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Abstract

Background: The incomplete ground truth of training data of B-cell epitopes is a demanding issue in

computational epitope prediction. The challenge is that only a small fraction of the surface residues of an antigen

are confirmed as antigenic residues (positive training data); the remaining residues are unlabeled. As some of these

uncertain residues can possibly be grouped to form novel but currently unknown epitopes, it is misguided to

unanimously classify all the unlabeled residues as negative training data following the traditional supervised

learning scheme.

Results: We propose a positive-unlabeled learning algorithm to address this problem. The key idea is to distinguish

between epitope-likely residues and reliable negative residues in unlabeled data. The method has two steps:

(1) identify reliable negative residues using a weighted SVM with a high recall; and (2) construct a classification

model on the positive residues and the reliable negative residues. Complex-based 10-fold cross-validation was

conducted to show that this method outperforms those commonly used predictors DiscoTope 2.0, ElliPro and

SEPPA 2.0 in every aspect. We conducted four case studies, in which the approach was tested on antigens of West

Nile virus, dihydrofolate reductase, beta-lactamase, and two Ebola antigens whose epitopes are currently unknown.

All the results were assessed on a newly-established data set of antigen structures not bound by antibodies,

instead of on antibody-bound antigen structures. These bound structures may contain unfair binding information

such as bound-state B-factors and protrusion index which could exaggerate the epitope prediction performance.

Source codes are available on request.

Background
A B-cell epitope is a small surface area of an antigen that
interacts with an antibody. It is a much safer and more
economical target than an entire inactivated antigen for
the design and development of vaccines against infectious
diseases [1,2]. More than 90% of epitopes are conforma-
tional epitopes which are discontinuous in sequence but
are compact in 3D structure after folding [2,3]. The most
accurate way to identify conformational epitopes is to
conduct wet-lab experiments to obtain the bound struc-
tures of antigen-antibody complexes. Given that there

are a vast number of antigen and epitope candidates for
known antigens, the wet-lab approach is unscalable and
labour-intensive.
The computational approach to identify B-cell epi-

topes is to make predictions for new epitopes by sophis-
ticated algorithms based on the wet-lab confirmed
epitope data. Early methods explored the use of essential
characteristics of epitopes, and found useful individual
features including hydrophobicity [4,5], flexibility [6],
secondary structure [7], protrusion index (PI) [8], acces-
sible surface area (ASA), relative accessible surface area
(RSA) and B-factor [9,10]. However, none of these single
characteristics is sufficient to locate B-cell epitopes
accurately. Later, advanced conformational epitope pre-
diction methods emerged, integrating window strategies,
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statistical ideas and compound features [2,11-14].
Recently, many epitope predictors have used machine
learning techniques, such as Naive Bayesian learning
[15] and random forest classification [10,16].
All these methods have overlooked the incomplete

ground truth of the training data of epitopes. The train-
ing data is simply divided into positive (i.e., confirmed
epitope residues) and negative (i.e., non-epitope resi-
dues) classes by the traditional methods. In fact, the
non-epitope residues are unlabeled residues. These unla-
beled residues may contain a significant number of
undiscovered antigenic residues (i.e., potentially posi-
tive). It is therefore misguided to unanimously treat all
the unlabeled residues as negative training data. Classifi-
cation models based on such biased training data would
significantly impair their prediction performance.
An intuitive way to address this problem is to train

the models on positive samples only (one-class learn-
ing). One-class SVM [17,18] was developed, but its
performance does not seem to be satisfactory [19].
Positive-unlabeled learning (PU learning) provides
another direction. It learns from both positive and
unlabeled samples, and exploits the distribution of the
unlabeled data to reduce the error labels of training
samples to enhance prediction performance [19]. One
idea in PU learning is to assign each sample a score
indicating the probability of it being a positive sample.
For example, Lee and Liu first fitted samples with speci-
fic distribution by weighted logistic regression and then
scored the samples [20]. Another idea is the bagging
strategy, in which a series of classifiers is constructed by
randomly sampling unlabeled data, and these classifiers
are then combined using aggregation techniques [21]. A
third idea is a two-step model: reliable negative (RN)
samples from unlabeled data are first obtained, then a
classifier is built by applying a classification algorithm
on the positive and reliable negative samples [19,22-24].
We introduce a novel two-step PU learning algorithm.

The first step is to identify reliable negative samples from
unlabeled data by a weighted SVM [25] with a recall
threshold set at a high level. The high recall means that
the majority of positive samples should be correctly iden-
tified; thus if an unlabeled sample is predicted as nega-
tive, it would have a high probability of being a non-
epitope residue. Accordingly, true negative predictions
(i.e., unlabeled residues predicted as negative) can be
annotated as reliable negative samples. A classifier (a
weighted SVM model) is then trained on the positive and
reliable negative samples to predict novel antigenic
resides and epitopes. Our method is called PUPre (Posi-
tive- Unlabeled Prediction).
The performance of PUPre was evaluated on a newly-

established data set of unbound structures of antigens.
We would like to point out that most existing epitope

prediction methods have been evaluated on bound-state
structures of antigens [2,11,13,26]. Bound-state data has
two limitations. Firstly, bound-state structures contain
binding site information [10]; Secondly, if an antigen
can be bound by multiple antibodies, only one epitope
is annotated as an epitope in a bound-state structure,
while those epitopes bound to the other antibodies are
taken as non-epitope. Such an annotation exaggerates
the false negative annotations.
We conducted complex-based 10-fold cross-validation

for performance evaluation, in which all the residues of
10% randomly selected complexes are reserved for test
at each round (not 10% of randomly selected residues).
We show that the PUPre method demonstrates better
performance compared to commonly used conforma-
tional B-cell epitope predictors, such as DiscoTope 2.0,
ElliPro and SEPPA 2.0. The use of PUPre was also
demonstrated through its application to antigens of
West Nile virus, dihydrofolate reductase, beta-lactamase,
and two Ebola antigens (whose epitopes are currently
unknown) to show its usefulness in real-life applications
for the prediction of unknown epitopes. To understand
the importance of species information in epitope predic-
tion, a species-wise feature analysis was also conducted
on the newly-established unbound structure data set.
We found that the divergence between epitopes and
normal surface areas is large, suggesting that the predic-
tion methods are useful for all species.We note that a
difference exists between certain species on important
structural features and amino acid composition. We
speculate that it may be possible to enhance epitope
prediction performance by using species information in
the future.

Methods
Data sets

Large-scale bound-state structure data sets have pre-
viously been constructed by the literature, and used in
other studies [2,11,13,26,27] for epitope prediction and
feature analysis. The use of bound-state structures can
result in two problems. One is that bound-state struc-
tures contain a large amount of explicit binding informa-
tion [10], which can result in biased characterization of
epitopes and can exaggerate the prediction performance.
The other is that they can aggravate the issue of false
negative annotations when an antigen can be bound by
multiple antibodies–only the epitope to the antibody in
the bound structure is labeled as an epitope site and all
those epitopes to other antibodies are marked as non-
epitope. To overcome these two problems, our predic-
tions and analysis were based on a newly-established
unbound-state structure data set. As the data set does
not contain information about the binding site, a more
accurate characterization of unboundstate epitopes is
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expected. The use of unbound-state structures can also
reduce the false negative annotations by aggregating mul-
tiple epitopes on the same antigen. These unbound-state
structures were manually organized in terms of species
and disease which is especially useful for species/disease-
specific feature analysis.
The construction of the unbound-state structure data

set requires reference information from bound struc-
tures. We used the following steps to obtain the bound
structures with epitope annotations:

• Collect bound structures of antigen-antibody com-
plexes. Bound structures were collected by text
search of ‘complex’ and ‘antibody/Fab/ Fv/VHH’

from the PDB database dated 9th Sep 2014, which
retrieved 1596 structures.
• Filter the bound structures. A bound structure was
removed if it was consistent with any of the following
conditions: (1) there is no antibody chain; (2) there is a
chain of ‘DNA/RNA/Fc/T-cell/receptor’; (3) the reso-
lution is worse (more) than 3Å; (4) the antigen chain is
less than 25 residues [2,28]. In total, 598 bound struc-
tures of antigen-antibody complexes were retained.
• Determine the location of epitopes: A residue of an
antigen is considered to be an epitope residue if a
heavy atom of the residue is within 4Å distance from
any heavy atom of the antibody [2,13].

Subsequently, the steps to build the unbound-state
structure data set are:

• Obtain candidate unbound-state structures of anti-
gens. An antigen structure in unbound state is
selected as a candidate if it has more than 70%
sequence similarity to any antigen in bound state (i.e.,
the 598 bound structures). By this way, there may be
multiple candidate unbound-state antigen structures
that are similar to the same bound-state antigen, but
only one will be used for mapping in the next step.
The candidate with the highest similarity to the
bound-state antigen and with higher resolution is
considered to have higher priority. Bound-state struc-
tures will be removed if their antigens do not have
high similarity to antigens in unbound state.
• Map the epitopes onto the unbound-state struc-
tures. The epitopes extracted from the bound struc-
tures were mapped onto the corresponding unbound-
state structures by structure alignment. An epitope
was retained if it could be completely aligned with
the unbound structure. This step reduces the false
negative annotations: if various bound structures
share the same antigen, their epitopes will be mapped
on the same unbound-state structure. For example,
1VFB and 2EIZ are bound structures of lysozyme and

antibodies, and their distinct epitopes were mapped
onto the same unbound-state structure 2VB1 to
reduce the false negative annotations. In this step,
308 epitopes were mapped onto 92 unbound-state
structures.
• Remove duplicate units. For the 92 unbound-state
structures, only one asymmetric unit was retained
for each structure.

A residue was retained for the unbound data set if its
ASA was more than 0Å. This is because the candidate
epitope residues at least need to be exposed to contribute
to the binding affinity. We used the relative low threshold
of 0Å to preserve the ground truth of the epitopes.
By following these steps, a data set of 92 unbound-

state structures was constructed (Additional File 1)
which contained 2123 confirmed epitope residues
labeled as positive (Additional File 2), and 16615 resi-
dues marked as unlabeled.

Feature vector representation for residues

Various features of amino acids were used together as a
vector to represent a residue. We collected 239 basic
features (Table 1), including 205 physico-chemical fea-
tures collected from AAIndex with less than 80% simi-
larity, 21 evolutionary features (PSSM features), and 13
structural features.
Some of these features may make little contribution to

the characterization and identification of epitopes. A
non-parameter hypothesis test (Wilcoxon rank-sum test
on the epitope residues and the unlabeled residues) was
used to find out which features better characterized epi-
topes. The p-value reflects the significance: the smaller
the p-value is, the better the feature characterizes epitope
residues. The features are then ranked by p-values. Only
those with p-value less than 1e - 4 were retained as
important features. To avoid over-fitting, the hypothesis
test was conducted on 62 (2/3 of 92) randomly selected
complexes each time. This procedure was repeated nine
times, and produced nine important feature lists. The

Table 1. Description of features

Features Collected from Feature No.

Physico-chemical AAIndex (80% similarity) 1-205

PSSM Psi-BLAST 206-225

PSSM residue PSSM 226

PI PSAIA 227

Secondary structure DSSP 228-235

ASA NACCESS 236

RSA NACCESS 237

B-factor PDB files 238

B-factor CA PDB files 239

’Feature No.’ describes the number of dimensions for each feature type.
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final winning features were selected by majority voting.
The procedure helps to identify highly useful features for
discovering unknown epitopes. Eighty-nine basic features
were ultimately selected. Sequence window features and
structure window features were also added to the vector
to reflect the impact of sequential or structural adjacent
residues on epitope residues. Please refer to [10] for
detailed steps to derive these sequence window features
and structure window features.

PU learning

PU learning has been already explored for text mining
[19,20,22], disease gene identification [29-31], and protein
function identification [32]. However, this advanced learning
approach has not been explored for the prediction of
epitopes.
As mentioned, some conventional PU learning algo-

rithms share a two-step framework. The difference
between them lies in the unique strategies used in the
first or the second step. Table 2 summarizes the differ-
ences. The spy strategy [19] randomly selects several
positive samples as spies and puts them into the unla-
beled data set; then it determines the boundary of RN
(reliable negative samples) under the rule that most of
the spies are classified as positive. The 1-DNF algorithm
[22] identifies the reliable positive features, and then
selects RN which consist of none of the reliable positive
features. Rocchio [22] calculates the representative posi-
tive/unlabeled vectors and selects those samples more
similar to the representative unlabeled vector as RN.
We introduce a novel two-step PU learning algorithm

(i.e., PUPre) based on weighted SVM with linear kernel
[25]. For easy reference, we list three groups of terms
and notations which can be used interchangeably: (1) P,
positive samples and epitope residues, (2) U, unlabeled
samples and unlabeled residues, (3) RN, reliable negative
samples and reliable non-epitope residues. Figure 1(a)
shows the two main steps of PUPre: identify RN and
construct a weighted SVM from P and RN. Figure 1(b)
details the step ‘identify RN’, where a high recall (e.g.,
>95%) for the weighted SVM is highlighted. The high
recall requires that the majority of epitope residues
should be correctly identified. Thus if an unlabeled resi-
due is predicted as negative, it would have a high prob-
ability of being a nonepitope residue. Note that although

the two steps both use weighted SVM, their optimiza-
tion objectives are slightly different. In the first step, the
true negative predictions (i.e., unlabeled residues pre-
dicted as negative) are selected as RN, with the optimi-
zation objective that the recall of the predictor is as
high as 95% and the F-score is optimized. The 5% bal-
ance in recall is reserved to tolerate noise in positive
samples induced by computational definitions and the
mapping process. In the second step, the PUPre model
is developed with the objective of optimizing the
F-score. The function of weighted SVM can vary when
the optimization function function is adjusted. In addi-
tion, adjusting the weights assigned to different classes
can help to deal with the issue of data imbalance between
positive residues and a huge amount of unlabeled resi-
dues. Both the parameter penalty factor and weight used
in the two steps were selected by maximizing the optimi-
zation goals. The parameter determination process was
conducted under internal complex-based 5-fold cross-
validation to avoid over-fitting.
To study which factor contributes to this major improve-

ment, we also designed two baseline algorithms using linear
SVM. In the baseline algorithms, we simply use weight = 10
on the rare epitope data to handle the issue of data imbal-
ance, and calibrate the penalty factor cc in linear SVM to
obtain optimum performance. The penalty factor controls
the trade-off between the margin and the training errors [25].
The raw baseline algorithm is trained and evaluated on

all the epitope and unlabeled residues. It is used to investi-
gate whether selected features are effective. The prepro-
cessing baseline algorithm was designed on the basis of
the following observation. Many of the unbound struc-
tures are multimeric, and in most cases PDB files only
record parts of the symmetric units. Clearly, the interfaces
between target chains and other chains in symmetric units
cannot become epitopes. Thus, a preprocessing procedure
is deployed to enhance the performance: we first calculate
the complete structure according to the PDB file and then
detect and remove the interfaces with other chains. With-
out loss of generality, we assume an antigen structure has
two chains A and B. A residue on chain A is defined as an
internally interacting residue if a heavy atom of this resi-
due is within 4Å distance of any heavy atom of chain B. In
a training process, those internal interactions are excluded
from the training data, taken as neither positive nor unla-
beled residues; in a testing process, they are labeled as
negative. The internal interactions on our data set are pro-
vided in Additional File 3.
In the performance comparison and evaluation, complex-

based 10-fold cross-validation was used. By this process, the
92 unbound structures were randomly divided into 10
groups. Our PUPre model was trained on the complexes
from nine groups, and tested on the remaining group. Com-
plex-based 10-fold cross-validation is an excellent indicator

Table 2. Typical two-step PU learning algorithms

Algorithms Step1 Step2 SEL

S-EM [19] Spy EM Y

PEBL [22] 1-DNF SVM N

Roc-SVM [23] Rocchio SVM Y

Biased SVM [24] Naïve Bayesian Biased SVM N

SEL: whether to select the final model from the iterated classifiers.
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of performance in real world applications, because when
predictors make predictions on an antigen structure, the
complete antigen should be taken as testing data, and none
of the residues should be in the training data. However, resi-
due-based cross-validation is quite likely to divide residues
from the same antigen (or even nearby epitope residues)
into training and testing data, overstating the performance.
Thus, it cannot reflect the true prediction performance on a
new structure. Figure 2 demonstrates the evaluation of
PUPre and the comparison with other predictors.

Results and Discussion
This section presents validation results in two parts. The
performance of PUPre under the complex-based 10-fold
cross-validation is reported first, followed by its detailed
prediction performance on the four antigens in our case
studies. Our methods and all the comparing partners in
this section receive exactly the same inputs: all residues
of the chains listed in Additional File 1.

Prediction results by complex-based 10-fold cross-

validation

Complex-based 10-fold cross-validation was conducted on
the unbound structure data set with random partition of
the 92 complexes (Additional File 1). The random parti-
tions were conducted three times to reduce the possible

Figure 1 The learning process of PUPre. P is short for positive samples (i.e., epitope residues), and RN is an acronym for reliable negative

samples. (b) is a detailed description of the step ‘Identify RN’ in (a).

Figure 2 Performance evaluation and comparison . The

proportion inside the dotted box is referred to as PUPre.

Ren et al. BMC Bioinformatics 2015, 16(Suppl 18):S12

http://www.biomedcentral.com/1471-2105/16/S18/S12

Page 5 of 15



bias caused by the partition process. The mean and stan-
dard deviation of the performance are reported in Table 3.
When compared with the three structure-based epitope
predictors DiscoTope 2.0, ElliPro and SEPPA 2.0, it is
clear that the PUPre classifier outperforms their prediction
results in every aspect. In particular, PUPre achieves an
F-score of 0.28, while the best F-score of the three predic-
tors is 0.24 (by SEPPA 2.0). The MCC of PUPre is 0.21,
which is 50% higher than the best MCC of the comparison
predictors.
The most distinguishing feature of PUPre is its high

recall performance. It achieves an excellent recall of 0.71
while its precision is the highest level 0.18 of the four
predictors. This indicates that most of the epitope resi-
dues have been correctly identified. Though ElliPro has
a competitive recall, its precision of 0.12 is only slightly

better than random
(

2123

2123 + 16615
≈ 0.113

)

.

We can also see that the raw baseline algorithm
(Table 3, Baseline(r)) outperforms the three other pre-
dictors except that its recall is lower than ElliPro. This
implies that the selected features and the method of
feature space construction are as effective as expected.
By integrating the preprocessing procedure, the new
baseline algorithm improves performance in every
aspect: the F-score has increased from 0.26 to 0.27, the
MCC has improved from 0.17 to 0.18, the recall has
increased from 0.58 to 0.59 (implying that more epitope
residues have been identified), and precision has
increased from 0.17 to 0.18 (implying that a greater pro-
portion of predicted epitope residues are true epitope
residues). The removal of internally interacting residues
was conducted as a preprocessing step rather than post-
processing. Thus, these extreme negative cases can be
removed before training, and it will help predictors to
focus on the more confusing residues. The performance
results of DiscoTope 2.0, ElliPro, SEPPA 2.0 with a simi-
lar postprocessing procedure to remove the internally
interacting residues are shown in Additional File 4:
Table S1.
Compared with the two baseline algorithms, PUPre

achieves an overall improvement in performance: the F-
score has increased from 0.27 to 0.28 and the MCC has

improved from 0.18 to 0.21. With precision unchanged,
recall shows a significant increase from 0.59 to 0.71,
indicating the effectiveness of the PU learning algorithm:
more confirmed epitope residues are re-discovered (pre-
dicted) and there is potential to discover new epitopes.
In epitope prediction, handling the more ambiguous

residues has always been difficult. The nature of epitope
residues is complicated; simply using the distribution of
certain features (even important features) is insufficient
to distinguish these ‘middle points’. Additional File 5:
Figure S1 gives an example to illustrate this difficulty.
As can be seen, there is no clear boundary among these
samples that is able to correctly classify the determined
epitope residues (positive). A more systematic machine
learning method could be a better choice, to utilize the
distribution of more useful features. In PUPre, two stra-
tegies were employed against these ambiguous residues.
The first strategy was the preprocessing procedure to
remove positive samples before step one. These intern-
ally interacting residues are a kind of extremely negative
residue, and were removed before training and testing.
Thus, the predictor is able to focus on the more ambig-
uous points. The second strategy was to train a new
SVM predictor with optimized F-score based on the
positive and RN residues. The distribution of positive
and RN residues was utilized in this more systematic
way to distinguish the more ambiguous points that were
not labeled in step one.

Four case studies

PUPre was tested on three antigens with known epi-
topes which were not used as training data to see
whether these known epitopes can be correctly re-dis-
covered (predicted). PUPre was also applied to two
Ebola virus antigen structures, whose epitopes are cur-
rently unknown, to predict novel epitopes. We note that
all these antigens have a far kinship from any antigen in
the training data.
Prediction results for an antigen of West Nile virus

PDB entry 4OIE is an unbound structure of an antigen
of West Nile virus. The epitope site of 4OIE was anno-
tated with the reference information from PDB entry
4OII (protein NS1 of the West Nile virus binding with

Table 3. The performance of complex-based 10-fold cross-validation

Predictor Recall Precision F-score MCC

DiscoTope 2.0 0.26 0.17 0.21 0.11

ElliPro 0.68 0.12 0.20 0.08

SEPPA 2.0 0.48 0.16 0.24 0.14

Baseline(r) 0.58 ± 0.002 0.17 ± 0.003 0.26 ± 0.003 0.17 ± 0.004

Baseline(p) 0.59 ± 0.001 0.18 ± 0.003 0.27 ± 0.003 0.18 ± 0.004

PUPre 0.71 ± 0.015 0.18 ± 0.002 0.28 ± 0.003 0.21 ± 0.005

Baseline(r) stands for baseline(raw), baseline(p) is baseline(preprocessing).
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antibody 22NS1), which is the only bound structure of a
similar antigen in PDB. The epitope consists of 21 resi-
dues. PUPre was constructed on 91 structures of our
data set to predict the epitopes of 4OIE after the
unbound structure 4OIE was removed from the training
data. The sequence similarity between 4OIE and each of
the 91 training structures was calculated by BLAST; the
highest sequence similarity is only at 11.0%, confirming
they are not related.
The prediction performance is listed in Table 4. We

can see that PUPre outperforms the other three predic-
tors in all cases. It has an F-score of 0.52 and an MCC
of 0.49, both of which are significantly higher than the
others. Its recall is high at 0.90, nearly twice as much as
the best recall of the other predictors (ElliPro: 0.48). Its
precision is also remarkably higher than all the others.
The 0.90 recall means that 90% of the confirmed epi-
tope residues have been correctly identified, and thus it
can be inferred that most of the unknown epitope sites
will probably also be predicted as positive. A high preci-
sion means that the number of candidate epitope resi-
dues is greatly reduced to ease the wet-lab burden of
experiments.
Figure 3 shows the 21 confirmed epitope residues in

comparison with the predicted epitope results from the
four computational methods. The confirmed epitope
(ground truth, may be incomplete) is shown in Figure 3
(a) by the magenta spheres. The PUPre classifier made a
correct prediction for 19 of the 21 epitope residues as
highlighted by magenta spheres in Figure 3(b), except
for PRO-258 and TYR-260 of chain A (shown by
magenta sticks and labels). In addition, a total of 33 unla-
beled residues were predicted as positive (shown as grey
spheres). These residues are believed to be good candi-
dates for currently unknown epitopes. As a close com-
parison, ElliPro made a correct prediction for only 10 of
the 21 epitope residues (magenta spheres in Figure 3(d)),
and it selected 84 unlabeled residues as potential epitope
residues. DiscoTope and SEPPA’s performance were
worse than ElliPro’s.
There are multiple symmetrical units in 4OIE. The foot-

print of other symmetrical units on this chain (internal
interactions, colored in blue) cannot be epitope candidates.
The integrated preprocess allows PUPre to avoid recogniz-
ing this area as an epitope site (there is no blue sphere
in Figure 3(b)), while the other predictors all mistook

internally interacting residues for epitope sites. For exam-
ple, DiscoTope 2.0 predicted two internally interacting resi-
dues TRP-210 and ASP-234 as epitope residues (see blue
spheres in Figure 3(c)).
Prediction results for dihydrofolate reductase antigen

PDB entry 4NX7 is an unbound structure of an antigen
of dihydrofolate reductase. This structure has multiple
epitopes that have been confirmed at six other PDB
entries: 3K74, 4EJ1, 4EIG, 4EIZ, 4I1N and 4I13. Again,
the PUPre classifier was trained on the remaining 91
unbound structures after 4NX7 was removed from the
unbound structure data set. The best sequence similarity
between 4NX7 and the remaining 91 structures is only
12.6%.
Table 5 reports that PUPre achieves the best overall

performance: the F-score is 0.49 and the MCC is 0.31,
noticeably higher than the other prediction methods. It
recognizes 71% of the confirmed epitope residues at a
precision of 0.37. ElliPro shows a competitive recall of
0.69, but its precision 0.29 is worse than ours; SEPPA
2.0 shows a slightly higher precision performance (0.38),
but its recall is quite low (0.17).
A graphical visualization of the ground truth of

the epitopes (total 35 residues) is given in Figure 4(a).
Figure 4(b) shows the 25 correctly predicted residues by
PUPre (magenta spheres) of the 35 epitope residues, and
the 10 wrongly predicted epitope residues (magenta
sticks). As a comparison, Figure 4(d) shows the 24 epi-
tope residues correctly predicted by ElliPro, but ElliPro
selected many more unlabeled residues (60, grey
spheres) as being positive than PUPre (43 residues),
thereby greatly reducing precision. SEPPA demonstrated
a slightly higher precision than PUPre as it predicted
only 10 unlabeled residues as epitope sites; however, it
identified only six out of 35 epitope residues, implying
limited ability to discover epitope sites compared to
PUPre (Figure 4(e)).
We also use this case study to illustrate the impact of

non-standard components on epitope prediction. There
are four non-standard components in 4NX7 (in yellow
dots in Figure 4(b) and (d)): MN (Manganese), FOL
(Folic acid), BME (Betamercaptoethanol) and NAP
(NADP nicotinamide-adenine-dinucleotipe). The non-
standard elements have a sophisticated impact on the
folding of the protein as well as the binding with antibo-
dies. As shown in Figure 4(b) and (d), the residues
alongside the non-standard elements are unlikely to be
epitope candidates since they are difficult to bind by
antibodies. Predictors and most feature extraction meth-
ods have failed to deal with this issue.
Prediction results for beta-lactamase antigen

Our third case study is on an unbound structure of an
antigen of beta-lactamase obtained from Bacillus liche-

niformis (PDB ID: 2WK0). The epitope site was mapped

Table 4. Prediction results on West Nile virus 4OIE

Predictor Recall Precision F-score MCC

PUPre 0.90 0.37 0.52 0.49

DiscoTope 2.0 0.24 0.20 0.22 0.10

ElliPro 0.48 0.11 0.17 -0.05

SEPPA 2.0 0.14 0.14 0.14 0.02
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from the bound structure 4M3K. There are two symme-
trical Chains A and B in 2WK0, and Chain A is used
here as an example. The best sequence similarity of
2WK0 with the training data (91 unbound structures) is
at 16.7%.
Overall, PUPre performs significantly better than all

the other predictors (Table 6). The F-score and MCC
are 0.41 and 0.38 respectively. Although ElliPro success-
fully identifies all the epitope residues (i.e., a recall of
1.00), its precision is very low at 0.14, only half that of
PUPre.

ElliPro identified all of the 20 epitope residues, but it
also predicted 120 unlabeled residues as epitope residues
(Figure 5(d)). PUPre identified 15 out of 20 epitope resi-
dues with much higher precision (only 39 false positive
residues). Figure 5(e) shows part of Chain B in purple
cartoon, and the interaction area is colored blue. Four
residues (GLY-52, THR-53, ASN-54, ARG-55) bound by
Chain B were wrongly predicted as epitope residues by
SEPPA 2.0, while this did not occur with PUPre, Disco-
Tope 2.0 or ElliPro.
Predicted epitopes for Ebola virus antigen

Ebola is a fatal infectious disease that caused a pandemic
in Africa in 2014. There are two unbound structures of
the matrix proteins of Ebola virus, 1ES6 and 4LD8, stored
in PDB. Neither of them can be aligned with any bound
structure in PDB with greater than 30% sequence similar-
ity, which means that their bound structures with antibo-
dies have not been determined or published, thus their
epitopes cannot be determined from any complex struc-
ture data. We attempted to make predictions for the

Figure 3 Epitope prediction on a West Nile virus unbound structure (PDB ID: 4OIE). Magenta denotes the confirmed epitope sites, and

blue denotes the internal interactions by other chains; predicted epitopes by each predictor are highlighted by spheres, while the epitope sites

that fail to be identified (false negative) are shown as sticks.

Table 5 Prediction results on dihydrofolate reductase

4NX7.

Predictor Recall Precision F-score MCC

PUPre 0.71 0.37 0.49 0.31

DiscoTope 2.0 0.11 0.29 0.16 0.05

ElliPro 0.69 0.29 0.40 0.17

SEPPA 2.0 0.17 0.38 0.24 0.13

Ren et al. BMC Bioinformatics 2015, 16(Suppl 18):S12
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currently unknown epitopes of Ebola antigens through the
four structure-based predictors PUPre, DiscoTope 2.0,
ElliPro and SEPPA 2.0.
Each of these methods was first applied to predict epi-

tope residues. Then, the count of a residue predicted as an
epitope residue was recorded. It is assumed that if a resi-
due is predicted as an epitope residue by more methods, it
is more likely to be a true epitope residue. Hot predictions

are highlighted by colored spheres in Figure 6: the red
spheres denote those residues predicted by all four predic-
tion methods as epitope sites, and the magenta spheres
denote those identified by three predictors as epitope resi-
dues. Figure 6(b) and (d) illustrates the prediction results
of PUPre. It can be seen that all the residues predicted as
epitope residues by three or four predictors (colored in
red or magenta) can be identified as epitope sites by
PUPre (recall = 100%). ElliPro also identifies all the hot
residues, but it recognizes more residues as epitope sites
than PUPre: 141 vs 117 for 1ES6, and 126 vs 92 for 4LD8.
In addition, ElliPro and DiscoTope 2.0 wrongly predicted
some internally interacting residues as epitope residues.
This problem does not occur for PUPre.
Taking 1ES6 as an example, GLY-84, PRO-85, LYS-86,

ALA-128 and GLY-201 of Chain A were predicted to be

Figure 4 Epitope prediction on a dihydrofolate reductase unbound structure (PDB ID: 4NX7). Magenta denotes the confirmed epitope

sites; predicted epitopes by each predictor are highlighted by spheres, while the epitope sites that fail to be identified (false negative) are

shown as sticks. The yellow dots are not standard amino acids, but are essential for the folding or the function of the protein.

Table 6. Prediction results on beta-lactamase 2WK0

Predictor Recall Precision F-score MCC

PUPre 0.75 0.28 0.41 0.38

DiscoTope 2.0 0.25 0.19 0.22 0.14

ElliPro 1.00 0.14 0.25 0.26

SEPPA 2.0 0.10 0.06 0.08 -0.03
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epitope residues by all four methods, and some nearby
residues, e.g., SER-83, VAL-87, THR-129, GLN-167,
GLN-170, ALA-202, ASN-227 and THR-232 were pre-
dicted as epitope residues by three methods. It is inter-
esting to see that these residues are spatially close to
each other. As aggregated antigenic residues are more
likely to constitute an epitope [10], these residues are
good candidates for forming novel epitope sites on 1ES6
of the Ebola matrix protein.

Important features
The identification of important features plays a key role
in various areas of biological research [33,34]. Feature
analysis is a detailed approach to understanding the par-
ticular properties or compound properties of antigen-
antibody interfaces that can contrast protein-protein
binding sites and the other surface residues. For the pur-
pose of accurately predicting currently unknown epitopes
from unbound structures, it is useful for feature analysis
to be conducted on a large-scale unbound-state structure
data set. Traditional feature analysis has usually been

conducted on bound-state structure data sets which
introduced bias to the investigation of structural features
such as RSA, ASA, PI and B-factor [27]. To understand
the unique properties of antigens of different species, we
also carried out species-specific feature analyses for virus,
bacteria and mammals.

Top-ranked features

The Wilcoxon rank-sum hypothesis test was used to
rank all features extracted from our large-scale unbound
structure data set with 18738 residues. The features
consist of a total of 239 physico-chemical, evolutionary
and structural features. To avoid over-fitting, nine data
sets by independent sampling were used.
The top-20 features are summarized in Table 7 (further

details can be found in Additional File 4: Table S2).
These top-ranked features include structural features,
such as ASA, RSA, PI and B-factor (residue-average),
evolutionary features (PSSM) and physico-chemical fea-
tures. Secondary-structure related basic features are not
in the list. However, the feature turns and strand (beta

Figure 5 Epitope prediction on a beta-lactamase unbound structure (PDB ID: 2WK0). Magenta denotes the confirmed epitope sites, and

blue denotes the internal interactions by other chains; predicted epitopes by each predictor are highlighted by spheres, while the epitope sites

that fail to be identified (false negative) are shown as sticks.
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sheet) obtained by DSSP are top-ranked 37 (37.44) and
45 (45.11) respectively; the features ARGP820102 and
MONM990201, which imply the information extracted
from secondary structures, are in the top-20 list.

The distinction between epitope residues and surface
residues in these top ranked features is significant (the p-
values are all below 1e-9). ASA and RSA: the median
ASA of epitope residues is 67.7 ºA2, while that of other
surface residues is 37.2 ºA2; the median RSA of epitope
residues is 43.8% and that of other surface residues is
24.6%. This indicates that epitope residues are more
exposed than other surface residues. PI is an important
feature often taken into account in the identification of
epitopes [8,13]. The median PI of epitope residues is
0.709, and that of other surface residues is 0.436, suggest-
ing that epitope is more protrusive than the normal sur-
face. B-factor characterizes the mobility of residues, and
is claimed to be an effective feature in epitope prediction
[9,10]. Normalized B-factor on each antigen was used
here, because B-factor may be influenced by the experi-
mental conditions, such as resolution. The median B-fac-
tor of epitope sites is 0.31, while that of other surface
sites is -0.06, indicating that the epitope sites are more
flexible than the surface sites. More details are reported
in Additional File 5: Figure S2-S4. Since we assumed that
some of the unlabeled residues are undiscovered anti-
genic residues, the distribution of these features between

Figure 6 Epitope prediction on Ebola virus. Residues which are predicted to be in epitopes by all four methods are in red, those predicted

by three methods are in magenta, and hot spot residues are shown in spheres in (a) and (c). Blue represents the internal interactions by other

chains. Predicted epitopes by PUPre are highlighted by spheres in (b) and (d).

Table 7. Top 20 features selected by Wilcoxon rank-sum

hypothesis test

Feature name Average rank Feature name Average rank

ASA 1.11 ≈ 1 PSSM (LYS) 8.33 ≈ 8

RSA 1.89 ≈ 2 PSSM (ARG) 10.78 ≈ 11

PI 3.00 = 3 JACR890101 12.22 ≈ 12

PSSM (ASN) 5.67 ≈ 6 WARP780101 12.44 ≈ 12

PSSM (ASP) 5.67 ≈ 6 ARGP820102 12.67 ≈ 13

PSSM (GLU) 7.22 ≈ 7 HOPA770101 15.89 ≈ 16

B-factor 7.22 ≈ 7 MONM990201 16.33 ≈ 16

PSSM (GLN) 7.67 ≈ 8 COWR900101 18.44 ≈ 18

JACR890101: Weights from the IFH scale (Jacobs-White, 1989).

WARP780101: Average interactions per side chain atom (Warme-Morgan,

1978).

ARGP820102: Signal sequence helical potential (Argos et al., 1982).

HOPA770101: Hydration number (Hopfinger, 1971).

MONM990201: Averaged turn propensities in a transmembrane helix (Monne

et al., 1999).

COWR900101: Hydrophobicity index, 3.0 pH (Cowan-Whittaker, 1990)
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epitope residues and true non-epitope residues is
expected to be more opposed.
Amino acid composition has long been considered to

be an essential feature in identifying epitopes [35,36].
Figure 7 demonstrates the composition of the 20 stan-
dard amino acids in epitopes compared with those in
internal interactions and other surface areas. It is inter-
esting to see that the most hydrophilic residues (ARG,
LYS, ASN, ASP, GLN and GLU) occur significantly
more frequently in epitopes than in other surface areas,
and the ratios are not less than 1.15. In contrast, all the
most hydrophobic residues (ILE, VAL, LEU, PHE, CYS,
MET, ALA) clearly exist more frequently in the other
surface areas than in the epitope areas with a ratio less
than 0.85 (Additional File 5: Figure S5). Most of the
other residues in the middle have no significant prefer-
ence for epitope or normal surface. This reveals that the
epitope sites are more hydrophilic than the surface sites
(without interfaces within antigens). This observation is
also supported by the top-ranked PSSM features in
Table 7 where the PSSM of the most hydrophilic resi-
dues rank 4th to 10th. As many studies have reported
that protein-protein binding interfaces in general cases
are dominated by more hydrophobic residues [33,37], it
seems that the hydrophilicity preference for amino acids
participating in antibody-antigen binding is quite differ-
ent from the general case.

Species-specific feature analysis

Species have unique differences in morphology and
structure. Investigating whether the epitopes of antigens
of different species have distinct characteristics would
assist the construction of epitope predictors using spe-
cies information. We organized the whole data set into
seven sub-groups: virus (group 0), parasite (group 1),

bacteria (group 2), mammal (group 3), insect (group 4),
plant (group 5) and other microbes (group 6). We espe-
cially conducted species-specific feature analysis for
groups 0, 2 and 3. (The other groups all have a small
number of samples, and so were excluded from
analysis).
Structural features

Figure 8 illustrates the value distribution of structural
features ASA, RSA, PI and B-factor on the three species
groups. We can see that these features have a similar
pattern to that described above: the epitope sites are
more exposed, protrusive and flexible. With respect to
the feature distribution of epitopes, a difference between
species seems to exist but the nature of this difference is
not obvious.
Table 8 statistically quantifies the differences. For each

feature, the p-values of rank-sum tests for each pair of
species–virus (0) vs bacteria (2), virus (0) vs mammal (3),
and bacteria (2) vs mammal (3) are presented. The lower
the p-value is, the more obvious is the difference. The
commonly used threshold of 5% was adopted to tell
whether apparent differences exist, those with significant
differences are shown in bold. First, we note that the
divergence between epitope and surface (p-value less
than 1e - 9) is much larger, suggesting that traditional
epitope prediction methods are useful for all species.
However, we also find that some pairs of species have
significantly small p-values, indicating potential diver-
gence and differences between species. For example, the
divergence between virus and the other two groups of
species in ASA is significant with p-values of 0.004 and
0.007, but mammals and bacteria seem to have a similar
distribution with a p-value of 0.341. PI has a completely
contrary trend: the difference between mammals and
bacteria is apparent (0.039), while the distribution of

Figure 7 The ratio of epitope/interface and surface amino acids. The amino acids are sorted by hydrophobicity: the amino acids on the left

side are more hydrophilic, while the amino acids on the right side are more hydrophobic. For the calculation of ratio, refer to Additional File 5:

Figure S5.
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both of them resembles that of virus. Thus, integrating
species information is likely to be helpful in enhancing
prediction performance.
Amino acid composition

We also investigate the amino acid composition of epi-
topes between different species. It is not surprising that
among the three species, hydrophilic residues rather
than hydrophobic residues are more likely to constitute
epitopes (Figure 9). That is, compared with surface,

Figure 8 Species-specific analysis on four structural features. 0 denotes virus, 2 denotes bacterium, 3 denotes mammals, and ‘a’ is the

overall distribution of all groups. ‘e’ stands for the epitope group, while ‘s’ represents the surface group.

Table 8. Difference between virus (e0), bacteria (e2) and

mammals (e3) by the rank sum test

Feature e0:e2 e0:e3 e2:e3

ASA 0.004 0.007 0.341

RSA 0.030 0.229 0.161

PI 0.320 0.109 0.039

B-factor 0.015 0.034 0.318

Column ‘ei:ej’ shows the p-value by rank-sum test between groups ei and ej,

where i,j can be 0,2 or 3.
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epitopes are more hydrophilic. The common trend of
amino acid composition across species would facilitate a
general predictor for all species; however, the ratio of an
individual residue suggests the different composition of
amino acids in various species. For example, some aro-
matic residues (e.g.,HIS, TYR and PHE) prefer epitopes
of bacteria, while TRP occurs less frequently in the epi-
topes of bacteria. This phenomenon does not manifest
for virus and mammal. In virus, the two aromatic resi-
dues–PHE and TYR, and the two sulphur-containing
residues (MET and CYS) occur more frequently in sur-
face rather than epitopes. Thus, a species-specific pre-
dictor would help improve the prediction performance
of epitopes in bacteria and virus for example.
Similarly, the secondary structure distribution of dif-

ferent species exhibits a similar trend, as shown in Addi-
tional File 5: Figures S6 and S7, but a specific secondary
structure has varies in distribution across species.

Conclusions
To deal with the issue of incomplete ground truth of train-
ing data in B-cell epitope prediction, we have designed a
PU learning algorithm based on weighted SVM. A prepro-
cessing procedure was incorporated to remove the internal
interactions within the unbound structure of antigens. The
integrated framework is named PUPre. A complex-based
10-fold cross-validation process was deployed to evaluate
the prediction performance. The results show that PUPre
performance exceeds three other commonly used confor-
mational B-cell epitope predictors DiscoTope 2.0, ElliPro
and SEPPA 2.0, and two well-designed baseline algo-
rithms, demonstrating the effectiveness of its features, pre-
processing procedure and the PU learning algorithm.

PUPre was tested on antigens from West Nile virus, dihy-
drofolate reductase, and beta-lactamase to illustrate the
detailed performance of the prediction methods. It was
also used for the prediction of unknown epitopes on an
antigen of Ebola virus. A species-specific feature analysis
was conducted which shows that similar trends exist
between epitope and surface in different species, which
enables traditional predictors to be useful for all species;
the details vary, however, thus refinement by using species
information may help to enhance prediction performance.
Incomplete training data is a long-neglected but key issue
in epitope prediction, as it seriously prevents further per-
formance improvement by traditional methods. PU learn-
ing provides a promising direction to pursue to resolve
this issue.
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