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Abstract: Conditions for the positivity of fractional linear electrical circuits composed of resistors, coils, condensators 
and voltage (current) sources are established. It is shown that: 1) the fractional electrical circuit composed of resistors, coils 
and voltage source is positive for any values of their resistances, inductances and source voltages if and only if the number 
of coils is less or equal to the number of its linearly independent meshes, 2) the fractional electrical circuit is not positive 
for any values of its resistances, capacitances and source voltages if each its branch contains resistor, capacitor and voltage 
source, It is also shown that the fractional positive electrical circuits of R, C, e type are reachable if and only if the conduc-
tances between their nodes are zero and the fractional positive electrical circuits of R, L, e type are reachable if and only  
if the resistances belonging to two meshes are zero. 

 

1. INTRODUCTION 

A dynamical system is called positive if its trajectory 
starting from any nonnegative initial state remains forever 
in the positive orthant for all nonnegative inputs. An over-
view of state of the art in positive systems theory is given 
in the monographs (Farina and Rinaldi 2000; Kaczorek 
2002). Variety of models having positive behavior can be 
found in engineering, economics, social sciences, biology 
and medicine, etc.. 

The notion of controllability and observability and the 
decomposition of linear systems have been introduced 
by Kalman (1960, 1963). These notions are the basic con-
cepts of the modern control theory (Antsaklis, Michel 2006; 
Kaczorek 1999, 2002; Kailath 1980; Rosenbrock 1970; 
Wolovich 1970). They have been also extended to positive 
linear systems (Farina and Rinaldi 2000; Kaczorek 2002). 
The decomposition of the pair (A,B) and (A,C) of the posi-
tive discrete-time linear system has been addressed  
in Kaczorek (2010b).  

The reachability of linear systems is closely related 
to the controllability of the systems. Specially for positive 
linear systems the conditions for the controllability 
are much stronger than for the reachability (Kaczorek 
2002). Tests for the reachability and controllability of stan-
dard and positive linear systems are given in Kaczorek 
(2008b, 2002; Klamka 1991). The stability, robust stability 
and stabilization of positive linear systems have been inves-
tigated in (Busłowicz 2008a, 2008b, 2008c, 2009, 2010; 
Kaczorek 2002, 2011c). Analysis of fractional electrical 
circuits has been addressed in Kaczorek (2010a, 2011a, 
2011b). 

In this paper the necessary and sufficient conditions 
for the positivity  and reachability of fractional linear elec-
trical circuits composed of resistors, coils, condensators 
(supercondensators) and voltage (current) sources will be 
established.  

The paper is organized as follows. In section 2 the state 
equations of the fractional linear electrical circuits and their 
solutions are presented. The positive fractional linear elec-
trical circuits composed of resistors, condensators, coils and 
voltage sources are analyzed in section 3. The reachability 
of the fractional positive electrical circuits is investigated 
in section 4. Concluding remarks are given in section 5. 

The following notation will be used: ℜ – the set of real 
numbers, ℜ�×� – the set of � × � real matrices, ℜ�

�×� – 
the set of � × � matrices with nonnegative entries and 
ℜ�

� = ℜ�

�×�, ��  – the set of � × �  Metzler matrices (real 
matrices with nonnegative off-diagonal entries), �� – the 
� × �  identity matrix. 

2. FRACTIONAL STATE EQUATIONS  
AND THEIR SOLUTIONS 

In this paper the following Caputo definition of the de-
rivative-integral of fractional order will be used (Kaczorek 
2008a, 2011c) 
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Let the current iC(t) in a supercondensator (shortly con-
densator) with the capacity C be the α order derivative of its 
charge q(t) (Kaczorek 2010a, 2011c) 
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Using )()( tCutq C=  we obtain 
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where uC(t) is the voltage on the condensator. 
Similarly, let the voltage uL(t) on coil (inductor) with 

the inductance L be the β order derivative of its magnetic 
flux Ψ(�) (Kaczorek 2010a, 2011c) 
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Taking into account that )()( tLit L=Ψ  we obtain 
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where iL(t) is the current in the coil. 
Consider an electrical circuit composed of resistors, n 

capacitors and m voltage sources. Using the equation (2.5) 
and the Kirchhoff’s laws we may describe the transient 
states in the electrical circuit by the fractional differential 
equation 
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where �(�) ∈ ℜ�, �(�) ∈ ℜ�, � ∈ ℜ�×�, 	
 ∈ ℜ�×�.		The 
components of the state vector �(�) and input vector ���� 
are the voltages on the condensators and source voltages 
respectively. 

Consider an electrical circuit composed of resistors, 
n coils and m sources. Similarly, using the equation (2.6) 
and the Kirchhoff’s laws we may describe the transient 
states in the electrical circuit by the fractional differential 
equation 
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tButAx
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where		�(�) ∈ ℜ�, �(�) ∈ ℜ�, � ∈ ℜ�×�, 		
 ∈ ℜ�×�. In 
this case the components of the state vector �(�) are the 
currents in the coils. 
Theorem 2.1. Solution of the equation (2.8) satisfying 
the initial condition ��0� = �� has the form 
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Proof is given in Kaczorek (2008a, 2011c) . 
Now let us consider electrical circuit composed of resis-

tors, capacitors, coils and voltage (current) source. As the 
state variables (the components of the state vector �(�) we 
choose the voltages on the capacitors and the currents in the 
coils. Using the equations (2.5), (2.7) and Kirchhoff’s laws 
we may write for the fractional linear circuits in the tran-
sient states the state equation 

u
B

B

x

x

AA

AA

dt

xd
dt

xd

L

C

L

C









+
















=





















2

1

2221

1211

β

β
α

α

, 1,0 << βα  (2.12a) 

where the components �� ∈ ℜ�� are voltages on the con-
densators, the components �� ∈ ℜ�� are currents in the 
coils and the components of � ∈ ℜ� are the source voltag-
es 
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Some examples of electrical circuits described by the 
equation (2.12) are given in (Kaczorek 2010c, 2011c). 
Theorem 2.2. The solution of the equation (2.12)  
for 0 <  < 1, 0 < � < 1 with initial conditions  

10)0( xxC =  and 20)0( xxL =                     (2.13) 
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Proof is given in Kaczorek (2010c, 2011c). 
The extension of Theorem 2.2 to systems consisting  

of n subsystems with different fractional order is given 
in Kaczorek (2011b). 
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3. POSITIVE FRACTIONAL ELECTRICAL 
CIRCUITS 

Definition 3.1. The fractional electrical circuit (2.8) 
(or (2.9), (2.12)) is called the (internally) positive fractional 
system if the state vector ���� ∈ 	ℜ�

� , � ≥ 0 for any initial 
conditions �� ∈ 	ℜ�

�  and all ���� ∈ 	ℜ�
�, � ≥ 0. 

Definition 3.2. A square real matrix � = [���] is called 
the Metzler matrix if its off-diagonal entries are nonnega-
tive, i.e. ��� ≥ 0 for � ≠ � (Kaczorek, 2002, 2011c). 
Theorem 3.1. The fractional electrical circuit (2.8) is (in-
ternally) positive if and only if  

mn
n BMA ×

+ℜ∈∈ ,                                   (3.1)                                                       

where �� is the set of � × �   Metzler matrices. 
Proof is given in Kaczorek (2002, 2011c). 
From Theorem 3.1 applied to the fractional circuit 

(2.12) it follows that the electrical circuit is positive if and 
only if 

knkk MA ∈ , 2,1=k ; 1221
2112 , nnnn AA ×

+
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+ ℜ∈ℜ∈ , 

mnmn BB ×
+

×
+ ℜ∈ℜ∈ 21

21 ,                     (3.2) 

3.1. Fractional R, C, e type electrical circuits 

Theorem 3.2. The fractional electrical circuit is not posi-
tive if each its branch contains resistors, condensator 
and voltage source. 

The proof is similar to the proof of Theorem 3.1 in Ka-
czorek (2011a). 

Consider the fractional electrical circuit shown on Fig-
ure 3.1 with given conductances ��, � = 0, 1, … ,�;  capa-
citances �� , � = 1, … ,� and source voltages e.  

 
Fig. 3.1. Fractional electrical circuit 

Using (2.5) and the Kirchhoff’s laws we may write the 
equations 
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Substitution of (3.5) into (3.3) yields 
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From (3.7) it follows that � ∈ 	�� and 
 ∈ 	ℜ�
� . There-

fore, the following theorem has been proved. 
Theorem 3.3. The fractional electrical circuit shown 
on Fig. 3.1 is positive for any values of the conductances 
�� ,� = 0, 1, … ,�;  capacitances �� , � = 1, … ,� and source 
voltage e. 

In general case let us consider the fractional electrical 
circuit composed of q conductances ��, � = 1, … , �;   
r capacitances �� , � = 1, … , � and m source voltages 
�� , � = 1, … ,�. Let n be the number of linearly indepen-
dent nodes of the electrical circuit and � > �. 

Using the Kirchhoff’s laws we may write the equation 
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where ui is the voltage on the i-th (i = 1, …, r) capacitor, vj 
is the voltage of the j-th node (j = 1,…,n), �� ∈ ℜ�×�  
is the diagonal Metzler matrix, �� ∈ ℜ�×� and 
� ∈ ℜ�×�. 

Using the node method we obtain 
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where � ∈ ℜ�×� is a Metzler matrix, � ∈ ℜ�×�  
and � ∈ ℜ�×�. 

Taking into account that −�	
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Substitution of (3.10) into (3.8) yields 
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where 

 FGAAA nr
1−−= , HGABB nm

1−−= .             (3.12) 

The electrical circuit described by the equation (3.11) 
is positive if and only if the matrix A is a Metzler matrix 
and the matrix B has nonnegative entries. Therefore, 
the following theorem has been proved. 
Theorem 3.4. The linear electrical circuit composed of q 
resistors, r capacitors and m source voltages is positive 
if and only if � < � and 

rnr MFGAA ∈− −1 , mr
nm HGAB ×

+
− ℜ∈− 1 .         (3.13) 

3.2. Fractional R, L, e type electrical circuits 

Consider the electrical circuit shown on Figure 3.2 
with given resistances �
,��,��		inductances �
, ��, �� 
and source voltages �
, ��.  

 
Fig. 3.2. Fractional electrical circuit 

Using (2.7) and the mesh method for the electrical cir-
cuit we obtain the following equations 
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Note that the inverse matrix 
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has positive entries. From (3.14) we have 
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From (3.17) it follows that  � ∈ �� if and only if 

2332 RLRL ≥  and 1331 RLRL ≥ .                  (3.18) 

Therefore, the fractional electrical circuit is positive 
if and only if � ∈ ��  i.e. the condition (3.18) is met. 

In general case let us consider the fractional n-mesh 
electrical circuit with given resistances ��, � = 1, … , �, 
inductances �
, … , �� for � ≥ � and � ≤ � mesh source 
voltages ��� , � = 1, … ,�. Denote by �
, … , �� the mesh cur-
rents. In a similar way as for the electrical circuit shown 
on Fig 3.2 using the mesh method we obtain the equation 
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Note that −� ∈ �� , �′ ∈ �� and  �	
 ∈ ℜ�
�×�. 

Premultiplying (3.19a) by �	
 we obtain 
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where 

 '1ALA −= , nnLB ×
+

− ℜ∈= 1 .                 (3.20b) 

The fractional electrical circuit is positive if and only 
if the matrix �	
�′ is a Metzler matrix, i.e. 

nMAL ∈− '1 .                                   (3.21) 

Therefore, the following theorem has been proved. 
Theorem 3.4. The fractional linear electrical circuit com-
posed of resistors, coils and voltage sources is positive  
for � > � if its resistances and inductances satisfy the con-
dition (3.21). 
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Remark 3.1. In the case � = � if it is possible to choose the 
n linearly independent meshes so that to each mesh belongs 
only one coil. Then the matrix � = ����[�
, … , ��] and the 
condition (3.21) is met for any values of the resistances and 
inductances of the electrical circuit. 
Remark 3.2. Note that it is impossible to choose the n 
linearly independent meshes so that to each mesh belongs 
only one coil if all branches belonging to the same node 
contain the coils. In this case we can eliminate one of the 
branch currents using the fact that the sum of the currents 
in the coils is equal to zero. 

From Theorem 3.4 and Remark 3.1 we have the follow-
ing important theorem. 
Theorem 3.5. The fractional linear electrical circuit com-
posed of resistors, coils and voltage sources is positive for 
almost all values of the resistances, inductances and source 
voltages if and only if the number of coils is less or equal to 
the number of its linearly independent meshes and the di-
rections of the mesh currents are consistent with the direc-
tions of the mesh source voltages. 

3.3. Fractional R, L, C type electrical circuits 

Consider the fractional electrical circuit shown on Fig-
ure 3.3 with given resistance R, inductance L, capacitance C 
and source voltage e.  

 
Fig. 3.3. Fractional electrical circuit 

Using the Kirchhoff’s laws we can write the equations 
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which can be written in the form 

Be
i

u
A

dt

id
dt

ud

+







=



















β

β
α

α

                           (3.23a) 

where 

.1
0

,
1

1
0














=

















−−
=

L
B

L

R

L

CA                     (3.23b) 

The matrix A has negative off-diagonal entry (-1/L) 
and it is not a Metzler matrix for any values of R, L, C. 
Therefore, the fractional electrical circuit is not positive one 
for any values of the resistances R, inductance L, capaci-
tance C. 

In general case we have the following theorem. 
Theorem 3.6. The fractional electrical circuits of R, L, C 
type is not positive for almost all values of its resistances, 
inductances, capacitances and source voltages if at least one 
its branch contains inductance and capacitance. 
Proof. It is well-known that the linear independent meshes 
of the electrical circuits can be chosen so that the branch 
containing the inductance L and capacitance C belongs to 
the first one. The equation for the first mesh contains the 
following term 

...1
1

11 ++= u
dt

id
Le β

β
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where e11 and i1 are the source voltage and current of the 
first mesh and u1 is the voltage on the capacitance C. From 
(3.24) and �
 = �((��
)/��)	it follows that the matrix A 
of the electrical circuit has at least one negative off-
diagonal entry. Therefore the matrix A is not a Metzler 
matrix and the electrical circuit is not positive one.  

Consider the electrical circuit shown on Fig. 3.4  
with given resistances ��, � = 1, … ,�, inductances 
��, �� … , ��� , capacitances �
, �� … ,��� and source vol-
tages �
, �� … , ��.  

 
Fig. 3.4. Fractional electrical circuit 
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Using the Kirchhoff’s laws we can write the equations 
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which can be written in the form 
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(3.26c) 

The electrical circuit described by the equation (3.26) 
is positive for all value of the resistances ��, � = 1, … ,�, 
inductances �� , � = 2, 4, … ,��, capacitances ��, � =
1, 3, … ,�
. Therefore, the following theorem has been 
proved. 
Theorem 3.7. The fractional linear electrical circuit 
of the structure shown on Fig. 3.4 is positive for any values 
of its resistances, inductances and capacitances. 

4. REACHABILITY OF FRACTIONAL  
POSITIVE LINEAR ELECTRICAL  CIRCUITS 

Consider the fractional positive linear electrical circuit 
described by the equations (2.8), (2.9) and (2.12). 
Definition 4.1. The fractional positive electrical circuit 
(2.8) is called reachable in time tf if for any given final state 

�� ∈ ℜ�
�  there exists an input �(�) ∈ ℜ�

�, for � ∈ [0, ��] 
that steers the state of the circuit from zero initial state 
��0� = 0 to the final state xf , i.e. ����� = ��. If every state 
�� ∈ ℜ�

�  is reachable in time tf , then the circuit is called 
reachable in time tf. The fractional positive electrical circuit 
is called reachable if for every �� ∈ ℜ�

�  there exist time tf 
and input �(�) ∈ ℜ�

�, for � ∈ [0, ��]  which steers the state 
of the circuit from ��0� = 0 to xf . 

A real square matrix is called monomial if each its row 
and each its column contains only one positive entry 
and the remaining entries are zero. 
Theorem 4.1. The fractional positive electrical circuit (2.8) 
is reachable in time tf if the matrix 

∫ ΦΦ=
ft

TT
f dBBtR

0

)()()( τττ , 0>ft                    (4.1) 

is monomial. The input that steers the state of the electrical 
circuit in time tf from ��0� = 0 to the state xf is given 
by the formula 

fff
TT xtRttBtu )()()( 1−−Φ=  for ],0[ ftt ∈ .          (4.2) 

The proof is given in Kaczorek (2010a). 
Theorem 4.2. If the matrix � = ����[�
, ��, … ��] ∈ ℜ�×� 
and 
 ∈ ℜ�

�×� for � = � are monomial matrices then 
the fractional positive electrical circuit (2.8) is reachable. 
Proof. From (2.11) it follows that if A is diagonal then the 
matrix Φ��� and Φ���
 are also monomial for monomial 
matrix B. From (4.1) written in the form 

∫ ΦΦ=
ft

T
f dBBtR

0

])([)()( τττ                         (4.3) 

it follows that the matrix (4.3) is monomial. Therefore, by 
Theorem 4.1 the fractional system is reachable. 
Example 4.1. Consider the fractional electrical circuit 
shown on Figure 4.1 with given conductances �
,��,�′
,
�′�,�
�,		capacitance �
,�� and source voltages �
, ��.  

 
Fig. 4.1. Fractional electrical circuit 

Using the Kirchhoff’s laws we can write the equations 

2,1),(' =−= kuvG
dt

ud
C kkk

k
k α

α
                   (4.4) 

and 
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where 
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=
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is an Metzler matrix and 221 ×
+

− ℜ∈− G . From (4.5) we 
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Substitution of (4.7) into 
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we obtain 
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 (4.10) 

From (4.10) it follows that A is a Metzler matrix and the 
matrix B has nonnegative entries. Therefore, the fractional 
electrical circuit is positive for all values of the conduc-
tances and  capacitances. 

We shall show that the fractional positive electrical cir-
cuit shown on Fig 4.1 is reachable if and only if �
� = 0. 

Note that the matrix (4.6) is diagonal if and only  
if �
� = 0. In this case from (4.10) it follows that A  
is a diagonal Metzler matrix and B is a diagonal matrix  
with positive diagonal entries. Therefore, by Theorem 4.2 
the fractional positive electrical circuit is reachable. 

In general case let  us consider the fractional electrical 
circuit shown on Fig 4.2 with conductances 
�� ,�′� ,��� ,			�, � = 1, … ,�; capacitances �� , � = 1, … ,�  
and source voltages ��, � = 1, … ,�.  

 

 
Fig. 4.2. Fractional electrical circuit

Theorem 4.3. The fractional electrical circuit shown 
on Fig. 4.2 is positive for all values of the conductances, 
capacitances and source voltages. 
Proof. Using the Kirchhoff’s laws and the node method 
for the electrical circuit we may write the equations 
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and 
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(4.11c) 

��� is the sum of conductances of all branches belonging 
to the i-th node, i = 1,…,n. 

The matrix �̅ ∈ �� and −�̅	
 has nonnegative entries. 
Substituting (4.11b) into (4.11a) we obtain 
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where 

nn MGGIGCA ∈+−= −− ]'[' 11                  (4.12b) 

and 

nnGGGCB ×
+

−− ℜ∈−= 11 '                        (4.12c) 

since the matrices �	
,��,� and −�̅	
 have nonnegative 
entries. Therefore, the electrical circuit is positive. 
Theorem 4.4. The fractional positive electrical circuit 
shown on Fig. 4.2 is reachable if and only if 

.,...1,andfor0, njkjkG jk =≠= .               (4.13) 

Proof. The matrix �̅ defined by (4.11c) is diagonal if and 
only if the condition (4.13) is met. In this case the matrices 
�̅	
�′, A and B are also diagonal and from (4.12) we obtain 

nkeGGG
C

uGGGG
Cdt

ud
kkkkk

k
kkkkkk

k

k ,...,1,
1

)''(
1 1

,
1
, =+−= −−

α

α
                     

(4.14a) 

where 

kkkk GGG ', += , nk ,...,1= .                  (4.14b) 

Note that the subsystem (4.14a) is reachable. Therefore, 
the positive electrical circuit is reachable if and only if the 
condition (4.13) is satisfied. 

Example 4.2. Consider the fractional electrical circuit 
shown on Figure 4.3 with given resistances �
,��,��, in-
ductances �
, �� and source voltages �
, ��.  

 
Fig. 4.3. Fractional electrical circuit 

Using the Kirchhoff’s laws we can write the equations 
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which can be written in the form 
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The fractional electrical circuit is positive since the ma-
trix A is Metzler matrix and the matrix B has nonnegative 
entries. 

We shall show that the fractional positive circuit 
is reachable if �� = 0. In this case 
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and from (4.1) we obtain 
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(4.19) 

The matrix (4.19) is monomial and by Theorem 4.1 the 
fractional positive electrical circuit is reachable if �� = 0. 

Now let us consider the fractional n-mesh electrical cir-
cuit with given resistances ��, � = 1, … , �, inductances 
�� , � = 1, … ,� and m-mesh source voltages ��� , 

	� = 1, … ,�. It is assumed that to each linearly independent 
mesh belongs only one inductance. In this case the matrix L 
defined by (3.19b) is diagonal one and the condition (3.21) 
is met. 
Theorem 4.5. The fractional positive n-meshes electrical 
circuit with only one inductance in each linearly indepen-
dent mesh is reachable if 

0=ijR  for ji ≠ , nji ,...,1, =                          (4.20) 

where ��� are entries of the matrix A’ defined by (3.19b). 
Proof. If the condition (4.20) is met then the Metzler matrix 
A’ is diagonal. The matrix L defined by (3.19b) is also di-
agonal since by assumption only one inductance belongs to 
each linearly independent mesh. In this case the matrix 
� = �	
�′ is diagonal Metzler matrix and 
 = �	
 ∈ ℜ�

�×� 
is also diagonal. For diagonal Metzler matrix A and diagon-
al B the matrix ���
 is also diagonal and the matrix Rf 
defined by (4.1) is monomial. By Theorem 4.1 the positive 
electrical circuit is reachable. 
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Remark 4.1. The condition (4.20) is met if the resistance 
of the branch belonging to two linearly independent meshes 
is zero. This result is consistent with the one obtained 
in Example 4.2. 

Consider the fractional electrical circuit shown on Fig. 
4.4 with given resistances ��, � = 1, … ,5, inductances 
�
, ��, capacitance C and source voltage e.  

Using the Kirchhoff’s laws we can write the equations 
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and 

0)()()( 35432254142 =+++−+++ iRRRRiRRiRR .(4.21b) 

From (4.21b) we have 
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Substituting (4.22) into (4.21a) we obtain 
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Fig. 4.4. Fractional electrical circuit 

From (4.23b) it follows that the matrix A is not a Metz-
ler matrix if 

4352 RRRR =                                (4.24) 

If the condition (4.24) is met then the voltage between 

the points a, b is equal to zero and �� = 0,��
���

��
= 0,

		�� = 0. In this case the equation (4.23a) takes the form 
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 (4.25) 

The fractional electrical circuit described by the equa-
tion (4.25) is positive. Therefore, we have the following 
corollary. 

Corollary 4.1. If the resistances of the electrical circuit 
satisfy the condition (4.24) then the fractional electrical 
circuit is positive. 

In general case we have. 
Corollary 4.2. Fractional nonpositive electrical circuit 
for some special choice of the parameters (resistances) can 
be positive one. 

Using (4.23b) it is easy to check that 

3][rank 2 =BAABB                            (4.26) 

if and only if the condition (4.24) is not satisfied. Therefore, 
we have the following corollary. 
Corollary 4.3. The fractional standard (nonpositive) elec-
trical circuit shown on Fig. 4.4 is reachable if and only 
if the condition (4.24) is not satisfied. 

From (4.25) it follows that the reduced fractional posi-
tive electrical circuit is reachable.  

These considerations can be extended for general case 
of R, L, C, e type electrical circuits. 

5. CONCLUDING REMARKS 

The conditions for the positivity of fractional linear 
electrical circuits composed of resistors, coils, condensators  
and voltage (current) sources have been established. It has 
been shown that:  
1. The fractional electrical circuits composed of resistors 

coils and voltage sources (shortly called R, L, e type) 
are positive for any values of their resistances, induc-
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tances and source voltages if and only if the number 
of coils is less or equal to the number of its linearly in-
dependent meshes (Theorem 3.5). 

2. The fractional electrical circuits composed of resistors, 
condensators and voltage sources (shortly called R, C, e 
type) are not positive for any values of its resistances, 
capacitances and voltage sources if each their branch 
contains resistor capacitor and voltage source (Theorem 
3.2). 

3. The fractional nonpositive electrical circuits of the R, L, 
C, e type can be positive for some special choice of their 
parameters (Corollary 4.2). 
The conditions for the reachability of the fractional 

positive electrical circuits have been established. It has been 
shown that the fractional positive electrical circuit of R, C, 
e type are reachable if and only if the conductances be-
tween their nodes are zero (Theorem 4.4) and the fractional 
positive electrical circuits of R, L, e type are reachable 
if and only if the resistances belonging to two meshes are 
zero (Theorem 4.5). The fractional standard (nonpositive) 
electrical circuits of R, C, L, e type are usually reachable 
and are unreachable only for some special choice of the 
parameters. 

The considerations have been illustrated by examples 
of linear electrical circuits. 

Some of these results can be also extended for the con-
trollability and observability of the fractional linear elec-
trical circuit. Open problem are extension of these consid-
erations for the following classes of the fractional systems: 
1. disturbed parameters linear systems; 
2. nonlinear electrical circuits. 
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