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Positivity Bounds for Scalar Theories
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Assuming the existence of a local, analytic, unitary UV completion in a Poincaré invariant scalar
field theory with a mass gap, we derive an infinite number of positivity requirements using the
known properties of the amplitude at and away from the forward scattering limit. These take the
form of bounds on combinations of the pole subtracted scattering amplitude and its derivatives. In
turn, these positivity requirements act as constraints on the operator coefficients in the low energy
effective theory. For certain theories these constraints can be used to place an upper bound on the
mass of the next lightest state that must lie beyond the low energy effective theory if such a UV
completion is to ever exist.

The physical requirements of unitarity, locality, and
crossing symmetry, are well known to provide powerful
constraints on the scattering matrix of a Lorentz invari-
ant theory, and were an integral part of the S-matrix
program [1, 2]. Relativistic locality and causality is en-
coded in the twin requirements of analyticity of the scat-
tering amplitude, and polynomial boundedness. Taken
together, these allow us to express the scattering ampli-
tude in terms of dispersion relations with a finite number
of subtractions, from which it is possible to infer bounds
on the growth of the scattering amplitude at high ener-
gies.
It is only more recently that these constraints have

been used to infer properties of low energy effective field
theories (LEEFT) [3]. In doing so we assume the ex-
istence of a (possibly unknown) local Lorentz invariant
UV completion and use its properties to infer properties
of the LEEFT. These typically come in the form of ‘pos-
itivity bounds’, i.e. bounds on the sign of coefficients in
the Wilsonian effective action. For example, it is known
that for analytic 2-to-2 scattering amplitudes in the for-
ward scattering limit, an expansion in powers of the in-
variant mass s must have positive coefficients [3]. It has
also been suggested that these can be pushed away from
the forward limit [4–8].
Exploiting unitarity, analyticity and crossing symme-

try of the full (unknown) UV complete theory, we will
use the known properties of the scattering amplitude of
a scalar theory at and away from the forward limit to
show that there are an infinite number of such bounds
on the pole subtracted scattering amplitude B(s, t).
These translate into bounds on the coefficients of every
non-redundant (not removable by a field redefintion)
operator that contributes to the 2-to-2 scattering am-
plitude at tree level. We first derive the bounds on the
exact quantum scattering amplitude, and then show
how they may be applied to the tree-level amplitudes
in the LEEFT. In certain cases, we will show how these
constraints lead to an upper bound of the mass of the
first state that necessarily lies beyond the regime of
validity of the LEEFT.

Unitarity: The 2-to-2 scattering amplitude is best ex-
pressed in terms of the Mandelstam variables [9]: s, the
center of mass energy, t, the momentum transfer, related
to the scattering angle by cos θ = 1 + 2t

s−4m2 , and their

conjugate variable u = 4m2 − s − t. In order to derive
positivity bounds on the scattering amplitude A(s, t), we
make use of unitarity in the form of the optical theo-
rem, Im[A(s, 0)] =

√

s(s− 4m2)σ(s), together with its
implications for the partial wave expansion,

A(s, t) = 16π

√

s

s− 4m2

∞
∑

l=0

(2l + 1)Pl(cos θ)al(s) , (1)

namely Im al(s) = |al(s)|
2+. . . , where the omitted terms

are proportional to cross section contributions from in-
elastic processes, which are positive. Unitarity therefore
tells us that,

0 ≤ |al(s)|
2 ≤ Im al(s) ≤ 1 , for s ≥ 4m2 . (2)

Since the Legendre polynomials satisfy ∂n
t Pl(1+ t)|t=0 ≥

0, it follows from (2) that,

∂n

∂tn
Im[A(s, t)]

∣

∣

∣

t=0
> 0 ∀ n ≥ 0 and s ≥ 4m2 . (3)

This is a strict positivity for all n, since equality is only
reached in the case of a free theory [10]

Analyticity: It is usually postulated that the ampli-
tude A(s, t) is analytic in the whole complex Mandelstam
plane, except for poles and branch cuts implied by uni-
tarity [9] and crossing symmetry. However, many of the
consequences of Mandelstam’s proposal can be obtained
by assuming much weaker provable analyticity conditions
[11, 12], which imply that A(s, t) is analytic in the disk
|t| < 4m2 for fixed s and in the twice cut plane of s for
fixed t (excluding, of course, the possible poles of s and
t) [13, 14]. This is consistent with the statement that the
scattering amplitude is analytic (modulo poles) in the
Mandelstam triangle, 0 ≤ s, t, u < 4m2.
In a scalar theory, we expect the amplitude to have a

simple t-channel pole at t = m2, whose residue is s in-
dependent (since it is determined by the on-shell vertex
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function which for a scalar theory can contain no remain-
ing momentum dependence). This residue is necessarily
real, and so ImA(s, t) has no poles at t = m2. This im-
plies that ImA(s, t) is analytic with no poles in the region
|t| < 4m2. The positivity properties (3) can therefore be
continued to finite positive t, i.e. away from the forward
limit,

∂n

∂tn
Im[A(s, t)] > 0 ∀ s ≥ 4m2 , 0 ≤ t < 4m2. (4)

This is the key property which can be used to derive
positivity requirements of the low energy scattering away
from the forward scattering limit.
Furthermore, analyticity can be combined with the

unitarity condition (2) to derive the Froissart-Martin
bound for the behaviour of the scattering amplitude at
fixed t [11, 12, 15]

lim
s→∞

|A(s, t)| < Cs1+ǫ(t), 0 ≤ t < 4m2, (5)

where C is constant and ǫ(t) can depend on t. The re-
sults of [12] imply that ǫ(t) < 1 in the range 0 ≤ t < 4m2,
which in turn implies that the fixed t amplitude may
be expressed as a dispersion relation with only two
subtractions, just as in the forward limit t = 0. This is
the second key result we shall make use of.

Dispersion relation: We begin with the assumption
that the scattering amplitude at fixed momentum trans-
fer, 0 ≤ t < 4m2 (away from the t = m2 pole), is an
analytic function of s, modulo poles and branch cuts in
the usual places. Then by Cauchy’s integral formula,

A(s, t) =
1

2πi

∮

C

ds′
A(s′, t)

s′ − s
, (6)

where C is a counterclockwise contour inside of which A
is analytic. One can deform C into an infinite circular
contour going around the two branch cuts plus two in-
finitesimal clockwise circles around the simple poles at
s′ = m2 and u(s′, t) = m2 to obtain

A(s, t) =
λ

m2 − s
+

λ

m2 − u
+

∫

C
±
∞

ds′
A(s′, t)

s′ − s
(7)

+

∫ ∞

4m2

dµ

π

(

ImA(µ, t)

µ− s
+

ImA(µ, t)

µ− u

)

,

where C±
∞ is the semicircle with radius s′ → ∞ in the

upper/lower half plane, and we have used the Schwarz
reflection principle A(s∗, t) = A∗(s, t) to relate the dis-
continuity along the cuts to the imaginary part of the
amplitude, and s ↔ u crossing symmetry to infer the
discontinuity on the left hand cut. Crossing symme-
try guarantees that the pole residues Resu=m2A(s, t) =
−Ress=m2A(s, t) = λ and for scalar particles these
residues are independent of t. The Froissart-Martin
bound (5) suggests that the contour integrals along C±

∞

are not finite in the limit s′ → ∞, and so the standard
remedy is to perform two subtractions. In practice, this
comes from the identity

ImA(µ, t)

µ− s
=

(s− µp)
2

(µ− µp)2
ImA(µ, t)

µ− s
(8)

+2
(s− µp)

(µ− µp)2
ImA(µ, t) +

(µ− s)

(µ− µp)2
ImA(µ, t) .

The subtraction point µp is arbitrary so may be chosen
for convenience and can depend on t. By s ↔ u crossing
symmetry, the amplitude (7) may be rewritten as

A(s, t) = a(t) +
λ

m2 − s
+

λ

m2 − u
+ (9)

+

∫ ∞

4m2

dµ

π

(

(s− µp)
2ImA(µ, t)

(µ− µp)2(µ− s)
+

(u− µp)
2ImA(µ, t)

(µ− µp)2(µ− u)

)

,

where a(t) absorbs all the remaining integral contribu-
tions and is undetermined by analyticity. However by
t ↔ s crossing symmetry A(s, t) = A(t, s), we can deter-
mine a(t) up to a constant. Since full crossing symmetry
implies that the amplitude must have poles in all three
channels, it is convenient to remove these and define

B(s, t) = A(s, t)−
λ

m2 − s
−

λ

m2 − u
−

λ

m2 − t
. (10)

For later convenience we choose µ̄p = −t̄/2, where
the bar denotes x̄ := x − 4m2/3, redefine the subtrac-
tion function b(t) = a(t) − λ

m2−t , and replace s with the
variable v = s̄ + t̄/2. In terms of u and v, the s ↔ u
crossing symmetry implies a v ↔ −v crossing symmetry.
Since B(s, t) is crossing symmetric, it has to be given by
an analytic function of v2 in the Mandelstam triangle,
B(s, t) = B̃(v(s, t), t) where

B̃(v, t) = b(t) +

∫ ∞

4m2

dµ

π(µ̄+ t̄/2)

2v2 ImA(µ, t)

(µ̄+ t̄/2)2 − v2
. (11)

This is the final form of the dispersion relation that we
shall make use of.

Positivity bounds: For N ≥ 1, we define,

B(2N,M)(t) =
1

M !
∂2N
v ∂M

t B̃(v, t)
∣

∣

∣

v=0
, (12)

which can be expressed in terms of the positive integrals,

I(q,p)(t) =
q!

p!

2

π

∫ ∞

4m2

dµ ∂p
t ImA(µ, t)

(µ̄+ t̄/2)q+1
> 0, (13)

where we have now made use of the unitarity condition
(4). Explicitly,

B(2N,M)(t) =

M
∑

k=0

(−1)k

k!2k
I(2N+k,M−k) . (14)
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The left-hand side is a derivative of the pole subtracted
amplitude evaluated at s ∼ m2, which can be computed
in the LEEFT. This known quantity is related to the
integrals I(q,p), which depend on the details of the full
UV completion, and are therefore not explicitly known—
however, as we have argued, they are required to be pos-
itive by unitarity and analyticity. The goal is now to use
(14) to translate the positivity of the integrals (13) into
a bound on the different derivatives of the low energy
amplitudes.
With no t derivatives, this is straightforward:

B(2N,0)(t) > 0. This is a generalization of the now fa-
miliar constraint on the forward scattering amplitude at
t = 0 [3]. In particular we note that for t = 0, then
B(2N,0)(0) are just the coefficients in the expansion of
the following quantity

f(sp) =
1

2πi

∮

C′

ds′
A(s′, 0)

(s′ − sp)3
=

1

2

∂2B(s, 0)

∂s2

∣

∣

∣

s=sp
(15)

=

∞
∑

N=1

s2N−2
p

2(2N − 2)!
B(2N,0)(0) > 0 ,

for 0 ≤ sp < 4m2, where the contour C′ is the same as C
but without the circles around the poles. The extension
of this bound to 0 ≤ t < 4m2 has previously been noted
and used in [4–8].
For higher t derivatives, the B(2N,M)(t) do not im-

mediately satisfy a positivity condition due to the alter-
nating sign structure (−1)k in (14). To deal with this, we
first note that the various integrals satisfy the inequality,

I(q,p) <
q

M2
I(q−1,p) , (16)

where M2 is the minimum value of (µ̄+ t̄/2) within the
region of integration for µ. For now we could simply
set M2 = (t+ 4m2)/2, but when dealing with tree-level
amplitudes we shall see later that M may take much
larger values. To see how the previous inequality can be
used to our advantage, consider a single t derivative,

B(2N,1) = I(2N,1) − 1
2I

(2N+1,0) > I(2N,1) −
2N + 1

2M2
I(2N,0) .

Since B(2N,0) = I(2N,0), we can immediately infer that
the quantity Y (2N,1)(t) defined as follows

Y (2N,1) = B(2N,1)+
2N + 1

2M2
B(2N,0) > I(2N,1) > 0 , (17)

is manifestly positive.
Proceeding onto a second t derivative, we have,

B(2N,2) = I(2N,2) −
1

2
I(2N+1,1) +

1

8
I(2N+2,0) . (18)

Since only one of the terms enters negatively it would be
possible to perform just one addition and end up with a
quantity which is manifestly positive,

B(2N,2) +
2N + 1

2M2
Y (2N,1) > I(2N,2) +

1

8
I(2N+2,0) > 0 .

We can however construct a more restrictive bound by
performing a second subtraction that also removes the
integral I(2N+2,0) = B(2(N+1),0) as a result, the following
quantity is manifestly positive,

Y (2N,2) = B(2N,2) +
2N + 1

2M2
Y (2N,1) −

1

8
B(2(N+1),0) > 0 .

The previous examples illustrated how to construct pos-
itive quantities involving up to two t derivatives of the
amplitude. We now present the general procedure for
any number of t derivatives.
Motivated by the previous constructions, we now con-

sider a linear combination of B’s. On dimensional
grounds, if we want to be dealing with up to M t deriva-
tives and 2N v derivatives, then one should consider

M/2
∑

r=0

crB
(2N+2r,M−2r) =

M/2
∑

k=0

αkI
(2N+2k,M−2k) (19)

−

(M−1)/2
∑

k=0

(−1)kβkI
(2N+2k+1,M−2k−1) ,

where for each B, we have split its sum (14) into odd and
even parts, and we have defined

αk =

k
∑

r=0

22(r−k)cr
(2k − 2r)!

, βk = (−1)k
k

∑

r=0

22(r−k)−1cr
(2k − 2r + 1)!

. (20)

Now the coefficients cr can be chosen precisely so as to
remove every integral I(2q,p) with p < M on the first line
of (19), i.e. so that αk = δk,0. This requirement sets

c0 = 1 and ck = −

k−1
∑

r=0

22(r−k)cr
(2k − 2r)!

, ∀ k ≥ 1 . (21)

These coefficients are easily computed to any desired or-
der, and one can check that βk ≥ 0. It follows that the
following quantity is manifestly positive,

M/2
∑

r=0

crB
(2N+2r,M−2r) +

(M−1)/2
∑

k even

βkI
(2N+2k+1,M−2k−1)

= I(2N,M) +

(M−1)/2
∑

k odd

βkI
(2N+2k+1,M−2k−1) > 0. (22)

Now using the integral inequalities (16), we can recur-
sively construct the Y (2N,M)’s as follows

Y (2N,M) =

M/2
∑

r=0

crB
(2N+2r,M−2r)

+
1

M2

(M−1)/2
∑

k even

(2(N + k) + 1)βkY
(2(N+k),M−2k−1) > 0 ,

(23)

where cr and βk are given by (20) and (21) and for now
M2 = (t + 4m2)/2. By construction, Y (2N,M)(t) ≥
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I(2N,M) > 0 for all N ≥ 1, all M ≥ 0 and for any
0 ≤ t < 4m2.
As a result, we have successfully constructed combina-

tions of derivatives of the LEEFT amplitude, Y (2N,M),
which must be positive if there were to ever exist a
local, analytic and Lorentz invariant UV completion.
Although we have used N ≥ 1 in the derivation, note
that s ↔ t crossing means that Y (q,p) and Y (p,q) are not
truly independent quantities, and so our list of bounds
is exhaustive (as we have included the case M = 0, if
not N = 0).

Tree level bounds: The previous positivity bounds
were placed on the exact all loop scattering amplitude.
It is for this reason that the threshold on the µ inte-
grals was taken to be µ = 4m2, associated with elastic
scattering, e.g. one-loop processes with two intermediate
scalars. However, a more practical use of these bounds
is to bound coefficients in the tree-level Lagrangian of
the LEEFT. In doing this, there is a fundamental dif-
ference in approach since at tree level in the low energy
effective theory, nonzero ImA(s, t) can only arise at and
above the threshold µ = Λ2

th defined as the mass of the
first state that lies outside of the effective theory, i.e.
the cutoff of the LEEFT. Contributions in the region
4m2 ≤ µ < Λ2

th come from loops of light particles al-
ready included in the LEEFT and so will not show up
in the tree level amplitude. At a pragmatic level this
means that since Λ2

th ≫ 4m2, the lower limit of the µ
integrals may be taken to be Λ2

th and we may make use
of stronger integral inequalities (16) with M2 = Λ2

th, and

define Y
(2N,M)
tree through (23) with M2 = Λ2

th, where B
is now understood to be the pole subtracted amplitude
computed to tree level only in the LEEFT. The tree level
bounds are then

Y
(2N,M)
tree (t,Λth) > 0 , (24)

and may in some cases provide additional constraints on
Λth in terms of the LEEFT coefficients and the mass m.

Matching against the low energy effective theory:

To see the power of these bounds, consider a general effec-
tive theory tree amplitude, with poles subtracted B(s, t).
Any such amplitude, may be given by an analytic func-
tion of the crossing symmetric variables

x = −(s̄t̄+ t̄ū+ ūs̄) and y = −s̄t̄ū , (25)

with s̄+ t̄+ ū = 0, so that

B(s, t) =
∑

nm

anm
Λ4n+6m

xnym , (26)

where Λ is some theory specific scale introduced to make
the anm dimensionless. Note that x = v2 + 3

4 t̄
2 and

y = t̄v2 − 1
4 t̄

3. For concreteness, in what follows we

evaluate the derivatives ofB at t = 4m2/3, corresponding
to the maximally crossing symmetric point s = t = u.
Then the derivatives B(2N,M) in terms of the anm are

B(2N,M) = (2N)!
∑

q

dq
Λ4N+2M

aN−M+3q,M−2q , (27)

where q!dq = (3/4)q(3q+N−M)2F1(−q, 2q−M, 1−M+
N+2q,−1/3). Up to eighth order in energy, we have four
EFT coefficients (a00, a10, a01, a20), which are bounded
by,

Y (2,0) : a10 > 0 (28)

Y (2,1) : a01 > −
3Λ2

2Λ2
th

a10 (29)

Y (4,0) : a20 > 0 , (30)

and the bound provided by Y (2,2) ends up being auto-
matically satisfied by the previous ones. These bounds
clearly distinguish two separate cases. If for a particu-
lar theory a01 were found to be positive, then the bounds
are satisfied provided a10, a20 > 0 regardless of Λth. How-
ever, if for a theory a01 is negative, then for that theory
we can put an upper bound on the threshold Λth,

Λ2
th ≤

3a10
2|a01|

Λ2 . (31)

This bound on the cutoff of the theory is logically sep-
arate from the scale at which perturbative unitarity is
broken. If we build an EFT from the bottom up, with-
out initial knowledge of the true scale Λth, then we can
separately compute Λpert, the scale at which perturba-
tive unitarity is violated, and if a01 < 0, Λth the scale at
which analyticity is broken. If Λth is found to be lower
than Λpert then this implies we should have added irrel-
evant operators suppressed by Λth.

Discussion: In this work, we have paved the way to-
wards constraining all LEEFTs in a novel way and have
found an infinite number of new bounds that remain
valid even away from the forward scattering limit. Vi-
olating any of this infinite number of bounds directly
implies the absence of any possible local, unitary and
Lorentz invariant UV completion for the scalar field the-
ory. These place bounds on the independent coefficients
in the EFT Lagrangian. As a by-product we have shown
how, together with the assumption of analyticity, the
scale of new physics can be further constrained, beyond
what would be possible from using perturbative unitarity
alone. In certain cases, it is conceivable that the stricter
requirement of analyticity implies a lower cutoff on the
EFT than would be implied by standard perturbative
unitarity considerations, a simple example of which will
be given in [16]. These results are derived under the as-
sumption of a mass gap, principally to make use of the
Froissart-Martin bound, and to ensure the existence of
the analytic Mandelstam triangle. An extension of these
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positivity bounds to particles with nonzero spin will be
discussed in [17].
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