows for
comparison with analytical solutions derived in Ref. [9].
Finally, we show the validity of the two-site Lindblad-
operator approach in the case of the Kitaev wire [7].
In the first model, two interacting optical cavities (C1 and

C2) are each coupled to a private qubit (S1 and S2).
Ordering the sites as ðS1 − C1Þ − ðC2 − S2Þ gives a nearest
neighbor model suited for our algorithm. The coherent part
of the dynamics is captured by the Jaynes-Cummings
Hamiltonian, which describes each spin-cavity interaction,
plus a photon tunneling between cavities. In terms of the
spin operators σ�l ¼ ðσxl � iσ

y
l Þ=2 and the creation c†l and

annihilation operators cl of the cavity photons, the
Hamiltonian is given by H ¼

P

l¼1;2ðαlðσþl cl þ σ
−
l c

†

l Þþ
ωCnl þ ωSσ

z
l Þ þ αCCðc†1c2 þ c†

2
c1Þ. The dissipation mod-

els a homogeneous probability of excitation losses and is
given by single-site Lindblad operators: LSl

¼ ffiffiffi

γ
p

σ
−
l for

the spins and LCl
¼ ffiffiffi

γ
p

cl for the cavities. We start the
evolution in a pure product state, where only the right
cavity is nonempty and filled exactly with Nð0Þ ¼ 3

photons. The symmetries of the model imply an easy
relation between the total excitation number N ðtÞ and the
coupling strength γ: N ðtÞ ¼ N ð0Þe−γt, a behavior that is
reproduced by our simulations with high precision (under
0.2% relative deviation). Figure 2 shows the occupation on
each site as well as N ðtÞ, which correctly reproduces the
expected exponential decay. The inset shows the infidelity

Iðρ1; ρ2Þ ¼ 1 − Tr½ðρ21=2ρ1ρ21=2Þ1=2� of the locally puri-
fied evolution ρ1 with respect to the exact evolution ρ2

carried out in Liouville space. As expected, close to the
steady state the deviation of the locally purified dynamics
from the exact evolution converges to a finite value
(depending both on τ and the maximal bond D and
Kraus dimension K).
As a second benchmark, we consider the evolution

of a spin-chain under the XXZ Hamiltonian H ¼
P

lðσxl σxlþ1
þ σ

y
l σ

y
lþ1

þ Δσ
z
lσ

z
lþ1

Þ. Via a Jordan-Wigner
transformation this system is mapped into a spinless
fermion Hubbard model with a density-density nearest
neighbor interaction. Therefore, with the addition of two
reservoirs embodied by Markov channels at the edges, it
models fermionic dc transport in a quantum wire. We
introduce the Lindblad operators L

←
¼ ffiffiffiffiffi

2γ
p

σ
þ
1

at the
leftmost site (source) and L

→
¼ ffiffiffiffiffi

2γ
p

σ
−
N at the rightmost

site (drain). We identify the steady state for different
parameter regimes ðΔ; γÞ. For comparison with analytic
results from Ref. [9], we consider the local z axis
magnetization σ

z
l and the spin-current operator Il ¼

iðσþl σ−lþ1
− σ

−
l σ

þ
lþ1

Þ. The steady state regime is achieved
by evolving the system until these observables become
stationary. Figure 3 shows the local magnetization of a
chain of N ¼ 100 spins in the top panel, while the current
as a function of the chain length is plotted on the bottom
frame. A remarkable quantitative match to Ref. [9] emerges
even for small D and K (∼60).
Finally, we consider a setting with two-local instead of

on-site Lindblad operators (see the Supplemental Material
[46] for details). We employ a two-layer Trotter-Suzuki

0.1

 1

 0  20  40

10
-7

10
-3

 0  30  60

FIG. 2. Main: excitation populations of the four sites (see the
main text) in the coupled spin-cavity model (yellow, cavity;
violet, spin; dashed, right; straight, left), here for γ ¼ 0.05,
α1 ¼ α2 ¼ 0.48, αCC ¼ −1.0, ωC ¼ ωS ¼ 1.0, as well as their
sum N (green line). The latter is nicely fitted by an exponential,
with decay rate γfit ¼ 0.04997� 8 × 10−5. Inset: comparison of
the locally purified evolution, here for bond dimension D ¼ 40

and Kraus dimension K ¼ 40, with the exact Liouville evolution:
infidelity I (blue line) and relative Hilbert-Schmidt distance (red
line). Infidelities are estimated to be numerically reliable above
10−7 (nonshaded area).
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approximation with odd Lo ¼ Ho þDo and even Le ¼
He þDe terms. After computing the Kraus decomposition

for the corresponding nearest-neighbor channels eτL2l;2lþ1 ¼
P

k
q B

½2l;2lþ1�
q ⊗ B̄

½2l;2lþ1�
q one can choose how to implement

the action of B½2l;2lþ1�
q onto A½2l� and A½2lþ1�. In particular,

there are different possibilities for distributing the Kraus
rank k of the channel between the Kraus dimensions K2l

and K2lþ1 of the two sites.
Moreover, when such a dimension k is distributed non-

trivially (k1 > 1 to the left site, and k2 > 1 to the right site,
where k1k2 ¼ k) there is an additional freedom, represented
by a unitary transformationU in the k-dimensional auxiliary
space, that influences the precision of the algorithm. This
gauge transformation U is discussed in detail in the
Supplemental Material [46], alongside a numerical tech-
nique we adopt to optimize it. For an appropriate compari-
son, we consider three strategies: (a) Kraus rank all to one
side ( e.g., k2 ¼ 1), (b) Kraus rank distributed as evenly as
possible (k1 ≃ k2 ≃

ffiffiffi

k
p

), with random U (unoptimized),
and (c) analogously to (b) but with optimized U.
As a benchmark of this technique we simulated a Kitaev

wire model, comparing the LPTN to the exact evolution,
which we discuss in detail in the Supplemental Material [46].
The results showed that we can capture accurately the real-
time evolution starting from an entangled mixed random
state, by direct comparison of our scheme with the exact
Liouville evolution, for a chain of six sites. It also suggests

that strategies (a) and (c) yield, surprisingly, equivalent
precision, and are preferable choices to strategy (b).
Discussion and advantages of the scheme.—The LPTN

algorithm introduced in this Letter yields an overall
computational cost scaling as Oðd5D3KÞ þOðd5D2K2Þ,
by executing a clever contraction of the coherent terms.
Moreover, this method takes advantage of the gauge
freedom, e.g., by reducing costs for local measurements
from OðNÞ to Oð1Þ, with N being the system size. It
complements known evolution schemes employed in
many-body calculations for 1D systems (namely the
MPO representation and the quantum trajectories tech-
nique) in a significant way. Indeed, our scheme allows us to
overcome known shortcomings of the other methods,
although possibly concomitant with a slightly reduced
efficiency, as we describe briefly in the following.
The computational cost of regular MPO techniques

scales asOðd8 ~D2Þ þOðd6 ~D3Þ. They have been extensively
employed with success [27–33,35]. The LPTN paradigm is
a preferable choice in cases where the negativity of the
MPO Ansatz becomes pathological. Note, however, that the
roles of the bond dimensions in the schemes are not
identical [40], and there is an additional trade-off between
D and K in the LPTN case. Quantum trajectory techniques,
in contrast, carry a computational cost (assuming the single
sample evolution relies on a matrix product state Ansatz

with bond dimension D̂) of the order Oðηd4D̂2Þþ
Oðηd3D̂3Þ, where η is the number of samples employed
in the stochastic unraveling. These methods have delivered
excellent accuracy in a number of physically relevant
scenarios, especially in transient dynamics and in situations
where the stationary states are expected to be close to being
pure [30]. Their limitations are crucial, however, when the
stationary states are expected to be highly mixed, such as in
high temperature environments. Then, the number of
samples required increases drastically, challenging also a
parallel computation approach. Possibly more challenging
is the fact it can happen that quantum states of relatively
small correlations are represented as ensembles of matrix
product states each with a large bond dimension D̂. An
extreme case of this form is constituted by a maximally
mixed stationary state with D ¼ 1 and K ¼ d, represented
as an ensemble of pure states of bond dimension D̂, giving
rise to an overhead of D̂3.
Importantly, the LPTN offers a concise control of errors

accumulated during the simulation and guarantees a sim-
ulation to be accurate up to a given error. At the same time,
the new scheme introduced here calls for further theoretical
and numerical studies to determine under which physical
conditions and dynamical processes each of these three
different approaches is most effective. A deeper under-
standing of these issues will guide future research in out-of-
equilibrium quantum many-body systems providing the
best possible numerical tool available in each different
scenario.

-0.5

0

0.5

1

 0  50  100

10
-3

10
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10
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10
0

5 20 5010

FIG. 3. Comparison of simulated steady state (points) with
analytical results (lines) from Ref. [9] for the XXZ model with
edge driving of γ ¼ 1 in several parameter regimes. Green
squares, Δ ¼ 0.5; red dots, Δ ¼ 1.0; cyan triangles, Δ ¼ 1.5.
Top: local magnetization in the z direction hσzji as a function of
the site j, for a chain of length N ¼ 100. Bottom: time averaged
steady state spin current Ij ¼ 2Imhσþj σ−jþ1

i at the chain center
j ¼ N=2, as a function of the total chain length N.
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Perspectives.—In this work, we have introduced a versa-
tile algorithm for simulating open quantum many-body
systems. All errors made by the algorithm are bounded in
the trace norm. The ideas presented here overcome a number
of previous limitations and allow us to probe both transient
dynamics and stationary behavior. We have discussed three
important benchmark cases, and a number of perspectives
open up here. First, the framework can be used to analyze
weakly interacting open quantum systems, perturbing fre-
quently studied free fermionic models to study topology
generated by engineered dissipation [7,8]. Clearly, notions of
algebraic and exponential dissipation can readily be accessed
[35], as well as glasslike dynamics [53] and kinematic
inhibitance, or the interplay between localization by dis-
sipation and disorder. Furthermore, the method finds imme-
diate application in the dissipative quantum engineering of
entangled many-body states [54], for instance, by merging
with optimal control techniques [55]. It also allows us to
explore shortcuts to adiabaticity [56] in open-system quan-
tum many-body settings. Another intriguing enterprise is to
investigate the stability of stationary states under
local Liouvillian perturbations, in particular, without the
assumption of a finite log-Sobolev constant or rapid mixing
[57,58]. It would also be exciting to explore formulations of
our method in a time-dependent variational principle frame-
work [14,18].
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