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Abstract: Conditions for the positivity of fractional lineafeetrical circuits composed of resistors, coilsn@ensators
and voltage (current) sources are established.dhown that: 1) the fractional electrical ciratdimposed of resistors, coils
and voltage source is positive for any values efrthesistances, inductances and source voltagegdifonly if the number
of coils is less or equal to the number of its dirlg independent meshes, 2) the fractional eladtgacuit is not positive
for any values of its resistances, capacitancessancce voltages if each its branch contains @sisapacitor and voltage
source, It is also shown that the fractional pesitlectrical circuits oR, C, e type are reachable if and only if the conduc-
tances between their nodes are zero and the fnattaositive electrical circuits @R, L, e type are reachable if and only
if the resistances belonging to two meshes are zero

1. INTRODUCTION The paper is organized as follows. In section 2stiage
equations of the fractional linear electrical citswand their
solutions are presented. The positive fractionaddr elec-
trical circuits composed of resistors, condensatmiés and
voltage sources are analyzed in section 3. Thehadxdity
of the fractional positive electrical circuits isvestigated
in section 4. Concluding remarks are given in sech.

The following notation will be used? — the set of real
numbers R™™ — the set ofr x m real matricesR*™ —
the set ofn X m matrices with nonnegative entries and

n — gpnxi i
The notion of controllability and observability atide He N R " M;, — the se_t oh X n Metzler ma_ltnces (real
decomposition of linear systems have been intradiuce matncgs W'.th nonnegatwe off-diagonal entrie),— the
by Kalman (1960, 1963). These notions are the beasic nXn identity matrix.
cepts of the modern control theory (Antsaklis, MicR0O0G6;
Kaczorek 1999, 2002; Kailath 1980; Rosenbrock 1970; 2. FRACTIONAL STATE EQUATIONS
Wolovich 1970). They have been also extended titipes AND THEIR SOLUTIONS
linear systems (Farina and Rinaldi 2000; Kaczoré®22.
The decomposition of the paiA,B) and A,C) of the posi- , . _
tive discrete-time linear system has been addressed . ' this paper the following Caputo definition ofetde-
in Kaczorek (2010b). rivative-integral of fractional order will be usélaczorek
The reachability of linear systems is closely et ~ 2008a, 2011c)
to the controllability of the systems. Specially feositive a t )
linear systems the conditions for the controllapili d’f@m __ 1 J' () dr (2.1)
are much stronger than for the reachability (Kaekor dt?  T(n-a)? t-r)a*™"
2002). Tests for the reachability and controllapibf stan-
dard and positive linear systems are given in Kezlzo n-1<a<n, nON={12,...} where
(2008b, 2002; Klamka 1991). The stability, robustbgity

A dynamical system is called positive if its tramy
starting from any nonnegative initial state remdmgver
in the positive orthant for all nonnegative inpuAs over-
view of state of the art in positive systems theigrgiven
in the monographs (Farina and Rinaldi 2000; Kadzore
2002). Variety of models having positive behavian de
found in engineering, economics, social sciencedpdy
and medicine, etc..

0

and stabilization of positive linear systems hagerbinves- < w1t
tigated in (Bustowicz 2008a, 2008b, 2008c, 20091@0 (X = I t™ e 'dt, Re(x)>0 (2.2)
Kaczorek 2002, 2011c). Analysis of fractional efieci 0
(Z:I(;(iliIE)S) has been addressed in Kaczorek (2010al1&01 is the gamma function and
In this paper the necessary and sufficient conustio ") d"f(7)
for the positivity and reachability of fractionkmear elec- ) =—0 (2.3)
trical circuits composed of resistors, coils, camsbgors dr
(supercondensators) and voltage (current) souréksbey is the classicah order derivative.
established.
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Let the currenic(t) in a supercondensator (shortly con-
densator) with the capaci€y be thex order derivative of its
chargeq(t) (Kaczorek 2010a, 2011c)

=990 o g 2.4)
dt?
Using q(t) = Cuc (t) we obtain
o(=cduc® 2.5)
dt?

whereuc(t) is the voltage on the condensator.

Similarly, let the voltageu (t) on coil (inductor) with
the inductance. be thes order derivative of its magnetic
flux W(t) (Kaczorek 2010a, 2011c)

u(t)= i w(t) , 0<p<1 (2.6)
Taking into account tha(t) = Li (t) we obtain
d”i (1)
u (t)=L 2.9
: dt?

whereil (t) is the current in the coil.

Consider an electrical circuit composed of ressstar
capacitors anan voltage sources. Using the equation (2.5)
and the Kirchhoff's laws we may describe the transi
states in the electrical circuit by the fractiondifferential
equation

d7x(t)

= Ax(t) +Bu(t), 0<a <1 (2.8)

wherex(t) € R", u(t) € R™, A € R™", B € R™™. The
components of the state vectoft) and input vectou(t)
are the voltages on the condensators and sourtagesl
respectively.

Consider an electrical circuit composed of ressstor
n coils andm sources. Similarly, using the equation (2.6)
and the Kirchhoff's laws we may describe the transi
states in the electrical circuit by the fractiondifferential
equation

d@x(t)
B

= AX(t) + Bu(t), 0< B<1 (2.9)

where x(t) € R", u(t) € R, A € R, B R™V™. In
this case the components of the state veeto) are the
currents in the coils.

Theorem 2.1. Solution of the equation (2.8) satisfying
the initial conditionx(0) = x, has the form

t
X(t) = Do (t)Xo +jq>(t - 7)Bu(r)dr

(2.10)
0
where
o akika o pki(k+Da-1
Do)=Y O<a<1
0 kzzol'(kcHl) Z ¢ M[k+Da] ’
(2.11)
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Proof is given in Kaczorek (2008a, 2011c) .

Now let us consider electrical circuit composedesis-
tors, capacitors, coils and voltage (current) seu/s the
state variables (the components of the state vegtgrwe
choose the voltages on the capacitors and thentsrirethe
coils. Using the equations (2.5), (2.7) and Kirdilsdaws
we may write for the fractional linear circuits the tran-
sient states the state equation

daXC

dﬂta :['AM A&Z}{XC}+{B‘L},O<a,ﬂ<1(2.12a)
dPx | [Ar AxzlxL] [B2

dt?

where the components. € R™ are voltages on the con-
densators, the componentg € R™2 are currents in the
coils and the components ofe R™ are the source voltag-
es
A, 007N B OO, i, j=12. (2.12b)
Some examples of electrical circuits described Hy t
equation (2.12) are given in (Kaczorek 2010c, 2011c
Theorem 2.2. The solution of the equation (2.12)

for 0 < a < 1,0 < g <1 with initial conditions
Xc (0) = X9 and x; (0) = X5q (2.13)

has the form

t
X(t) = Po ()% * [[ @1t ~1)Bio + Dt ~1)Bogu(@)dr (2.142)

0
where
ot o) 2[5} el
X(t) = y = s = , =
_XL (t) _X20 BlO 0 BOl BZ
| n f(_)r k=I=
[AM F12 for k=11 =
0 0
=1 To o (2.14b)
[ } for k=0,1=1
A1 A
TioTk-1y +To1Tk . for k+1>0
ZZ tka+1pB
Do(t) = K—————<
icoio | (ka+1B+1)

t(k+1)0/+|,6’—1

(1) = T
1(0) kZ:=0|§;) Tk +Da +14]

® oo tka+(+1)5-1
P,(t) = Ti
2 kzzoé Mka +(+14]

Proof is given in Kaczorek (2010c, 2011c).

The extension of Theorem 2.2 to systems consisting
of n subsystems with different fractional order is give
in Kaczorek (2011b).
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3. POSITIVE FRACTIONAL ELECTRICAL
CIRCUITS

Definition 3.1. The fractional electrical circuit (2.8)
(or (2.9), (2.12)) is called the (internally) posi fractional
system if the state vectar(t) € R%, t = 0 for any initial
conditionsx, € R"T and allu(t) € RT,t = 0.

Definition 3.2. A square real matrixd = [a;;] is called
the Metzler matrix if its off-diagonal entries anennega-
tive, i.e.a;; = 0 for i # j (Kaczorek, 2002, 2011c).
Theorem 3.1.The fractional electrical circuit (2.8) is (in-
ternally) positive if and only if
AOM,, BOOF™M (3.1)

whereM,, is the set oh x n Metzler matrices.
Proof is given in Kaczorek (2002, 2011c).

From Theorem 3.1 applied to the fractional circuit

(2.12) it follows that the electrical circuit is gitive if and
only if

Ak OMp , k=12; A, 000%™, A 002™,

B OOY™, B,OOX™ (3.2)

3.1. FractionalR, C, e type electrical circuits

Theorem 3.2.The fractional electrical circuit is not posi-
tive if each its branch contains resistors, condtns
and voltage source.

The proof is similar to the proof of Theorem 3.1Ka-
czorek (2011a).

Consider the fractional electrical circuit shown ig-
ure 3.1 with given conductancé&g, k =0,1,...,n; capa-
citances(;, j = 1,...,n and source voltages

\'

Y

G, Cﬂ——juﬂC2 juz C. jun
bt 7 3
V0=0 ] o
Fig. 3.1.Fractional electrical circuit

Using (2.5) and the Kirchhoff's laws we may writeet
equations

d”uk
Ck ta :Gk(V—Uk),k: 1,...n (33)
and
n
Go(e-Vv) =) Gj(v-uj). (3.4)

=1
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From (3.4) we have

1 n n
v=E[GDe+ZGjuJ}, G=>G. (3.5)
j=1 i=0
Substitution of (3.5) into (3.3) yields
4@ U Up
—| 1 [=A i |+Be (3.6)
dt?
un un
where
. , _
_G,G-Gf GG, GG,
C,G C,G C,G
G,G, _ G,G-G2 G,Gh,
A=l c,G C,G C,G |
GhGy GhG» _G,G-G a7
| C.G C,G C.G '
| GGy
C,G
B=| : |
GOGn
C.G

From (3.7) it follows thad € M, andB € R’. There-
fore, the following theorem has been proved.
Theorem 3.3. The fractional electrical circuit shown
on Fig. 3.1 is positive for any values of the coctduces
Gk, k =0,1,..,n; capacitances§;, j = 1,..,n and source
voltagee.

In general case let us consider the fractionaltedzd
circuit composed ofqg conductancesG,k =1,...,q;
r capacitancesC;, i =1,..,r and m source voltages
ej, j =1,..,m. Letn be the number of linearly indepen-
dent nodes of the electrical circuit and> r.

Using the Kirchhoff's laws we may write the equatio

U Up Vi €

=A|E[+A) By

Uy Uy Vi €m

a
a (3.8)
dt?
whereu; is the voltage on theth (i = 1, ...,r) capacitory,
is the voltage of thg-th node [ = 1,...n), A, € R™*"
is the diagonal Metzler matri¥,, € R"™*" andB,, € R"*™.

Using the node method we obtain

Vi Up Sl

Gl : |=-F| : |-H| : (3.9
Vn Ur €m

where G € R™" is a Metzler matrix, F € ™"

andH € ™™,
Taking into account that-G~! € ®R¥*" from (3.9)
we obtain

vy Up Sl
=-GF| : |-GH
Vi U, €m

(3.10)



Substitution of (3.10) into (3.8) yields

qe Up U Sl
—| i |=A |+ (3.11)
dt?
u, uy [
where
A=A -AGF,B=B,-AGH. (3.12)

The electrical circuit described by the equatiorl{3
is positive if and only if the matri is a Metzler matrix
and the matrixB has nonnegative entries. Therefore,
the following theorem has been proved.
Theorem 3.4.The linear electrical circuit composed of
resistors,r capacitors andn source voltages is positive
if and only ifr < n and

A -AGIFOM,, By,-AG HOON™ (3.13)

3.2. FractionalR, L, etype electrical circuits

Consider the electrical circuit shown on Figure 3.2
with given resistancesR, R,, R; inductances Ly, L,, L4
and source voltages, e,.

R, R,
VWA A
L,
guiy 70 &3
R,
() ()
N N o
e‘] e2

Fig. 3.2.Fractional electrical circuit

Using (2.7) and the mesh method for the electrial
cuit we obtain the following equations

['—11 ‘le}ﬁrl}{‘lﬁl RlZ}[il]{ei} (3.143)
—Lp1 Ly JdtPliz] [ Ra1 —Realiz] |& '

where

Ri=R +R;, Ro=Ry1=R;, R =R, +R,,

1= R+ R Rz 2R =Rs Rep =R+ R o 1)
Lip=Li+Ll3 Lip=Lp=L3 Lypp=Ly+Ls.

Note that the inverse matrix
-1
—le} _ 1 {Lzz '—12}

Lo Li(Lp +Lg) +Lolg| Lor Ly
(3.15)

L :{ L1
Ly

has positive entries. From (3.14) we have
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A
dt? iz I2 €
where
A= L—l|:_ Ri R } _ 1
Ro1 —Rap| Li(lp+Llg)+Lsolg
[E‘ Lo(R +Rs)— LRy LoRs — L3Ry } (3.17)
LRs — L3Ry —L(Re +Rg) — L3Ry
B=L'oO22.
From (3.17) it follows thatd € M, if and only if
L,oRs > L3R, and LRy > LgR, . (3.18)

Therefore, the fractional electrical circuit is v
if and only ifA € M, i.e. the condition (3.18) is met.

In general case let us consider the fractiomahesh
electrical circuit with given resistance®,,k =1, ...,q,
inductancesl,, ..., L, for r =n and m <n mesh source
voltagese;;,j = 1, ..., m. Denote byiy, ..., i,, the mesh cur-
rents. In a similar way as for the electrical citcshown
on Fig 3.2 using the mesh method we obtain thetequa

af | L
L |= Al |+] (3.19a)
dt? |-
|n |n emm
where
Lin —Li2 —Lin
-L L .. —L
I
- I—n,l - I—n,2 Lnn
(3.19b)
“Riu R Rin
R -R R
A= :21 ‘22 2n
Rn,l Rn,2 ~Rnn
Note that—L € M,, , A’ € M,, and L™ € R"",
Premultiplying (3.19a) by.~! we obtain
af ||
—| :|=A :|+Bl : (3.20a)
dt? |
'n 'n emm
where
A=L" A, B=LtDoOM". (3.20b)

The fractional electrical circuit is positive if é@ronly
if the matrixL=1A’ is a Metzler matrix, i.e.
LtAOM,. (3.21)

Therefore, the following theorem has been proved.
Theorem 3.4.The fractional linear electrical circuit com-
posed of resistors, coils and voltage sources mtipe
for r > n if its resistances and inductances satisfy the con
dition (3.21).
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Remark 3.1.In the case = n if it is possible to choose the
n linearly independent meshes so that to each melsimdps
only one coil. Then the matrik = diag|[L,, ..., L, ] and the
condition (3.21) is met for any values of the resises and
inductances of the electrical circuit.
Remark 3.2. Note that it is impossible to choose the
linearly independent meshes so that to each melsimdgse
only one colil if all branches belonging to the sanuele
contain the coils. In this case we can eliminate ofthe
branch currents using the fact that the sum ofctineents
in the coils is equal to zero.

From Theorem 3.4 and Remark 3.1 we have the follow-
ing important theorem.
Theorem 3.5.The fractional linear electrical circuit com-
posed of resistors, coils and voltage sources sitige for
almost all values of the resistances, inductanoessaurce
voltages if and only if the number of coils is lessequal to
the number of its linearly independent meshes &eddi-
rections of the mesh currents are consistent vhighdirec-
tions of the mesh source voltages.

3.3. FractionalR, L, C type electrical circuits

Consider the fractional electrical circuit shown eig-
ure 3.3 with given resistané® inductance., capacitanc€
and source voltage

L
4118

u
P

e C R

Fig. 3.3.Fractional electrical circuit

Using the Kirchhoff's laws we can write the equato

which can be written in the form

d%u
dt? =AY+ Be 3.23a
d”i A{l} (3:232
dt?
where
0 é 0
A= 1 R} B= % (3.23b)
L L

The matrix A has negative off-diagonal entry )/
and it is not a Metzler matrix for any values RfL, C.
Therefore, the fractional electrical circuit is mpatsitive one
for any values of the resistancBs inductancel, capaci-
tanceC.

In general case we have the following theorem.
Theorem 3.6.The fractional electrical circuits d®, L, C
type is not positive for almost all values of iesistances,
inductances, capacitances and source voltageseifstt one
its branch contains inductance and capacitance.

Proof. It is well-known that the linear independent meshe
of the electrical circuits can be chosen so thathhanch
containing the inductance and capacitanc€ belongs to
the first one. The equation for the first mesh aorg the
following term

e —Ld'g1+u + (3.24)
l - 1 e .
dt?

wheree;; andi; are the source voltage and current of the
first mesh andi; is the voltage on the capacitanCeFrom
(3.24) andi; = C((d%u,)/dt%) it follows that the matriXA
of the electrical circuit has at least one negatofé
diagonal entry. Therefore the matri is not a Metzler
matrix and the electrical circuit is not positiveeo

Consider the electrical circuit shown on Fig. 3.4

a
I=C : : with given resistances Ry, k = 1,...,n, inductances
dt 5 (3.22) Ly, Ly ..., Ly, , capacitances§;, C; ...,C,, and source vol-
e= Ri+LE+u tagesel, €y ...,en.
dt?
—~\NN——¢—--- > AAA
In, an R 4 R > R i lg
—~\W\ & M-
¢ ) : i i “L ¢ )
—Ju ~- Yy
ny ny C:3 ) u3 C1 j U1 5 5
% L N, E L4 ng LB g
R3 o R1
Ro, R%
ol | 7
en Yt \/ "
3 €, e, 6
& a
Mo (<)

Fig. 3.4.Fractional electrical circuit
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Using the Kirchhoff's laws we can write the equato

a

el=Rkad 3k+uk for k=13....;y (3.25a)
dt
d#i;
e +ej =L; +Rjij for j=24..n, (3.25b)
dt
which can be written in the form
d%u
dt? |- AY |+ Be 3.26a
d”i AH (8:262)
dt?
where
Uy i &
u i €
u= .3,i= fl,u= e, (3.26h)
Up, in, e
and
A:diaq—i,— L 1 R R i]DMn,
RC RC3 RCn L2 L4 Ln,
L oo0.0
nz A
”{**ﬂ — 00 ..0
B=[§jm+ * Bl RG ,
Rn;: 00 ..0
L L 1 (3.260)
— 0 0
L L
1L 0oL 0
Bl L
1 5 0 1
| Ln, L, |

The electrical circuit described by the equatior?63
is positive for all value of the resistanckg, k =1, ..., n,
inductances Ly, k = 2,4, ...,n,, capacitancesCy, k =
1,3,...,n,. Therefore, the following theorem has been
proved.
Theorem 3.7. The fractional linear electrical circuit
of the structure shown on Fig. 3.4 is positive day values
of its resistances, inductances and capacitances.

4. REACHABILITY OF FRACTIONAL
POSITIVE LINEAR ELECTRICAL CIRCUITS

Consider the fractional positive linear electriciicuit
described by the equations (2.8), (2.9) and (2.12).
Definition 4.1. The fractional positive electrical circuit
(2.8) is called reachable in timigf for any given final state

acta mechanica et automatica, vol.5 n0.2(2011)

xr € Ry there exists an input(t) € RY, for t € [0, t¢]
that steers the state of the circuit from zeroiahistate
x(0) = 0 to the final state , i.e.x(t;) = x;. If every state
xr € R} is reachable in timé , then the circuit is called
reachable in timg. The fractional positive electrical circuit
is called reachable if for every € R} there exist time
and inputu(t) € RY, fort € [0,t;] which steers the state
of the circuit fromx(0) = 0 to x; .

A real square matrix is called monomial if eachrasy
and each its column contains only one positive yentr
and the remaining entries are zero.

Theorem 4.1.The fractional positive electrical circuit (2.8)
is reachable in timg if the matrix
ty
R(t;) = jcb(r)BBTq:T(r)dr, t; >0
0
is monomial. The input that steers the state ofefleetrical
circuit in time t; from x(0) = 0 to the statex is given
by the formula

(4.1)

ut) =BT (t; —t)R™I(ts)xs for tO[Ots]. (4.2)
The proof is given in Kaczorek (2010a).
Theorem 4.2.If the matrixA = diag[ay, a,, ... a,] € R

and B € R*™ for m =n are monomial matrices then
the fractional positive electrical circuit (2.8)risachable.
Proof. From (2.11) it follows that ifA is diagonal then the
matrix ®(t) and ®(t)B are also monomial for monomial
matrix B. From (4.1) written in the form

t

Rt) = [(2) B o(7)B]" dr (4.3)
0

it follows that the matrix (4.3) is monomial. Théaee, by
Theorem 4.1 the fractional system is reachable.

Example 4.1. Consider the fractional electrical circuit
shown on Figure 4.1 with given conductanegsG,, G';,
G',, G,,, capacitance;, C, and source voltages, e,.

—W\ T
o1
GT C1 ) 1 CZ juz Gg
e/ G’ Gr e,
vc;=0

Fig. 4.1.Fractional electrical circuit

Using the Kirchhoff's laws we can write the equatio

daUk ,
Ck :Gk(Vk —Uk), k=1,2 (44)
dt?
and
Vo 0 G'2 us 0 G2 5]
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where

Ge {‘ (G +G'1+Gyp)

4.6
Gy (4.6)

Gr2 }
= (G, +G'2+Gyp)

is an Metzler matrix and—G'lﬂDf"z. From (4.5) we
obtain

B 2fibets 2l e
Vo 0 Gz us 0 G2 €

Substitution of (4.7) into

G, Gy
d? | ug C U C v
S I M
dt” [Uz2 0 -—2|Ww 0 2 ||V2
C 2
we obtain
aiu u
sl el da]
dt? [ Uz up €
where

ool fe o]
A: 1 | _ C]_ | G—l 1 ,
_2 0 & 0 G
C C
2 2 (4.10)
G1
B=- T G_l[Gl 0}
0 =2 0 G
G

From (4.10) it follows thaf is a Metzler matrix and the
matrix B has nonnegative entries. Therefore, the fractional
electrical circuit is positive for all values ofethconduc-
tances and capacitances.

We shall show that the fractional positive eleétricir-
cuit shown on Fig 4.1 is reachable if and onlgif = 0.

Note that the matrix (4.6) is diagonal if and only
if G;, =0. In this case from (4.10) it follows thak
is a diagonal Metzler matrix anl is a diagonal matrix
with positive diagonal entries. Therefore, by Tlesor4.2
the fractional positive electrical circuit is reabie.

In general case let us consider the fractionaitetal
circut shown on Fig 4.2 with conductances
Gy, G'k, Gj, k,j=1,..,n; capacitancesCy, k =1,..,n
and source voltages, k =1, ...,n.

Fig. 4.2.Fractional electrical circuit

Theorem 4.3. The fractional electrical circuit shown
on Fig. 4.2 is positive for all values of the cootéunces,
capacitances and source voltages.

Proof. Using the Kirchhoff's laws and the node method
for the electrical circuit we may write the equaso

q@ Up U Vi
—|i|==C g [+cle (4.11a)
dt un un Vn
and
! U il
G| :|=-G| |-G (4.11b)
Vn un en

48

where
cl=diadc;t...C Y, G'=diadG,",....G,'],

G =diadGy,....Gy], (4.11c)
-Gp1 Gpo Gin

_ G -G G

e :12 :22 2n
G:Ln G2,n - Gn,n

G;; is the sum of conductances of all branches befmngi
to thei-th nodej = 1,...n.

The matrixG € M,, and—G~! has nonnegative entries.
Substituting (4.11b) into (4.11a) we obtain



4@ U U Sl

ol N N = (4.123)
dt?

un un en

where

A=-Cle[l,+Ge10M, (4.12D)
and

B=-C'¢'G lcoor" (4.12¢)

since the matrices~%,G',G and—G~! have nonnegative
entries. Therefore, the electrical circuit is piosit

Theorem 4.4. The fractional positive electrical circuit
shown on Fig. 4.2 is reachable if and only if

Gy,j =0 for k#j and k,j=1..n. (4.13)

Proof. The matrixG defined by (4.11c) is diagonal if and
only if the condition (4.13) is met. In this case tmatrices
G~1G', A andB are also diagonal and from (4.12) we obtain

T - L (6 GGG L GG GE k=1
dt” G C«
(4.14a)
where
Gk =Gk +G'y, k=1..n. (4.14b)

Note that the subsystem (4.14a) is reachable. Tdrere
the positive electrical circuit is reachable if amadly if the
condition (4.13) is satisfied.

Example 4.2. Consider the fractional electricatuwit
shown on Figure 4.3 with given resistandgsR,, R, in-
ductanced,,, L, and source voltages, e,.

-
NI

)
(N
e1 e2

Fig. 4.3.Fractional electrical circuit

Using the Kirchhoff's laws we can write the equato

o . d”i;
& = Rg(iy —ip) + Riiy + le—/g
t (4.15)

. . . d |2
€ = Ry(ip —ip) +Rjip + Ly
dt?

which can be written in the form
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ﬁ . .
d—[.'l} = A{'l} + B{el} (4.16a)
dt? |iz 12 €
where
_R*tRs  Rs 10
_ Ly Ly _| kL
AX Rl Rk | BT o (4.16b)
Lo Lo Lo

The fractional electrical circuit is positive sinttee ma-
trix A is Metzler matrix and the matr has nonnegative
entries.

We shall show that the fractional positive circuit
is reachable iR; = 0. In this case

B
A=| 1 (4.17)
0 R
Lo
and
_%T
1 0
eAT e _&T (8)1
0 e b2
and from (4.1) we obtain
_ R -
1 . 7
tf T tf _Ze Ll 0
Ry = J.eATBBTeA Tdr=J' Ly or, A7
0 0 T
0 ize L2
L L2 ]
(4.19)

The matrix (4.19) is monomial and by Theorem 44 th
fractional positive electrical circuit is reachaifl&; = 0.
Now let us consider the fractionaimesh electrical cir-
cuit with given resistance®,, k =1, ...,q, inductances
L, i=1,..,n and mmesh source voltagese;;,
j=1,..,m. Itis assumed that to each linearly independent
mesh belongs only one inductance. In this casentitex L
defined by (3.19b) is diagonal one and the conali{®21)
is met.
Theorem 4.5.The fractional positiven-meshes electrical
circuit with only one inductance in each lineamhdépen-
dent mesh is reachable if

Rj=0forizj,i,j=1..,n (4.20)
whereR;; are entries of the matri' defined by (3.19b).
Proof. If the condition (4.20) is met then the Metzlertra
A’ is diagonal. The matrik defined by (3.19b) is also di-
agonal since by assumption only one inductancenisl¢o
each linearly independent mesh. In this case th&ixma
A = L7'A" is diagonal Metzler matrix anBl = L™ € R*"

is also diagonal. For diagonal Metzler matixand diagon-
al B the matrixe4*B is also diagonal and the matri
defined by (4.1) is monomial. By Theorem 4.1 thsifiee
electrical circuit is reachable.
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Remark 4.1. The condition (4.20) is met if the resistance
of the branch belonging to two linearly independmeshes

is zero. This result is consistent with the oneauisd

in Example 4.2.

Consider the fractional electrical circuit shown Big.
4.4 with given resistance®,, k =1,...,5, inductances
L4, L,, capacitanc€ and source voltage

Using the Kirchhoff's laws we can write the equatio

N L .
& =Ry + Llﬁ ~Rsiz +(Rg + Rs)ig

d”i, . .
L2 +u+ (R2 + R3)|3 - Rzll =0 (4218)
dt?
d%u
C =
dt? 2
R (R +Ry)(Rs+Rs) RoRs —RsRy
L L(R+Rs+Ry+Rs) Li(Ro+Rs+Ry+Rs)
A= RoRs —RsRy (Rp + R3)(R4 + Rs)
Lo(Ry+Rs + Ry +Ry) |—2(R2+Rls+R4+R5)
0 =
N C

Fig. 4.4.Fractional electrical circuit

From (4.23b) it follows that the matri is not a Metz-
ler matrix if

RoRs = RgRy

If the condition (4.24) is met then the voltagevimsn
the pointsa, b is equal to zero and, = O,LZ‘Z—L:= 0,
i, = 0. In this case the equation (4.23a) takes the form
di _(_R__(Re*+Ry)(Rs+Rs) )
dt L Li(Ry+Ry+Ry+Rs) )"
The fractional electrical circuit described by thgua-

tion (4.25) is positive. Therefore, we have theoiwing
corollary.

(4.24)

1
t—8

™ (4.25)
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and

(Rz +Ry)iy +(Ry +Rs)i; —(Ry + Rg + Ry +Rg)i3 =0.(4.21b)
From (4.21b) we have

i = (R +Ry)iy + (Ry + Ry)iy

(4.22)
Ry +Rg+ Ry +Rg
Substituting (4.22) into (4.21a) we obtain
_dﬁil -
A%z |- i, |+ Be (4.23a)
dt?
d%u !
L dta -
where
1
1 L
. B=| 0 | (4.23b)
2 0
0

Corollary 4.1. If the resistances of the electrical circuit
satisfy the condition (4.24) then the fractionagodtical
circuit is positive.

In general case we have.
Corollary 4.2. Fractional nonpositive electrical circuit
for some special choice of the parameters (resisgncan
be positive one.

Using (4.23b) it is easy to check that
ran{B AB AZB]=3 (4.26)
if and only if the condition (4.24) is not satisfieTherefore,
we have the following corollary.
Corollary 4.3. The fractional standard (nonpositive) elec-
trical circuit shown on Fig. 4.4 is reachable ifdaanly
if the condition (4.24) is not satisfied.

From (4.25) it follows that the reduced fractiopaisi-
tive electrical circuit is reachable.

These considerations can be extended for genesal ca
of R, L, C, etype electrical circuits.

5. CONCLUDING REMARKS

The conditions for the positivity of fractional éar
electrical circuits composed of resistors, coitmadensators
and voltage (current) sources have been establishbds
been shown that:

1. The fractional electrical circuits composed of sémis
coils and voltage sources (shortly calledL, e type)
are positive for any values of their resistanceguc-



tances and source voltages if and only if the numbe

of coils is less or equal to the number of its dirkg in-
dependent meshes (Theorem 3.5).

2. The fractional electrical circuits composed of s&mis,
condensators and voltage sources (shortly c&ljeg| e
type) are not positive for any values of its resises,

capacitances and voltage sources if each theirchran

contains resistor capacitor and voltage sourcedidme
3.2).
3. The fractional nonpositive electrical circuits bR, L,

C, etype can be positive for some special choice eif th

parameters (Corollary 4.2).

The conditions for the reachability of the fractbn
positive electrical circuits have been establislieldas been
shown that the fractional positive electrical citaf R, C,
e type are reachable if and only if the conductarioes
tween their nodes are zero (Theorem 4.4) and #utidnal

positive electrical circuits oR, L, e type are reachable

if and only if the resistances belonging to two hessare
zero (Theorem 4.5). The fractional standard (noitipe}

electrical circuits ofR, C, L, e type are usually reachable

and are unreachable only for some special choicthef
parameters.

The considerations have been illustrated by exasnple

of linear electrical circuits.

Some of these results can be also extended facahe
trollability and observability of the fractionalnkar elec-
trical circuit. Open problem are extension of thesasid-
erations for the following classes of the fractiosystems:
1. disturbed parameters linear systems;

2. nonlinear electrical circuits.
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