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A new class of fractional 2D linear discrete-time systems is introduced. The fractional difference definition is applied to
each dimension of a 2D Roesser model. Solutions of these systems are derived using a 2D Z-transform. The classical
Cayley-Hamilton theorem is extended to 2D fractional systems described by the Roesser model. Necessary and sufficient
conditions for the positivity and stabilization by the state-feedback of fractional 2D linear systems are established. A
procedure for the computation of a gain matrix is proposed and illustrated by a numerical example.
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1. Introduction

The most popular models of two-dimensional (2D) lin-
ear systems are the ones introduced by Roesser (1975),
Fornasini-Marchesini (1976; 1978) and Kurek (1985).
These models were extended to positive systems in
(Valcher, 1997; Kaczorek, 1996; 2001; 2005). An
overview of 2D linear systems theory is given in (Bose,
1982; 1985; Kaczorek, 1985; Galkowski, 2001), and some
recent results in positive systems can be found in the
monographs (Farina and Rinaldi, 2000; Kaczorek, 2001).
Asymptotic stability of positive 2D linear systems was
investigated in (Twardy, 2007; Kaczorek, 2008a; 2008b;
2009a). The problem of the positivity and stabilization
of 2D linear systems by state feedback was considered in
(Kaczorek, 2009c).

Mathematical fundamentals of fractional calculus are
given in the monographs (Oldham and Spanier, 1974;
Nashimoto, 1984; Miller and Ross, 1993; Podlubny,
1999). The notion of fractional 2D linear systems was
introduced in (Kaczorek, 2008c) and extended in (Kac-
zorek, 2008d; 2009b). The problem of the positivity and
stabilization of 1D fractional systems by state feedback
was considered in (Kaczorek, 2009d).

In this paper a new 2D fractional Roesser type model
will be introduced and it will be shown that the problem
of finding a gain matrix of the state-feedback such that the
closed-loop system is positive and asymptotically stable
can be reduced to a suitable linear programming problem.

The paper is organized as follows: In Section 2 frac-
tional 2D state equations of the Roesser model are pro-
posed and their solution are derived. The classical Cayley-
Hamilton theorem is extended to fractional 2D systems in
Section 3. In Section 4 necessary and sufficient condi-
tions for the positivity of 2D fractional systems are estab-
lished. In Section 5 the problem of finding a gain matrix
of the state-feedback such that the closed-loop 2D system
is positive and asymptotically stable is solved. The proce-
dure for the computation of the gain matrix is given and
illustrated by a numerical example. Concluding remarks
are given in Section 6.

2. Fractional 2D state-space equations and
their solutions

Let R
n×m
+ be the set of n × m matrices with all nonneg-

ative elements and R
n
+ := R

n×1
+ . The set of nonnegative

integers will be denoted by Z+ and the n×n identity ma-
trix will be denoted by In.

We introduce the following two notions of horizontal
and vertical fractional differences of a 2D function.

Definition 1. The α-order horizontal fractional differ-
ence of a 2D function xij , i, j ∈ Z+, is defined by

Δh
αxij =

i∑

k=0

cα(k)xi−k,j , (1a)
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where α ∈ R, n − 1 < α < n ∈ N =
{
1, 2, . . .

}
and

cα(k) =

{
1 for k = 0,

(−1)k α(α − 1) · · · (α − k + 1)
k!

for k > 0.

(1b)

Definition 2. The β-order vertical fractional difference
of a 2D function xij , i, j ∈ Z+, is defined by

Δv
βxij =

j∑

l=0

cβ(l)xi,j−l, (2a)

where β ∈ R, n − 1 < β < n ∈ N and

cβ(l) =

{
1 for l = 0,

(−1)l β(β − 1) · · · (β − l + 1)
l!

for l > 0.

(2b)

Lemma 1. (Kaczorek, 2007) If 0 < α < 1 (0 < β < 1),
then

cα(k) < 0 (cβ(k) < 0) for k = 1, 2, . . . . (3)

Consider a fractional 2D linear system described by
the state equations
[

Δh
αxh

i+1,j

Δv
βxv

i,j+1

]
=
[

A11 A12

A21 A22

] [
xh

ij

xv
ij

]
+
[

B1

B2

]
uij ,

(4a)

yij =
[

C1 C2

] [ xh
i,j

xv
i,j

]
+ Duij i, j ∈ Z+, (4b)

where xh
ij ∈ R

n1 , xv
ij ∈ R

n2 represent a horizontal and
a vertical state vector at the point (i, j), respectively, uij ∈
R

m is an input vector, yij ∈ R
p is an output vector at the

point (i, j), and A11 ∈ R
n1×n1 , A12 ∈ R

n1×n2 , A21 ∈
R

n2×n1 , A22 ∈ R
n2×n2 , B1 ∈ R

n1×m, B2 ∈ R
n2×m,

C1 ∈ R
p×n1 , C2 ∈ R

p×n2 , D ∈ R
p×m.

Using Definitions 1 and 2 we may write (4a) as
[

xh
i+1,j

xv
i,j+1

]
=
[

Ā11 A12

A21 Ā22

] [
xh

i,j

xv
i,j

]
+
[

B1

B2

]
uij

−

⎡

⎢⎢⎢⎢⎣

i+1∑

k=2

cα(k)xh
i−k+1,j

j+1∑

l=2

cβ(l)xv
i,j−l+1

⎤

⎥⎥⎥⎥⎦
,

(5)

where Ā11 = A11 + αIn1 and Ā22 = A22 + βIn2 .

From (5) it follows that fractional 2D systems
are 2D systems with delays increasing with i and j. From
(1b) and (2b) it follows that the coefficients cα(k) and
cβ(l) in (5) strongly decrease when k and l increase.

Therefore, in practical problems we may assume that k
and l are bounded by some natural numbers L1 and L2.
In this case, Eqn. (5) takes the form
[

xh
i+1,j

xv
i,j+1

]
=
[

Ā11 A12

A21 Ā22

] [
xh

ij

xv
ij

]
+
[

B1

B2

]
uij

−

⎡

⎢⎢⎢⎢⎣

L1+1∑

k=2

cα(k)xh
i−k+1,j

L2+1∑

l=2

cβ(l)xv
i,j−l+1

⎤

⎥⎥⎥⎥⎦
.

(6)

The boundary conditions for Eqns. (4a), (5) and (6)
are given in the form

xh
0j for j ∈ Z+, xv

i0 for i ∈ Z+. (7)

Theorem 1. The solution to Eqn. (5) with the boundary
conditions (7) is given by
[

xh
ij

xv
ij

]

=
i∑

p=0

Ti−p,j

[
0

xv
p0

]
+

j∑

q=0

Ti,j−q

[
xh

0q

0

]

+
i∑

p=0

j∑

q=0

(
Ti−p−1,j−qB

10 + Ti−p,j−q−1B
01
)
upq,

(8a)

where

B10 =
[

B1

0

]
, B01 =

[
0

B2

]
(8b)

and the transition matrices Tpq ∈ R
n×n are defined by

Tpq =

⎧
⎨

⎩

In for p = 0, q = 0,
Tpq for p + q > 0 (p, q ∈ Z+),
0 (zero matrix) for p < 0 and/or q < 0,

(8c)
where

Tpq = T10Tp−1,q −
p∑

k=2

[
cα(k)In1 0

0 0

]
Tp−k,q

+ T01Tp,q−1 −
q∑

l=2

[
0 0
0 cβ(l)In2

]
Tp,q−l

(8d)

and

T10 =
[

Ā11 A12

0 0

]
, T01 =

[
0 0

A21 Ā22

]
. (8e)

Proof. Let X(z1, z2) be the 2D Z-transform of xij de-
fined by

X(z1, z2) = Z [xij ] =
∞∑

i=0

∞∑

j=0

xijz
−i
1 z−j

2 . (9)
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Using (9), we obtain (Kaczorek, 1985)

Z [xh
i+1,j

]
= z1

[
Xh(z1, z2) − Xh(0, z2)

]
, (10a)

where

Xh(0, z2) =
∞∑

j=0

xh
0jz

−j
2 ,

Z [xv
i,j+1

]
= z2

[
Xv(z1, z2) − Xv(z1, 0)

]
, (10b)

Xv(z1, 0) =
∞∑

i=0

xv
i0z

−i
1 ,

Z
[

i+1∑

k=2

cα(k)xh
i−k+1,j

]
=

i+1∑

k=2

cα(k)z−k+1
1 Xh(z1, z2)

(10c)
since

Z [xh
i−k,j

]
=

∞∑

i=0

∞∑

j=0

xh
i−k,jz

−i
1 z−j

2

=
∞∑

i=−k

∞∑

j=0

xh
ijz

−i−k
1 z−j

2

=z−k
1 Xh(z1, z2).

(10d)

Similarly,

Z
[

j+1∑

l=2

cβ(l)xv
i,j−l+1

]
=

j+1∑

l=2

cβ(l)z−l+1
2 Xv(z1, z2)

(10e)
since

Z [xv
i,j−l

]
=

∞∑

i=0

∞∑

j=0

xv
i,j−lz

−i
1 z−j

2

=
∞∑

i=0

∞∑

j=−l

xv
ijz

−i
1 z−j−l

2

=z−l
2 Xv(z1, z2).

(10f)

Taking into account (10), we obtain the 2D Z-
transform of the state-space equation (5),
[

z1X
h(z1, z2) − z1X

h(0, z2)
z2X

v(z1, z2) − z2X
v(z1, 0)

]

=
[

Ā11 A12

A21 Ā22

] [
Xh(z1, z2)
Xv(z1, z2)

]
+
[

B1

B2

]
U(z1, z2)

−

⎡

⎢⎢⎢⎢⎣

i+1∑

k=2

cα(k)z−k+1
1 Xh(z1, z2)

j+1∑

l=2

cβ(l)z−l+1
2 Xv(z1, z2)

⎤

⎥⎥⎥⎥⎦
,

(11)

where U(z1, z2) = Z(uij).

Premultiplying (11) by the matrix

blockdiag
[
In1z

−1
1 , In2z

−1
2

]
,

we obtain
[

Xh(z1, z2)
Xv(z1, z2)

]

= G−1(z1, z2)
{[

z−1
1 B1

z−1
2 B2

]
U(z1, z2)

+
[

Xh(0, z2)
Xv(z1, 0)

]}
,

(12)

where

G(z1, z2) =
[

G11 −z−1
1 A12

−z−1
2 A21 G22

]
, (13a)

G11 = In1 − z−1
1 Ā11 +

i∑

k=2

cα(k)z−k
1 In1 , (13b)

G22 = In2 − z−1
2 Ā22 +

j∑

l=2

cβ(l)z−l
2 In2 . (13c)

Let

G−1(z1, z2) =
∞∑

p=0

∞∑

q=0

Tpqz
−p
1 z−q

2 . (14)

Write

Tpq =
[

T 11
pq T 12

pq

T 21
pq T 22

pq

]
, (15)

where T kl
pq have the same sizes as the matrices Akl for

k, l = 1, 2.
From

G−1(z1, z2)G(z1, z2) = G(z1, z2)G−1(z1, z2) = In,

using (14) and (15), it follows that

[
G11 −z−1

1 A12

−z−1
2 A21 G22

]

×
( ∞∑

p=0

∞∑

q=0

[
T 11

pq T 12
pq

T 21
pq T 22

pq

]
z−p
1 z−q

2

)

=
[

In1 0
0 In2

]
. (16)

Comparing the coefficients at the same powers of z1 and
z2 yields (8c).

Taking into account the expansion (14) and using
the inverse 2D Z-transform of (12) we obtain the for-
mula (8a). �
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3. Extension of the Cayley-Hamilton
theorem

From (13), for the system (6) we have

G(z1, z2) =
[

Ḡ11 −z−1
1 A12

−z−1
2 A21 Ḡ22

]
, (17a)

Ḡ11 = In1 − z−1
1 Ā11 +

L1∑

k=2

cα(k)z−k
1 In1 , (17b)

Ḡ22 = In2 − z−1
2 Ā22 +

L2∑

l=2

cβ(l)z−l
2 In2 . (17c)

Let

detG(z1, z2) =
N1∑

p=0

N2∑

q=0

aN1−p,N2−qz
−p
1 z−q

2 , (18)

where N1, N2 ∈ Z+ are determined by the numbers L1

and L2 in (6).

Theorem 2. Let (18) be the characteristic polynomial of
the system (6). Then the matrices Tpq satisfy

N1∑

p=0

N2∑

q=0

apqTpq = 0. (19)

Proof. From the definition of the inverse matrix, as well
as (14) and (18), we have

AdjG(z1, z2) =

(
N1∑

p=0

N2∑

q=0

aN1−p,N2−qz
−p
1 z−q

2

)

×
( ∞∑

k=0

∞∑

l=0

Tklz
−k
1 z−l

2

)
,

(20)

where Adj G(z1, z2) is the adjoint matrix of G(z1, z2).
Comparing the coeffiecients at the same power z−N1

1 z−N2
2

of the equality (20) yields (19) since Adj G(z1, z2) has
degrees greater than −N1 and −N2, respectively. �

Theorem 2 is an extension of the well-known clas-
sical Cayley-Hamilton theorem to 2D fractional systems
described by the Roesser model (5).

4. Positivity of fractional 2D systems
described by the Roesser model

Definition 3. The system (4) is called the (inter-
nally) positive fractional 2D system if and only if xh

ij ∈
R

n1
+ , xv

ij ∈ R
n2
+ and yij ∈ R

p
+, i, j ∈ Z+ for any bound-

ary conditions xh
0j ∈ R

n1
+ , j ∈ Z+ and xv

i0 ∈ R
n2
+ , i ∈

Z+ and all input sequences uij ∈ R
m
+ , i, j ∈ Z+.

Theorem 3. The fractional 2D system (5) for α, β ∈
R, 0 < α ≤ 1, 0 < β ≤ 1 is positive if and only if
[

Ā11 A12

A21 Ā22

]
∈ R

n×n
+ ,

[
B1

B2

]
∈ R

n×m
+ ,

[
C1 C2

] ∈ R
p×n
+ , D ∈ R

p×m
+ .

(21)

Proof. (Necessity) Let us assume that the system (5) is
positive and uij = 0 for i, j ∈ Z+, xv

i0 = 0, i ∈ Z+ and

xh
01 = e

(k)
n1 , where e

(k)
n1 is the k-th column of In1 . In this

case, from (5) we obtain xh
11 = Ā11x

h
01 = Ā

(k)
11 ∈ R

n1
+ ,

where Ā
(k)
11 denotes the k-th column of the matrix Ā11.

For k = 1, 2, . . . , n1 this implies Ā11 ∈ R
n1
+ . Assum-

ing xh
0j = 0 for j ∈ Z+, uij = 0 for i, j ∈ Z+ and

xv
10 = e

(k)
n2 , where e

(k)
n2 is the k-th column of In2 , we ob-

tain xv
11 = A12x

v
10 = A

(k)
12 , where A

(k)
12 is the k-th column

of A12, and this implies A12 ∈ R
n1×n2
+ . In a similar way,

it can be shown that A21 ∈ R
n2×n1
+ and Ā22 ∈ R

n2×n2
+ .

Now, let us assume that boundary conditions are zero
xh

0j = 0 for j ∈ Z+, xv
i0 = 0 for i ∈ Z+ and u01 = e

(k)
m(

e
(k)
m is the k-th column of Im

)
. Then we have xh

11 =
B1u01 = B

(k)
1 ∈ R

n1
+ , where B

(k)
1 is the k-th column of

the matrix B1. This implies B1 ∈ R
n1×m
+ . In a similar

way, we may show that B2 ∈ R
n2×m
+ , C1 ∈ R

p×n1
+ , C2 ∈

R
p×n2
+ and D ∈ R

p×m
+ .

(Sufficiency) By Lemma 1, cα(k) < 0 for k = 1, 2, . . .
and 0 < α ≤ 1

(
cβ(l) < 0 for l = 1, 2, . . . and 0 < β ≤

1
)
. From (15) it follows that, if the conditions of Theorem

3 are met, then Tpq ∈ R
n×n
+ for p, q ∈ Z+. Taking this

into account for xh
0j ∈ R

n1
+

(
j ∈ Z+

)
, xv

i0 ∈ R
n2
+

(

i ∈ Z+

)
and uij ∈ R

m
+

(
i, j ∈ Z+

)
, from (8a) we have

xh
ij ∈ R

n1
+ and xv

ij ∈ R
n2
+ for i, j ∈ Z+.

From (4b) we have yij ∈ R
p
+ for i, j ∈ Z+ since

xh
ij ∈ R

n1
+ , xv

ij ∈ R
n2
+ , uij ∈ R

m
+ for i, j ∈ Z+ and

C1 ∈ R
p×n1
+ , C2 ∈ R

p×n2
+ , D ∈ R

p×m
+ . �

5. Stabilization of the Roesser model by
state feedback

The following theorem will be used in the proof of the
main result of this section.

Theorem 4. (Kaczorek, 2008b) The positive Roesser
model

[
xh

i+1,j

xv
i,j+1

]
=
[

A11 A12

A21 A22

] [
xh

ij

xv
ij

]
(22)

is asymptotically stable if and only if one of the following
equivalent conditions is satisfied:

1. The positive 1D system

xi+1 =
[

A11 A12

A21 A22

]
xi (23)
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is asymptotically stable.

2. There exists a strictly positive vector λ ∈ R
n
+ (n =

n1 + n2) such that
[

A11 − In1 A12

A21 A22 − In2

]
λ <

[
0
0

]
. (24)

Lemma 2. If n−1 < α < n ∈ N
(
n−1 < β < n

)
, then

∞∑

k=0

cα(k) = 0

(
resp.

∞∑

k=0

cβ(k) = 0

)
. (25)

Proof. It is easy to verify that the Taylor series expansion
of the function (1 − z)α yields

(1 − z)α =
∞∑

k=0

(−1)k

(
α

k

)
zk. (26)

Sustituting z = 1 into (26) we obtain

∞∑

k=0

(−1)k

(
α

k

)
=

∞∑

k=0

cα(k) = 0.

�
Consider the positive fractional Roesser model (5)

with the state-feedback

uij =
[

K1 K2

] [ xh
ij

xv
ij

]
, (27)

where K =
[

K1 K2

] ∈ R
m×n, Kj ∈ R

m×nj , j =
1, 2 is a gain matrix.

We are looking for a gain matrix K such that the
closed-loop system
[

xh
i+1,j

xv
i,j+1

]
=
[

Ā11 + B1K1 A12 + B1K2

A21 + B2K1 Ā22 + B2K2

] [
xh

ij

xv
ij

]

−

⎡

⎢⎢⎢⎢⎣

i+1∑

k=2

cα(k)xh
i−k+1,j

j+1∑

l=2

cβ(l)xv
i,j−l+1

⎤

⎥⎥⎥⎥⎦

(28)

is positive and asymptotically stable.

Theorem 5. The positive fractional closed-loop system
(28) is positive and asymptotically stable if and only if
there exist a block diagonal matrix

Λ = blockdiag [Λ1, Λ2] ,
Λk = diag [λk1, . . . , λknk

] ,
λkj > 0,

(29)

k = 1, 2, j = 1, . . . , nk, and a real matrix

D =
[

D1 D2

]
, Dk ∈ R

m×nk , k = 1, 2 (30)

satisfying the conditions
[

Ā11Λ1 + B1D1 A12Λ2 + B1D2

A21Λ1 + B2D1 Ā22Λ2 + B2D2

]
∈ R

n×n
+ (31)

and

[
A11Λ1 + B1D1 A12Λ2 + B1D2

A21Λ1 + B2D1 A22Λ2 + B2D2

] [
111n1

111n2

]

<

[
0
0

]
, (32)

where 111nk
=
[

1 . . . 1
]T ∈ R

nk
+ , k = 1, 2

(
T de-

notes the transpose
)
. The gain matrix is given by

K =
[

K1 K2

]
=
[

D1Λ−1
1 D2Λ−1

2

]
. (33)

Proof. First, we shall show that the closed-loop system
is positive if and only if the condition (31) is satisified.
Using (28) and (33), we obtain
[

Ā11 + B1D1Λ−1
1 A12 + B1D2Λ−1

2

A21 + B2D1Λ−1
1 Ā22 + B2D2Λ−1

2

]

=
[

Ā11Λ1 + B1D1 A12Λ2 + B1D2

A21Λ1 + B2D1 Ā22Λ2 + B2D2

]

·
[

Λ−1
1 0
0 Λ−1

2

]
.

(34)

From (34) and (21) it follows that the closed-loop
system (28) is positive if and only if the condition (31) is
satisfied. Taking into account that cα(0) = cβ(0) = 1 and
cα(1) = −α, cβ(1) = −β, from (25) we have

∞∑

k=2

cα(k) = α − 1 and
∞∑

k=2

cβ(k) = β − 1. (35)

It is well known (Busłowicz, 2008; Busłowicz and
Kaczorek, 2009) that asymptotic stability of the positive
discrete-time linear system with delays is independent of
the number and values of the delays and it depends only
on the sum of the state matrices. Therefore, the positive
closed-loop system (28) is asymptotically stable if and
only if the positive 1D system with the matrix

[
Ā11 + B1K1 A12 + B1K2

A21 + B2K1 Ā22 + B2K2

]

−
∞∑

k=2

[
In1cα(k) 0

0 In2cβ(k)

]
(36)

is asymptotically stable.
Using (35) as well as Ā11 = A11 + In1α and Ā22 =

A22 + In2β, we may write the matrix (36) in the form
[

A11 + In1 + B1K1 A12 + B1K2

A21 + B2K1 A22 + In2 + B2K2

]
. (37)
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By Theorem 4, the positive closed-loop system (28)
is asymptotically stable if and only if there exists a strictly

positive vector λ =
[
λT

1 , λT
2

]T ∈ R
n
+ such that

[
A11 + B1K1 A12 + B1K2

A21 + B2K1 A22 + B2K2

] [
λ1

λ2

]
<

[
0
0

]
.

(38)
Taking into account that λk = Λk111k, k = 1, 2, and

using (33) and (38) we obtain
[

A11 + B1K1 A12 + B1K2

A21 + B2K1 A22 + B2K2

] [
λ1

λ2

]

=
[

A11 + B1D1Λ−1
1 A12 + B1D2Λ−1

2

A21 + B2D1Λ−1
1 A22 + B2D2Λ−1

2

]

×
[

Λ1 0
0 Λ2

] [
111n1

111n2

]

=
[

A11Λ1 + B1D1 A12Λ2 + B1D2

A21Λ1 + B2D1 A22Λ2 + B2D2

]

×
[

111n1

111n2

]
<

[
0
0

]
.

(39)

Therefore, the positive closed-loop system is asymptoti-
cally stable if and only if the condition (32) is met. �

If the conditions of Theorem 5 are satisfied, then the
gain matrix can be computed by the use of the following
procedure.

Procedure

Step 1. Choose a block diagonal matrix (29) and a real
matrix (30) satisfying the conditions (31) and (32).

Step 2. Using the formula (33), compute the gain ma-
trix K .

Theorem 6. The positive fractional Roesser model is
unstable if at least one diagonal entry of the matrix

[
A11 A12

A21 A22

]
(40)

is positive.

Proof. From (37) for K1 = 0 and K2 = 0, for the
positive fractional Roesser model we have

[
A11 + In1 A12

A21 A22 + In2

]
. (41)

If at least one diagonal entry of the matrix (40) is posi-
tive, then at least one diagonal entry of the matrix (41) is
greater than 1 and this implies that the positive fractional
Roesser model is unstable. �

Example 1. Given the fractional Roesser model with
α = 0.4, β = 0.5 and

A11 =
[ −0.5 −0.1

0.1 0.01

]
, A12 =

[ −0.1 −0.1
0.2 0.1

]
,

A21 =
[ −0.3 −0.1

0.2 0.1

]
, A22 =

[ −1 −0.1
0.4 0.1

]
,

B1 =
[ −0.2

0.1

]
, B2 =

[ −0.3
0.2

]
. (42)

We wish to find a gain matrix K = [K1, K2], Kp ∈ R
1×2,

p = 1, 2 such that the closed-loop system is positive and
asymptotically stable.

The fractional Roesser model (5) with (42) is not pos-
itive since the matrix

[
Ā11 A12

A21 Ā22

]
=

⎡

⎢⎢⎣

−0.1 −0.1 −0.1 −0.1
0.1 0.41 0.2 0.1

−0.3 −0.1 −0.5 −0.1
0.2 0.1 0.4 0.6

⎤

⎥⎥⎦

(43)
and the matrices B1, B2 have negative entries, and it is
unstable since the matrix

[
A11 A12

A21 A22

]
=

⎡

⎢⎢⎣

−0.5 −0.1 −0.1 −0.1
0.1 0.01 0.2 0.1

−0.3 −0.1 −1 −0.1
0.2 0.1 0.4 0.1

⎤

⎥⎥⎦

(44)
has two positive diagonal entries.

Using our Procedure, we obtain what follows.

Step 1. We choose

Λ = blockdiag[Λ1, Λ2],

Λ1 =
[

0.4 0
0 0.4

]
, Λ2 =

[
0.2 0

0 0.3

]
(45)

and

D = [D1, D2], D1 = D2 =
[ −0.4 −0.2

]
, (46)

which satisfy the conditions (31) and (32) since

Ā11Λ1 + B1D1 =
[

0.04 0
0 0.144

]
,

A12Λ2 + B1D2 =
[

0.06 0.01
0 0.01

]
,

A21Λ1 + B2D1 =
[

0 0.02
0 0

]
,

Ā22Λ2 + B2D2 =
[

0.02 0.03
0 0.14

]

and [
A11Λ1 + B1D1 A12Λ2 + B1D2

A21Λ1 + B2D1 A22Λ2 + B2D2

]

×
[

111n1

111n2

]
=

⎡

⎢⎢⎣

−0.05
−0.006
−0.03
−0.01

⎤

⎥⎥⎦ .
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Step 2. From (33) we obtain the gain matrix K =
[K1, K2],

K1 =
[ −0.4 −0.2

] [ 2.5 0
0 2.5

]
=
[ −1 −0.5

]
,

K2 =
[ −0.4 −0.2

] [ 5 0
0 3.33

]
=
[ −2 −0.67

]
.

The closed-loop system is positive since the matrices

Ā11 + B1K1 =
[

0.1 0
0 0.36

]
,

A12 + B1K2 =
[

0.3 0.033
0 0.033

]
,

A21 + B2K1 =
[

0 0.05
0 0

]
,

Ā22 + B2K2 =
[

0.1 0.1
0 0.467

]

have all nonnegative entries.
The closed-loop system is asymptotically stable

since its characteristic polynomial

det
[

In1z − (A11 + B1K1) −(A12 + B1K2)
−(A21 + B2K1) In2z − (A22 + B2K2)

]

= z4 + 0.773z3 + 0.173z2 + 0.01z + 0.0002

has positive coefficients.

6. Concluding remarks

A new class of 2D fractional linear systems was intro-
duced. Fractional 2D state equations of linear systems
were given and their solutions were derived using the 2D
Z-transform. The classical Cayley-Hamilton theorem
was extended to 2D fractional systems described by the
Roesser model. Necessary and sufficient conditions for
the positivity and stabilization by state feedback of frac-
tional 2D linear systems were established. A procedure
for the computation of the gain matrix was proposed and
illustrated by a numerical example.

These deliberations can be easily extended to frac-
tional 2D linear systems with delays described by the
Roesser model. An extension of this study to fractional
2D continuous-time systems is an open problem.
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