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POSITIVITY FOR QUANTUM CLUSTER ALGEBRAS

BEN DAVISON

In memory of Kentaro Nagao

Abstract. Building on work by Kontsevich, Soibelman, Nagao and Efimov,
we prove the positivity of quantum cluster coefficients for all skew–symmetric
quantum cluster algebras, via a proof of a conjecture first suggested by Kont-
sevich on the purity of mixed Hodge structures arising in the theory of clus-
ter mutation of spherical collections in 3–Calabi–Yau categories. The result
implies positivity, as well as the stronger Lefschetz property conjectured by
Efimov, and also the classical positivity conjecture of Fomin and Zelevinsky,
recently proved by Lee and Schiffler. Closely related to these results is a
categorified “no exotics” type theorem for cohomological Donaldson–Thomas
invariants, which we discuss and prove in the appendix.
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1. Introduction

1.1. Background. This paper concerns the positivity conjecture for quantum clus-
ter algebras, which were introduced in [BZ05]. These algebras are certain combi-
natorially defined noncommutative algebras over Z[q±1/2], generated by a distin-
guished set of n-element subsets, for some fixed n, called the clusters. These clusters
are related to each other by a recursive procedure, called cluster mutation. We refer
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2 BEN DAVISON

the reader to the excellent references [Kel, Kel11b] for a comprehensive guide and
introduction to the background on cluster algebras, and we recall the necessary
definitions in Section 2. While quantum cluster mutations have a straightforward
definition, the behaviour of clusters after iterated cluster mutation is rather com-
plicated.

The quantum cluster positivity conjecture states that every element in every
cluster is a Laurent polynomial in the monomials of any other cluster, where the
coefficients of these Laurent polynomials are themselves Laurent polynomials in q1/2

with positive integer coefficients. This statement, without the positivity, was proved
at the outset of the subject by Berenstein and Zelevinsky in [BZ05]. Specialising the
quantum cluster positivity conjecture at q1/2 = 1 we obtain the classical positivity
conjecture of Fomin and Zelevinsky [FZ02], recently proved by Lee and Schiffler
[LS15] in the skew-symmetric case, and then in the case of geometric type by Gross,
Hacking, Keel and Kontsevich [GHKK14], via quite different methods, which are
not so distant from the mathematics of the current paper.

Some cases of the quantum version of the positivity conjecture have already been
proved. In [KQ14, Cor.3.3.10] the conjecture is proved by Kimura and Qin in the
case in which the cluster algebra has a seed with an acyclic quiver, building on ideas
of Nakajima [Nak11] in the classical case. By different methods, which are much
closer to the ones employed in this paper, Efimov [Efi] recovers positivity in the
case that either the cluster S′ containing the monomial that we wish to express in
terms of some other cluster S corresponds to an acyclic quiver, or in the case that S
itself corresponds to an acyclic quiver. In this instance Efimov proves the stronger
Lefschetz property (see Definition 2.2 below), which we prove in the general case.
Finally in [DMSS15], following [Efi], along with Maulik, Schürmann and Szendrői
we were able to prove the quantum cluster positivity conjecture, along with the
Lefschetz property, for all quantum cluster algebras admitting a seed, the quiver of
which admits a quasihomogeneous nondegenerate potential. This result is sufficient
to prove the conjecture in many, but not all, cases arising ‘in nature’.

The papers [Efi] and [DMSS15] closely follow the outline in the paper [Nag13].
The discussion [Nag13, Sec.7] is recommended for the reader wishing to gain some
heuristic insight into the functioning of the proof below (although effort has been
made to make the present paper reasonably self-contained). There are some dif-
ferences between our approach and that of [Nag13], which can be explained with
reference to the following principle, quoted from [Nag13]:

“Starting from a simple categorical statement, provide an identity in the motivic
Hall algebra. Pushing it out by the integration map, we get a power series
identity for the generating functions of Donaldson–Thomas invariants.”

Via elementary recursive arguments, the resulting power series expansions recover
mutated quantum cluster monomials.

We start with the same categorical statement — the existence and uniqueness of
Harder–Narasimhan filtrations — but we use it instead to provide an isomorphism
in the category of mixed Hodge modules over the space of dimension vectors, as
opposed to an equality in a Grothendieck ring. Our integration map (and the
resulting identities) are essentially the same as the map used by Nagao, which
was introduced by Kontsevich and Soibelman in their work on motivic Donaldson–
Thomas invariants and Hall algebras [KS08]. The benefit of working with these
mixed Hodge modules, which provide a categorification of the motivic Hall algebra,
is that we can make use of powerful results from Saito’s theory of mixed Hodge
modules [Sai89b, Sai90, Sai89c]. In particular, we make essential use of the concept
of purity of mixed Hodge modules, and Saito’s version of the decomposition theorem
of Beilinson, Bernstein, Deligne and Gabber [BBD83].
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The relation of purity to the quantum cluster positivity conjecture was first
made explicit in a conjecture suggested by Kontsevich, and explained by Efimov in
[Efi]. Before this, the deep connection between cluster mutation and the motivic
Donaldson–Thomas theory of 3–Calabi–Yau categories was established by Kont-
sevich and Soibelman in [KS08]. It is in this framework that the above quote of
Nagao makes sense. Via further work of Kontsevich and Soibelman [KS11] the
vanishing cycle cohomology of the particular moduli space underlying the element
in the motivic Hall algebra that produces quantum cluster coefficients under the
integration map carries a monodromic mixed Hodge structure, as defined in [KS11,
Sec 7]. Purity of this monodromic mixed Hodge structure implies the quantum
cluster positivity conjecture; this implication was proved by Efimov in [Efi]. Kont-
sevich and Efimov conjectured, and we prove below as Theorem 5.2, that this purity
statement holds generically1. We conclude the paper with the resulting derivation
of quantum cluster positivity, which we state as Theorem 2.4 below.

1.2. Standing conventions. Throughout the paper we set N = {r ∈ Z| r ≥ 0}.
All varieties, schemes and stacks are assumed to be complex. All quotients of

schemes by algebraic groups are taken in the stack theoretic sense, unless we specify
otherwise. All functors are derived, unless we specify otherwise.

Given an object M in an Abelian or triangulated category D, we denote by [M ]
the corresponding element in the Grothendieck group, which we denote by K0(D).

Given an algebra A, we denote by mod-A the category of finite-dimensional
right A-modules, and Mod-A denotes the category of all right A-modules. Where
we consider the derived category of A-modules, a superscript f .d will indicate that
we restrict to the full subcategory containing those complexes of modules with finite
dimensional total cohomology.

All quivers in the paper are finite. If s = (s1, . . . , st) is a sequence of vertices of
a quiver, we denote by s′ the truncated sequence (s1, . . . , st−1), and for t′ ≤ t we
denote by s≤t′ the truncated sequence (s1, . . . , st′).

For 1 ≤ s ≤ n, we will use the symbol 1s to denote the sth element in the natural
set of generators for Zn. We consider vectors as column vectors, so that the bilinear
form associated to a square matrix C is defined by (d′,d′′) := d′TCd′′.

IfM is a moduli space of modules for a finitely generated algebra A, and Mnilp ⊂
M is the reduced subspace whose geometric points correspond to nilpotent modules,
and F is a monodromic mixed Hodge module on M, we write Fnilp to denote
(Mnilp → M)∗(M

nilp → M)∗F .
If F ∈ D is an element of a triangulated category with a given t structure, we

denote the total cohomology

H(F) :=
⊕

i

Hi(F)[−i].

At numerous points we take ordered tensor products
⊗

γ∈S Fγ, where S is an
infinite ordered set. These are to be understood in the following sense. Firstly, it
will always be the case that each Fγ is canonically written as a direct sum 1⊕F ′

γ,
where 1 is a monoidal unit. Then we define

⊗

γ∈S

Fγ =
⊕

finite T⊂S

⎛
⎝⊗

γ∈T

F ′
γ

⎞
⎠ .

The direct sum includes the term 1 corresponding to the empty subset ∅ ⊂ S.

Remark 1.1. For the reader that is familiar with preceding work on the link between
Donaldson–Thomas theory and quantum cluster mutation in [Efi] and [DMSS15], we

1In fact we are able to do without the genericity assumption.
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flag and explain a technical difference in the approach of the present paper. Firstly,
recall (or see Section 2.2) that the mutation of an algebraic quiver with potential
need not be algebraic, in the sense of Definition 2.5. In [Efi] and [DMSS15] this
issue was handled as follows. We picked a formal potential W for Q and considered

the category A = Mod-Ĵac(Q,W ) of right modules over the associated completed
Jacobi algebra, defined in Section 2.2. We compared this category with the tilted

heart A′ = (Mod-Ĵac(Q,W ))(F
′
s,T

′
s [−1]), where (T ′

s ,F
′
s) is a torsion structure on

A, built recursively from the data of a sequence of vertices s, using the version of
Nagao’s procedure in [Nag13, Sec.3] that starts with a left tilt. I.e. in the case that

s is empty, F ′
s = Mod-Ĵac(Q,W ).

For certain choices of W , there is an equivalence of categories A′ ∼= Mod-Ĵac(Q′,W ′),
where now W ′ is algebraic, and so in the target category A′, Donaldson–Thomas
theory is more straightforward to set up. In particular, the moduli stack in the
motivic Hall algebra that we apply the integration map to and then conjugate by in
order to reproduce the operation of quantum cluster mutation (the stack of finite-
dimensional objects in T ′

s ) carries a monodromic mixed Hodge structure on its van-
ishing cycle cohomology, via the constructions of [KS11], since it may be considered
as a substack of the stack of objects in A′.

Note, however, that the intermediate torsion categories T ′
s≤t′

occurring in the

recursive definition of T ′
s are all subcategories of A, and not A′. Since we have no

guarantee that A = Mod-Ĵac(Q,W ) is the category of right modules of a (completed)
Jacobi algebra arising from an algebraic quiver with potential, it is thus not clear
how to use the Hodge-theoretic constructions of [KS11] in inductive arguments.

We remedy this by picking W to be an algebraic potential for Q, and tilting

right, i.e. the category we tilt towards is A′′ = (Mod-Ĵac(Q,W ))(F
′′
s [1],T ′′

s ), where
(T ′′

s ,F ′′
s ) is a torsion structure built using the version of Nagao’s recipe that starts

with a right tilt. I.e. if s is empty, we have T ′′
s = Mod-Ĵac(Q,W ). With this

approach, quantum cluster mutaton is given by conjugating by the integral of the
stack of finite-dimensional objects in F ′′

s . Furthermore, the categories F ′′
s≤t′

that

we encounter in inductive arguments are subcategories of A, which now has been
chosen to be the category of representations of a Jacobi algebra with an algebraic
potential, allowing us to use Hodge theory inductively.

As a result of this subtle change in setup, some of the statements below are
technically different from their counterparts in the literature, and for this reason,
as well as the hope that the paper can be relatively self-contained, some proofs are
repeated. Finally, due to this change, strictly speaking, the version of Kontsevich’s
conjecture that we prove as Theorem 5.2 is different to the version stated in [Efi].

1.3. Acknowledgements. I would like to thank Bernhard Keller for patiently
explaining cluster mutation to me, and Balázs Szendrői for introducing me to the
subject in the first place. During the writing of this paper, I was a postdoctoral
researcher at EPFL, supported by the Advanced Grant “Arithmetic and Physics of
Higgs moduli spaces” No. 320593 of the European Research Council. During the
revision of this paper I was supported by the University of Glasgow.

2. Quivers and cluster algebras

2.1. Quantum cluster algebras. Let Q be a finite quiver, i.e. a pair of finite sets
Q1 (the arrows) and Q0 (the vertices), along with two maps s, t : Q1 → Q0, taking
an arrow to its source and target, respectively. We assume that Q has no loops or
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2-cycles. We define two bilinear forms on ZQ0 :

(d′,d′′)Q =
∑

i∈Q0

d′
id

′′
i −

∑

a∈Q1

d′
t(a)d

′′
s(a),(1)

⟨d′,d′′⟩Q =(d′,d′′)Q − (d′′,d′)Q.(2)

We will omit the subscript Q where there is no chance of confusion. We fix a
labelling of the vertices Q0 by numbers {1, . . . , n}, and fix a number m ≤ n. This
defines for us an ice quiver, i.e. a quiver with the extra data of a subset of vertices
S ⊂ Q0, the so-called frozen vertices. In our case we set S = {m+ 1, . . . , n}. The
full subquiver Qprinc containing the vertices {1, . . . ,m} is called the principal part
of Q — these are the vertices that we are allowed to perform mutations at.

The mutation µi(Q) of Q at a vertex i ≤ m is performed in 3 steps.

(1) For all paths of length 2 passing through i, i.e. pairs of arrows b, c ∈ Q0

with t(b) = i = s(c), we introduce an arrow [cb] with s([cb]) = s(b) and
t([cb]) = t(c).

(2) For all arrows b ∈ Q1 incident to i, we replace b with an arrow b with the
opposite orientation.

(3) If for two vertices j, j′ there are r arrows going from j to j′, and r′ arrows
going from j′ to j, with r ≥ r′, we delete all of the arrows going from j′ to
j, and r′ of the arrows going from j to j′.

The set of frozen vertices is unchanged by mutation. This defines an automorphism
of the set of isomorphism classes of ice quivers without loops and 2-cycles. The
operation is well-defined because of the deletion step, and is an automorphism
because mutation at i is an involution on the set of such isomorphism classes.

Let L be a rank n free Z-module, and let Λ : L × L → L be a skew-symmetric
bilinear form. The quantum torus TΛ is freely generated, as a Z[q±1/2]-module, by
elements Xe, for e ∈ L, with multiplication on these elements defined by

(3) Xe ·X f = qΛ(e,f)/2Xe+f

and extended Z[q±1/2]-linearly to the whole of TΛ. We denote by FΛ the skew field
of fractions of TΛ. A toric frame for FΛ is a map

M : Zn → FΛ

defined by M(c) = τ(Xν(c)) with τ ∈ AutQ(q±1/2)(FΛ) and ν : Zn → L an isomor-
phism of lattices. We fix an identification L = Zn, and we fix an initial toric frame
M by setting τ = id. The pair (Q,M) is called the initial seed.

Since Q contains no 2-cycles, the isomorphism class of the ice quiverQ is encoded
in the n×m matrix B̃, defined by setting B̃ij = aji − aij , where aij is the number
of arrows a ∈ Q1 with s(a) = i and t(a) = j. We identify Λ with the n× n matrix

associated with Λ via the identification L = Zn. The matrix B̃ may alternatively
be described as the matrix given by expressing the bilinear form − ⟨•, •⟩Q in the

standard basis, and then deleting the last (n − m) columns. We say that B̃ is
compatible with Λ if

(4) B̃TΛ = Ĩ ,

where the first m columns of Ĩ are the identity matrix, and the remaining entries
are zeroes. We say the ice quiver Q is compatible with Λ if B̃ is.

The elements M(11), . . . ,M(1m) ∈ FΛ are called the cluster variables, while the
elements M(1m+1), . . . ,M(1n) are called the coefficients. So the cluster variables of
the initial seed are X11 , . . . , X1m , while the coefficients are X1m+1, . . . , X1n . Note
that the coefficients are unchanged by mutation.
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We define the ring AQ to be the free Z[q±1/2]-module generated by elements Y e,
for e ∈ Nm, with multiplication defined by

(5) Y e · Y f = q⟨f ,e⟩Q/2Y e+f .

If B̃ and Λ are compatible, then the map

ι : AQ → TΛ(6)

Y e → X−B̃·e

is a homomorphism of algebras. Let P = Z((q1/2)). We define ÂQ to be the comple-
tion of AQ ⊗Z[q±1/2]P with respect to the two-sided ideal generated by {Y 1s |s ≤ m}.

Consider the TΛ-module K =
∏

e∈Zn XeP , with TΛ-action defined via (3). The

map ι extends naturally to a map ι̂ : ÂQ → K, which is injective by (4), and we
define

T̂Λ :=
⋃

e∈Zn

Xe · Image(ι̂)

with multiplication as in (3). There is a natural inclusion of Z[q±1/2]-algebras

TΛ ⊂ T̂Λ.
If B̃ is the matrix associated to the ice quiver Q, and s is a vertex in the principal

part of Q, we define µs(B̃) to be the matrix associated to the mutated ice quiver
µs(Q). We define the mutation of toric frames via the rule

µs(M)(1i) =

{
M(1i) for i ̸= s,

M
(∑

brs>0 brs1r − 1s
)
+M

(
−∑

brs<0 brs1r − 1s
)

for i = s.

(7)

Mutation of seeds is defined by µs((Q,M)) = (µs(Q),µs(M)). The classical notion
of cluster mutation is recovered by specialising at q1/2 = 1.

We consider the initial seed (Q,M) defined above. If s = (s1, . . . , st) is a sequence
of mutations, we define µs(Q) := µst(. . .µs1(Q) . . .) and define µs((Q,M)) similarly.
If a quiverQ is understood, we write µs(M) to denote the toric frame of µs((Q,M)),
i.e. the toric frame defined recursively from the initial seed (Q,M), where at each
stage in the recursive procedure we use the mutated quiver to define the sum in
(7). The set

{
{µs(M)(1i)|i ≤ m} | s a sequence of vertices of Qprinc

}

is called the set of clusters, while the set

{µs(M)(d) | s a sequence of vertices of Qprinc, d ∈ Nn}

is called the set of cluster monomials. The quantum cluster algebra AΛ,Q is the sub

Z[q±1/2]-algebra of FΛ generated by the set

{µs(M)(d) | s a sequence of vertices of Qprinc, d ∈ Nm × Zn−m}.

Setting q1/2 = 1, we recover the ordinary commutative cluster algebraAQ of [FZ02].

Remark 2.1. We say that the cluster algebra AQ associated to an ice quiver Q
can be quantized if we can find a quiver Q′, containing Q as a full subquiver, such
that if we set the principal part of Q′ to be the same as the principal part of Q
(i.e. we only add frozen vertices), we can find a skew-symmetric n′ × n′ matrix Λ

compatible with Q′, where |Q′
0| = n′. By [DMSS15, Lem.4.4], this can always be

done.
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By a result of Berenstein and Zelevinsky [BZ05, Cor.5.2], the inclusion AΛ,Q ⊂
FΛ factors through the inclusion TΛ ⊂ FΛ. Equivalently, for a given mutated toric
frame M ′ = µs(M), and an arbitrary cluster monomial Y , we can write

(8) Y =
∑

d∈Zn

ad(q
1/2)M ′(d)

where the ad(q
1/2) ∈ Z[q±1/2].

Definition 2.2. We say that a Laurent polynomial a(q1/2) is of Lefschetz type if
it can be written as a sum of polynomials of the form (qd/2 − q−d/2)/(q1/2 − q−1/2)
for positive integers d.

In particular, a polynomial of Lefschetz type has positive integral coefficients.

Remark 2.3. Say b(q1/2) =
∑

i∈Z dim(V i)qi/2 is the characteristic polynomial of

a Z-graded finite-dimensional vector space. Then b(q1/2) is of Lefschetz type if and
only if there is a degree two operator l : V • → V •+2 such that lk : V −k → V k is an
isomorphism for all k. For example, by the hard Lefschetz theorem, this occurs if
V = H(X,Q)[dim(X)] is the (shifted) cohomology of a smooth projective variety.

The purpose of this paper is to prove the following theorem. The proof will be
completed in Section 6.

Theorem 2.4 (Quantum cluster positivity). Let AΛ,Q be a quantum cluster algebra
defined by a compatible pair (Q,Λ). For a mutated toric frame M ′, and a cluster
monomial Y , the Laurent polynomials ad(q

1/2) appearing in the expression (8) are
of Lefschetz type, and in particular, they have positive coefficients. Furthermore,
they can be written in the form ad(q

1/2) = bd(q)q
− deg(bd(q))/2 for bd(q) ∈ N[q], i.e.

each polynomial ad(q
1/2) contains only even or odd powers of q1/2.

2.2. Mutation of quivers with potential. Given a quiver as in Section 2.1, we
define CQ to be the free path algebra of Q over C. This algebra contains a two-

sided ideal CQ≥1 generated by the elements a ∈ Q1, and we define ĈQ to be the
topological algebra obtained by completing CQ with respect to this ideal.

Given a topological algebra A, we define Acyc := A/[A,A]. Let W ∈ ĈQcyc be a
potential, i.e. a formal linear combination of cyclic words in Q, where we consider
two cyclic words to be the same if we can cyclically permute one to the other.

Definition 2.5. We say that a potential is algebraic if it is in the image of the
injection

CQ/[CQ,CQ] →֒ ĈQcyc,

i.e. it is a finite linear combination of cyclic words in Q. We say that the quiver
with potential (QP for short) (Q,W ) is algebraic if W is.

Sometimes we will refer to a potential as a formal potential if we want to make
it clear that it is not necessarily algebraic.

Given a cyclic word c ∈ CQ/[CQ,CQ], and an arrow a ∈ Q1, we define

∂c/∂a =
∑

c̃=bag

gb,

where c̃ is a fixed lift of c to CQ. Extending by linearity and then continuity, we ob-

tain an operation ∂/∂a : ĈQcyc → ĈQ, restricting to an operation ∂/∂a : CQ/[CQ,CQ] →
CQ. Given a QP (Q,W ), we define the Jacobi algebra

Ĵac(Q,W ) := ĈQ/⟨∂W/∂a|a ∈ Q1⟩,
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and if W is algebraic, we define the algebraic Jacobi algebra

Jac(Q,W ) := CQ/⟨∂W/∂a|a ∈ Q1⟩.

IfW is an algebraic potential, by pulling back along the map Jac(Q,W ) → Ĵac(Q,W )

we obtain a functor mod-Ĵac(Q,W ) → mod-Jac(Q,W ).

Proposition 2.6. Let W be an algebraic potential for a quiver Q. The functor

mod-Ĵac(Q,W ) → mod-Jac(Q,W ) is an equivalence after restricting the target to
(mod-Jac(Q,W ))nilp, the full subcategory of finite dimensional Jac(Q,W )-modules
for which all sufficiently long paths act by the zero map.

Proof. Let M be a finite-dimensional Jac(Q,W )-module for which every element
z ∈ CQ≥1 acts nilpotently. Then by Engel’s theorem, for the Lie algebra

Image (CQ≥1 → EndC(M)) ,

there is a basis of M on which every element of Jac(Q,W ) acts via strictly up-
per triangular matrices, and so the action of CQ factors through the map CQ →
CQ/CQ≥dim(M), and in particular M carries a continuous ĈQ action inducing the
given Jac(Q,W )-action. Conversely, assume that a Jac(Q,W )-action on a vector

space extends to a continuous ĈQ-action. Then write the action of z ∈ Jac(Q,W )≥1

as an upper triangular matrix, withD denoting the maximummodulus of the entries
on the diagonal. If D ̸= 0, we may consider the action of z +D−1z2 +D−2z3 + . . .
to arrive at a contradiction, and so we deduce that the action of z is via a strictly
upper triangular matrix. By Engel’s theorem again, all paths of length greater than
dim(M) act on M via the zero map. !

If (Q,W ) is a QP, and s ∈ Q0, we denote by S(Q)s the nilpotent Ĵac(Q,W )-
module with dimension vector 1s, which by Proposition 2.6 we may also consider
as a nilpotent Jac(Q,W )-module if (Q,W ) is an algebraic QP.

Given a QP (Q,W ), and a principal vertex s ≤ m, we recall the definition
of the mutated QP µs((Q,W )) from [DWZ08, DWZ10], which are comprehensive
references for the material in this subsection. We assume that Q has no loops
or 2-cycles. The premutation µ

′
s((Q,W )) = (µ′

s(Q),µ′
s(W )) is defined on the Q

component in the same way as mutation, except we leave out the deletion step (so
µ
′
s(Q) may contain 2-cycles). We obtain Ws from W by replacing every instance of

cb in W , where cb is a path of length two passing through s (as in step one of the
definition of mutation for Q), with [cb]. We then define

µ
′
s(W ) = Ws +

∑

c,b∈Q1

s(c)=t(b)=s

[cb]bc.

Given a quiver Q′ with vertex set equal to our fixed set {1, . . . , n}, we define

R :=
⊕

s∈Q′
0

C ∼= C⊕n,

and for s ∈ Q′
0 we define es ∈ R to be the idempotent corresponding to the vertex s.

We fix an R-bimodule EQ′ with dim(ejEQ′ei) equal to the number of arrows from
i to j in Q′. Fixing an identification between the arrows of Q′ from i to j, and a

basis for the vector space ejEQ′ei, defines an isomorphism ĈQ′ ∼= T̂R(EQ′), where

T̂R(EQ′ ) is the completed free unital tensor algebra generated by the R-bimodule
EQ′ . Let W be a formal potential for Q′. By the splitting theorem [DWZ08,
Thm.4.6] there is an isomorphism of completed unital R-algebras

ψ : T̂(EQ′) ∼= T̂(EQ′
triv

⊕R-bimod EQ′
red

)
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such that ψ(W ) = Wtriv+Wred, with Wtriv ∈ T̂(EQ′
triv

)cyc and Wred ∈ T̂(EQ′
red

)cyc,

such that Ĵac(Q′
triv,Wtriv) ∼= R in the category of completed R-algebras, and such

that Wred can be expressed as a formal linear combination of cyclic words of length
at least three. Here, Q′

triv is the quiver with dim(ejEQ′
triv

ei) arrows from i to j, and

Q′
red is defined similarly. We define (Q′,W )red := (Q′

red,Wred). Finally, we define

µs((Q,W )) = (µ′
s(Q),µ′

s(W ))red.

The mutated QP is well-defined up to isomorphisms induced by isomorphisms of
completed R-algebras.

We say that W is nondegenerate with respect to mutation at s if the underlying
quiver of µs((Q,W )) is equal to µs(Q), which occurs if and only if the underlying
quiver contains no 2-cycles. Given a sequence s = (s1, . . . , st) of vertices of Q0, we
say that W is nondegenerate with respect to s if for all t′ ≤ t, the underlying quiver
of µ s≤t′

(Q,W ) contains no 2-cycles so that, in particular, each µ s≤t′
(Q,W ) is well-

defined, recursively. We say that W is nondegenerate if it is nondegenerate with
respect to all sequences of principal vertices. Since we work over C, by [DWZ08,
Cor.7.4], there always exists an algebraic nondegenerate potential for Q.

3. Some Donaldson–Thomas theory

3.1. Monodromic mixed Hodge modules. Let X be a complex variety. We
define as in [Sai89c, Sai90] the derived category D(MHM(X)) of mixed Hodge
modules on X , or we refer the reader to [Sai89b] for an overview. We refer the
reader to [KS11, Sec.4, Sec.7] for a discussion of the related concept of monodromic
mixed Hodge structures, which we expand upon to suit our purposes here.

The category of monodromic mixed Hodge modules on X , denoted MMHM(X),
is defined as the Serre quotient of two subcategories of MHM(X × A1). Firstly we
define BX to be the full subcategory of MHM(X×A1) containing those F such that
for every x ∈ X , the total cohomology of the pullback ({x}×Gm →֒ X ×A1)∗F is
an admissible variation of mixed Hodge structure on Gm. Via Saito’s description of
MHM(X×A1), we may alternatively describe BX as the subcategory of MHM(X×
A1) obtained by iterated extension of mixed Hodge modules ICY (L)[dim(Y )], where
L is a pure variation of Hodge structure on a dense open subvariety Y ′ of the regular
locus Yreg of a closed irreducible subvariety Y ⊂ X ×A1, where Gm acts by scaling
A1 and this action restricts to an action on Y ′. Secondly, we define CX to be
the full subcategory of MHM(X × A1) containing those F obtained as π∗G[1], for
G ∈ MHM(X), and π : X×A1 → X the natural projection. A mixed Hodge module
F is in CX if and only if the total cohomology of ({x} × A1 → X × A1)∗F is an
admissible variation of mixed Hodge structure for all x ∈ X . Again, via Saito’s
results, we may alternatively describe CX as the smallest full subcategory, closed
under extensions, containing ICY×A1(L)[dim(Y ) + 1] for Y ⊂ X an irreducible
closed subvariety, and L a pure variation of Hodge structure on Y ′ × A1, a dense
open subvariety of Yreg×A1, since by [SZ85], any such variation of Hodge structure
is trivial along the fibres of the projection X×A1 → X . The category CX is a Serre
subcategory of BX .

Following [KS11, Sec.7] we define

MMHM(X) := BX/CX .

The natural functor D(BX)/DCX (BX) → D(BX/CX) is an equivalence of trian-
gulated categories, where DCX (BX) ⊂ D(BX) is the full subcategory containing
those objects whose cohomology objects are in CX . The subcategory DCX (BX) is
stable under the Verdier duality functor DX×A1 defined on D(MHM(X ×A1)), and
so the category D(MMHM(X)) = D(BX/CX) inherits a Verdier duality functor,
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which we denote Dmon
X . We define the four functors f∗, f !, f∗, f! for categories of

monodromic mixed Hodge modules via the same observation. We embed MHM(X)

inside MMHM(X) via direct image along the zero section (X × {0}
z−→ X × A1).

Since the associated graded object GrW (F) of an object in CX is also in CX , an
object in MMHM(X) has a well-defined weight filtration; if

F G

ϖ

!!!!
F ′
!"

""

∼= ## G′′

represents an isomorphism F → G in BX/CX (i.e. F/F ′ and ker(ϖ) are elements
of CX), then after applying the functor Wn to the diagram it represents the iso-
morphism WnF ∼= WnG in the quotient category by exactness of the functor Wn

[Sai88, 5.1.14].

Definition 3.1. We say that an object of MMHM(X) is pure of weight n if
Wn−1F = 0 and WnF = F . We say that an object F ∈ D(MMHM(X)) is pure of

weight n if Hl(F) is pure of weight l+n for all l, or we will just say that F is pure
if it is pure of weight zero.

We define H(F) :=
⊕

i∈Z H
i(F)[−i], and so the object F ∈ D(MMHM(X)) is

pure if and only if H(F) is.

Definition 3.2. We define D≥,lf(MMHM(X)) ⊂ D(MMHM(X)) to be the full sub-
category containing those objects F satisfying the following condition: for each con-
nected component Y ∈ π0(X), there exists a NY ∈ Z such that GrgW (H(F)|Y ) = 0
for all g ≤ NY . Here H(F) is the total cohomology of F , considered as an object
of D(MMHM(X)) via the cohomological grading (i.e. as a complex with zero dif-
ferential). We require also that for all g > NY , GrgW (H(F)|Y ) ∈ Db(MMHM(Y )).
We define D≤,lf(MMHM(X)) similarly.

The categories D≥,lf(MMHM(X)) and D≤,lf(MMHM(X))op are equivalent via
Verdier duality. For two varieties X and Y we define an external tensor product
D≥,lf(MMHM(X))×D≥,lf(MMHM(Y )) → D≥,lf(MMHM(X × Y )) by setting

(9) F " G := (X × Y × A1 × A1 idX×Y ×+−−−−−−−→ X × Y × A1)∗π
∗
1,3F ⊗ π∗

2,4G

where πi,j is the projection onto the ith and jth factors, and the tensor product on
the right hand side of (9) is the usual tensor product of complexes of mixed Hodge
modules. If Y is a point, and F ∈ D≥,lf(MMHM(X)) and G ∈ D≥,lf(MMHM(Y )),
we will denote by F ⊗ G ∈ D≥,lf(MMHM(X)) their external tensor product.

Proposition 3.3. The weight filtrations on MMHM(X) and MMHM(Y ) are com-
patible with the external tensor product, which is biexact.

The part of the proposition regarding weight filtrations is an easy consequence
of [KS11, Prop.4]. We will mainly use two special cases: the external product of
mixed Hodge modules with trivial monodromy in the sense of Definition 3.6, where
the proposition is [Sai90, (3.8.2)], and the case where X and Y are a point, where
the proposition is a special case of [KS11, Prop.4].

Proof. For the biexactness statement, first note that for F ∈ BX and G ∈ BY , as
in [KS11, Lem.1], there is an isomorphism

(idX×Y ×+)!
(
π∗
1,3F ⊗ π∗

2,4G
)
→ (idX×Y ×+)∗

(
π∗
1,3F ⊗ π∗

2,4G
)

considered as a morphism in Db(MMHM(X × Y )). The map (idX×Y ×+) is affine,
and so (idX×Y ×+)∗ is right exact, while (idX×Y ×+)! is left exact. In addition,
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(idX×Y ×+)∗ increases weights, while (idX×Y ×+)! decreases them, which gives the
statement regarding the weight filtrations, as in [KS11, Prop.4]. !

If (X, τ : X × X → X, η : Spec(C) → X) is a monoid in the category of lo-
cally finite type schemes, with τ of finite type, and so in particular the induced
map π0(X) × π0(X) → π0(X) has finite fibres, we define tensor products "τ for
D≥,lf(MMHM(X)) and for D≤,lf(MMHM(X)) by setting

(10) F "τ G := τ∗ (F " G) .

Saito proved [Sai90, (4.5.3),(4.5.4)] that for fixed w ∈ Z, the category of pure weight
w mixed Hodge modules on a variety X is semisimple, and if F ∈ D(MHM(X)) is
pure of weight w for some w, and f is a proper map of varieties, then there is a
noncanonical isomorphism

f∗F ∼= H(f∗F)

into pure weight w summands. This is the version, in the framework of Saito’s
theory, of the famous decomposition theorem of Beilinson, Bernstein and Deligne
[BBD83].

Proposition 3.4. If τ is proper, the tensor product "τ takes pairs of pure objects
to pure objects. If τ is moreover finite, then "τ is biexact.

Proof. The map τ×+ defining "τ can be factorised as (τ× idA1)(idX×X ×+). By
our assumption on τ, the map (τ × idA1) is proper, and so its associated direct
image functor preserves purity by [Sai90, (4.5.2), (4.5.4)], while (idX×X ×+) is the
map defining the external tensor product on the category D(MMHM(X)), and the
associated direct image functor preserves the weight filtration by Proposition 3.3.
The biexactness follows similarly from Proposition 3.3, and the fact that the direct
image functor for finite morphisms is exact. !

Let X be a smooth variety, and let f be a regular function on X . We denote
by X0 the preimage of zero under f , and set X≤0 = f−1(R≤0). We define the
underived functor

ΓX≤0
F(U) = ker (F(U) → F(U \ (U ∩X≤0))) ,

and set φfF = (RΓX≤0
F)[1]|X0 . By the construction of Saito’s categoryD(MHM(X)),

the functor φf : D(X) → D(X), defined at the level of derived categories of Abelian
sheaves with constructible cohomology, lifts to a functor φf : D(MHM(X)) →
D(MHM(X)). As in [KS11, Sec.7], we define the functor

φmon
f : D(MHM(X)) → D(MMHM(X))

F 0→ (X ×Gm → X × A1)!φf/u(X ×Gm → X)∗F

where u is a coordinate on Gm.

Proposition 3.5. The functor φmon
f takes objects of MHM(X) to objects of MMHM(X);

in other words it is exact with respect to the natural t structures on D(MHM(X))
and D(MMHM(X)).

Proof. Exactness follows from the corresponding statement at the level of perverse
sheaves. The functors (X × Gm → X)∗[1] and φf/u[−1] are exact [BBD83], and

(X × Gm → X × A1)! is left exact, since (X × Gm → X × A1) is affine, and right
exact, since (X ×Gm → X × A1) is quasi-finite. !

For X a not necessarily smooth complex quasiprojective variety, we may define
φmon

f = i∗φmon
f

i∗ where i is a closed embedding into a smooth variety X, and f is a

function on X extending f . There is a natural isomorphism Dmon
X φmon

f
∼= φmon

f DX

by the main theorem of [Sai89a]. If p : X → Y is a proper map of varieties, and f
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is a regular function on Y , then there is a natural isomorphism φmon
f p∗ ∼= p∗φ

mon
fp

by [Sai90, Thm.2.14].
Let X and Y be a pair of complex varieties, and let f and g be regular functions

on them. Then by the Thom–Sebastiani theorem due to Saito [Sai], proved at
the level of underlying perverse sheaves by Massey [Mas01], there is a natural
equivalence of functors
(11)(
φmon

f!g(F " G)
)
|f,g=0

∼= φmon
f F"φmon

g G : MHM(X)×MHM(Y ) → MMHM(X×Y ).

For further discussion of this isomorphism, as well as the compatibility of these
two versions of the Thom–Sebastiani theorem, we refer the reader to Schürmann’s
appendix to [BBD+15].

Definition 3.6. We say an object F ∈ D(MMHM(X)) has trivial monodromy if
it is in the essential image of the map

(X × {0}
z−→ X × A1)∗ : D(MHM(X)) → D(MMHM(X)).

Let L = Hc(A
1,Q), i.e. L is the pure one-dimensional Hodge structure concen-

trated in cohomological degree 2. The category D(MMHM(pt)) contains a square
root of L; we set L1/2 := Hc(A

1,φmon
x2 QA1), and we have L1/2 ⊗ L1/2 ∼= L via the

Thom–Sebastiani theorem. The monodromic mixed Hodge module L1/2 is pure and
has perverse degree 1; it is given explicitly by j!L, where L is the rank one local
system on C∗ with monodromy given by multiplication by −1, and j : C∗ → A1 is
the inclusion.

Remark 3.7. Note that L1/2 does not have trivial monodromy, and in fact there
is no square root of L considered as an object of D(MHM(pt)). It follows that if
we have a direct sum decomposition in D(MMHM(pt))

H ∼=
⊕

g∈Z

(
Lg/2

)⊕cg
,

with cg ∈ N for all g, then H has trivial monodromy if and only if cg = 0 for all
odd g.

In what follows, if X is a connected irreducible algebraic variety, we set

ICX(Q) = ICX(QXreg )⊗ L−dim(X)/2,

i.e. if dim(X) is even, we shift the usual intersection complex mixed Hodge mod-
ule so that its underlying complex of perverse sheaves is in the natural heart of
D(Perv(X)), and considered as an object in D(MHM(X)), the object ICX(Q) is
pure. In the odd case we are doing the same thing, but only after passing to the
larger category of monodromic mixed Hodge modules on X . If X is a disjoint union
of irreducible algebraic varieties, we set

ICX(Q) =
⊕

Y ∈π0(X)

ICY (Q).

We set

H(X,Q)vir := H((X → pt)∗ICX(Q)).

If X is a proper variety, then H(X,Q)vir is pure. We extend this notation by setting

H(pt /C∗,Q)vir := H(pt /C∗,Q)⊗ L1/2.

We say a monodromic mixed Hodge module F ∈ MMHM(pt) is of Tate type if it
is obtained by taking iterated extensions of the monodromic mixed Hodge modules
Lg/2[g] for g ∈ Z. We say an object F ∈ D(MMHM(pt)) is of Tate type if each
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Hp(F) is. If X is a disjoint union of points, then there is a natural equivalence of
categories

(12) D(MMHM(X)) ∼=
∏

x∈X

D(MMHM(pt)),

and we say an object F ∈ D(MMHM(X)) is of Tate type if each of its factors under
the equivalence (12) is.

3.2. Moduli spaces of quiver representations and stability conditions. Let
Q be an ice quiver. Recall that we always identify the vertices ofQ with the numbers
{1, . . . , n}, and set the vertices {m+1, . . . , n} to be the frozen vertices, in the sense
explained at the start of Section 2.1. Let d ∈ Nm be a dimension vector, supported
on the principal part of Q. We define

X(Q)d :=
∏

a∈Q1

Hom(Cdt(a) ,Cds(a)),

and

X(Q) =
∐

d∈Nm

X(Q)d,

and define
Gd :=

∏

i≤m

GLdi .

The group Gd acts on X(Q)d by change of basis of each of the spaces Cdi . We let
M(Q)d denote the stack of d-dimensional right modules of CQ. Then

M(Q)d ∼= X(Q)d/Gd,

where we take the stack-theoretic quotient. We set

M(Q) :=
∐

d∈Nm

M(Q)d.

Note that we will only ever consider moduli stacks of modules supported on the
principal parts of quivers.

A (Bridgeland) stability condition for the quiver Q is an element ζ ∈ Hn
+, where

H+ := {r exp(iθ)|θ ∈ [0,π), r ∈ R>0}.

Given a stability condition ζ, we define Zζ : K0(mod-CQ) → C by

Zζ([M ]) = ζ · dim(M),

and we define the slope Ξζ(M) ∈ [0, 2π) of an object M ∈ Df .d(Mod-CQ) satisfying

Zζ([M ]) ̸= 0 to be the argument of Zζ([M ]). If 0 ̸= M ∈ mod-CQ then Ξζ(M) ∈
[0,π). Similarly, for nonzero d ∈ Nn, we define Ξζ(d) ∈ [0,π) to be the argument

of Zζ(d). A CQ-module M is ζ-stable if for all proper submodules M ′ ⊂ M we

have the inequality Ξζ(M ′) < Ξζ(M). If it is only true that Ξζ(M ′) ≤ Ξζ(M), for
all proper submodules M ′ ⊂ M , we say that M is ζ-semistable.

Fix a dimension vector d ∈ Nm. If ζ ∈ Hn
+, we can first of all replace ζ with

a stability condition in (i + Q)n such that the sets of ζ-stable and ζ-semistable
d-dimensional modules are unchanged and such that Re(ζ · d) = 0, by [DMSS15,
Lem.4.21]. Then we can pick a N ∈ N such that N Re(ζs) ∈ Z for all s ≤ m. We
linearise the Gd-action on X(Q)d via the character

χ : (gs)s≤m 0→
∏

s≤m

det(gs)
N Re(ζs)

and define X(Q)ζ -ss
d

to be the scheme of semistable points with respect to this
linearisation. By [Kin94], using the geometric invariant theory constructions of
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[MFK94], the GIT quotient X(Q)d//χGd provides a coarse moduli space of ζ-
semistable d-dimensional right CQ-modules. For K a field extension of C, the
K-points of this moduli space are in bijection with isomorphism classes of direct
sums of ζ-stable KQ-modules [Kin94, Prop.3.2] of the same slope. We denote this

GIT quotient by M(Q)ζ -ss
d

, and define

M(Q)ζ -ss :=
∐

d∈Nm

M(Q)ζ -ss
d

.

We denote by

(13) pζ
d
: M(Q)ζ -ss

d
→ M(Q)ζ -ss

d

the map from the stack-theoretic quotient to the coarse moduli space.

We abbreviate M(Q)d := M(Q)
ζdeg

d
, where ζdeg is the degenerate stability con-

dition (i, . . . , i). In words: if a stability condition is missing from a coarse moduli
space, it is defined to be the coarse moduli space of semisimple modules or, equiv-
alently, the affinization. We denote by

(14) qζ
d
: M(Q)ζ -ss

d
→ M(Q)d

the map to the affinization.

Convention 3.8. Wherever a space, map, or monodromic mixed Hodge module
is defined with respect to a subscript d denoting a dimension vector, and that di-
mension vector is replaced by a slope γ ∈ [0,π), the direct sum over all d ∈ Nm

satisfying d = 0 or Ξζ(d) = γ is intended. If the subscript is missing altogether,
then the direct sum over all d ∈ Nm is intended.

Given a stability condition ζ ∈ Hn
+, a finite-dimensional CQ-module M admits

a unique filtration (the Harder–Narasimhan filtration)

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mh = M

such that each subquotient Mg/Mg−1 is ζ-semistable, and the slopes of the sub-
quotients M1,M2/M1, . . . ,Mh/Mh−1 are strictly decreasing.

For d ∈ Nm, let HNd denote the set of Harder–Narasimhan types for d, i.e. the
set of tuples of nonzero dimension vectors (d1, . . . ,dh) (for varying h) such that∑

1≤g≤h d
g = d and Ξζ(dg) > Ξζ(dg+1) for all g < h. We define

HN =
∐

d∈Nm

HNd .

For d ∈ HNd we let X(Q)ζ
d
⊂ X(Q)d denote the locally closed subvariety of points

for which the Harder–Narasimhan filtration of the associated module, with respect
to the stability condition ζ, is in d, and denote by M(Q)ζ

d
the corresponding stack.

The space X(Q) admits a decomposition into locally closed subvarieties

X(Q) =
∐

d∈HN

X(Q)ζ
d
,

and the stack M(Q) admits a decomposition into locally closed substacks

M(Q) =
∐

d∈HN

M(Q)ζ
d

by [Rei03, Prop.3.4]. If S ⊂ [0,π) is an interval, we denote by X(Q)ζS ⊂ X(Q)
the locally closed subvariety whose points correspond to modules for which the
Harder–Narasimhan type d = (d1, . . . ,dh) satisfies Ξζ(dg) ∈ S for all g ≤ h. We
define

X(Q)ζS,d := X(Q)ζS ∩X(Q)d
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and define M(Q)ζS,d likewise. We denote by

(15) pζS,d : M(Q)ζS,d → M(Q)d

the map to the coarse moduli space (equivalently, the affinization, as the target
is given the degenerate stability condition). As usual, if the dimension vector d

is missing from (15), the disjoint union over all d ∈ Nm = N(Qprinc)0 is intended,

although the moduli stack M(Q)ζS,d will be empty if d ̸= 0 and Ξζ(d) /∈ S.

Let W ∈ CQ/[CQ,CQ] be an algebraic potential. Then taking the trace defines
a function Tr(W ) on X(Q), defined by

Tr

⎛
⎝ ∑

c a cycle in Q

acc

⎞
⎠ : (ρ) 0→

∑

c

acTr(ρ(c)).

The restriction of this function to X(Q)d is Gd-invariant, and so Tr(W ) induces a
function

Tr(W ) : M(Q) → C.

We denote by

T r(W ) : M(Q) → C

the induced function on the coarse moduli space. As substacks of M(Q)d, there is
an equality between crit(Tr(W )d) and the stack of d-dimensional right Jac(Q,W )-
modules.

Convention 3.9. If •(Q)...... is one of the spaces defined above, for which there is a
natural map •(Q)...... → M(Q), we define

•(Q,W )...... := •(Q)...... ×M(Q) crit(Tr(W )).

Similarly, we define

•(Q)...,nilp... := •(Q)...... ×M(Q) M(Q)nilp

where M(Q)nilp ∼= Nm is the reduced vanishing locus of the infinite set of functions
{T r(c)| c a nontrivial cycle in Q}. If •(Q)...... is a stack and not a scheme, we denote
by Dim...

... the map from •(Q)...... to Nm taking a connected component to its dimension
vector. If •(Q)...... is a scheme we denote this map dim...

.... When the domain of the
maps Dim...

... or dim
...
... are clear, we will omit the superscripts and subscripts, to ease

the notation. If F ∈ D(MMHM(•(Q)......)), then we define

Fnilp := F|•(Q)...,nilp...
.

3.3. Categorification of the completed quantum space ÂQ. The spaceM(Q)
is a monoid in the category of schemes, with monoid map

⊕ : M(Q)×M(Q) → M(Q)

acting, at the level of points, by taking a pair of semisimple modules to their
direct sum. This map is finite by [MR, Lem.2.1] (for the sake of completeness we
reprove this as Lemma 3.20 below). It follows that the monoidal product "⊕ on the
category D≥,lf (MMHM(M(Q))), defined in Section 3.1, is bi-exact, and preserves
pure objects, by Proposition 3.4.

The map of schemes

dim: M(Q) → Nm

taking a CQprinc-module to its dimension vector is a map of monoids, where the
monoidal structure on Nm is provided by addition. It follows that the functor

dim∗ : D≥,lf (MMHM(M(Q))) → D≥,lf(MMHM(Nm))
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is a monoidal functor, where the domain category carries the monoidal product "⊕,
and the target carries the monoidal product "+. The map

Dim: M(Q) → Nm

is the composition dim ◦p, with p defined as in (15).
We next explain how to twist the above monoidal structures to form a categorifi-

cation of the completed algebra ÂQ. Given an object F ∈ D≥,lf (MMHM(M(Q))),
we denote by Fd the summand supported on M(Q)d. We define the twisted
monoidal product

(16) F "
tw
⊕ G :=

⊕

d′,d′′∈Nm

Fd′ "⊕ Gd′′ ⊗ L⟨d′′,d′⟩Q/2.

We define the twisted monoidal product on D≥,lf(MMHM(Nm)) via equation (16)
again, and so the functor dim∗ is again a monoidal functor, if we give the domain
and the target categories the twisted monoidal product.

Remark 3.10. By skew-symmetry of ⟨•, •⟩Q and properness of ⊕, the twisted
monoidal product commutes with Verdier duality, after swapping the arguments;
i.e. there is a natural isomorphism

Dmon
M(Q)F "

tw
⊕ Dmon

M(Q)G
∼= Dmon

M(Q)

(
G "

tw
⊕ F

)
.

We define the integration map

χQ : K0

(
D≥,lf(MMHM(Nm))

)
→ ÂQ(17)

[F ] 0→
∑

d∈Nm

χq([Fd],−q1/2)Y d,(18)

where for G ∈ D≥,lf(MMHM(pt)),

χq([G], q
1/2) :=

∑

i∈Z

∑

r∈Z

(−1)i dim
(
GrrW (Hi(G))

)
qr/2.

We restrict to D≥,lf(MMHM(Nm)) so that the coefficients on the right hand side
of (18) belong to Z((q1/2)).

Remark 3.11. Note that χq(L
1/2, q1/2) = −q1/2 since L1/2 is pure of weight one.

The sign that appears in (18) means that L1/2 plays the role of q1/2 in the theory of
quantum cluster mutation. The ‘classical limit’, recovering the theory of commuta-
tive cluster algebras from quantum cluster algebras, is given by q1/2 = 1. This is not
the traditional classical limit of motivic Donaldson–Thomas theory, see e.g. [KS08,
Sec.7.1], which is obtained by setting q1/2 = −1, or equivalently, taking the Euler
characteristic. This choice of signs means that quantum cluster positivity follows
directly from purity:

Proposition 3.12. Let F ∈ D≥,lf(MMHM(Nm)) be pure. Then

χQ([F ]) ∈ N((q1/2))[[Y 1s |s ≤ m]],

i.e. χQ([F ]) has only positive coefficients.

The following proposition, which is a consequence of Proposition 3.4, explains
the sense in which D≥,lf(MMHM(Nm)) is a categorification of ÂQ.

Proposition 3.13. The map χQ is a homomorphism of rings, where K0

(
D≥,lf(MMHM(Nm))

)

is given the noncommutative product induced by the twisted monoidal product "tw
⊕ .
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3.4. Critical cohomology. Let X be a smooth complex variety, and let f be a
regular function on X . Furthermore, let X carry a G-action, for G an algebraic
group, such that f is invariant with respect to the G-action, inducing a function
f on the stack-theoretic quotient X/G. Let p : X → Y be a map of varieties,
which is also G-invariant, inducing a map p : X/G → Y . We recall the definition of
H(p∗φ

mon
f QX/G) and H(p!φ

mon
f QX/G), which is a relative version of the definition

of the equivariant cohomology of the vanishing cycle complex from e.g. [KS11,
Sec.7], see [DM16, Sec.2.2] for a fuller discussion.

For simplicity we will assume that X is equidimensional — if M is obtained by
taking the disjoint union of a number of smooth connected global quotient stacks
Xi/Gi, we define

H(p∗φ
mon
f QM) =

⊕

Xi/Gi∈π0(M)

H
(
p|Xi/Gi,∗

(
φmon

f |Xi/Gi
QXi/Gi

))

and we extend all related definitions in the same manner.
Let V1 ⊂ V2 ⊂ . . . be an ascending sequence of finite-dimensionalG-representations,

which we identify with the total spaces of their underlying vector spaces, consid-
ered as G-equivariant varieties. Assume that we have a sequence U1 ⊂ U2 ⊂ . . . of
G-equivariant varieties satisfying the following conditions:

(1) UN ⊂ X × VN for all N , and UN is acted on scheme-theoretically freely by
G.

(2) codimX×VN ((X × VN ) \ UN) 0→ ∞ as N 0→ ∞.
(3) The map πN : UN → UN/G is a principal G-bundle in the category of

schemes.

We denote by fN : UN/G → C the induced function, and pN : UN/G → Y the
induced map. We define

H(p∗φ
mon
f QX/G) := lim

N -→∞
H(pN,∗φ

mon
fN QUN/G)

H(p!φ
mon
f QX/G) := lim

N -→∞

(
H(pN,!φ

mon
fN QUN/G)⊗ L− dim(Vi)

)

H(p∗φ
mon
f ICX/G(Q)) :=H(p∗φ

mon
f QX/G)⊗ L(dim(G)−dim(X))/2

H(p!φ
mon
f ICX/G(Q)) :=H(p!φ

mon
f QX/G)⊗ L(dim(G)−dim(X))/2.

In the first two equations, the limit exists because in each fixed cohomological
degree, the cohomology stabilises for sufficiently large N by our codimension as-
sumption on UN — see [DM16, Sec.2]. Since in the first equation, the right hand
side vanishes in fixed sufficiently low degree, and by [Sai90, Prop.2.26], the direct
image increases weight, it follows that H(p∗φ

mon
f QX/G) ∈ D≥,lf(MMHM(Y )), and

also that H(p!φ
mon
f QX/G) ∈ D≤,lf(MMHM(X)) by commutativity of φmon

fN
with

the Verdier duality functor [Sai89a].
Let Z ⊂ X be a G-equivariant subvariety. We define ZN := (Z × VN ) ∩ UN .

Then we define

H
(
p∗

(
φmon

f QX/G

)
Z/G

)
:= lim

N -→∞
H

(
pN,∗

(
φmon

fN QUN/G

)
ZN/G

)

H
(
p!
(
φmon

f QX/G

)
Z/G

)
:= lim

N -→∞

(
H

(
pN,!

(
φmon

fN QUN/G

)
ZN/G

)
⊗ L− dim(Vi)

)

H
(
p∗

(
φmon

f ICX/G(Q)
)
Z/G

)
:=H

(
p∗

(
φmon

f QX/G

)
Z/G

)
⊗ L(dim(G)−dim(X))/2

H
(
p!
(
φmon

f ICX/G(Q)
)
Z/G

)
:=H

(
p!
(
φmon

f QX/G

)
Z/G

)
⊗ L(dim(G)−dim(X))/2.
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Definition 3.14. We say that the map p : X/G → Y can be approximated by proper
maps if we can pick a system of UN , continuing the notation from above, such that
each of the maps pN : UN/G → Y is a proper map.

For p : X/G → Y a map to a variety, and f a regular function on X/G, we only
define the total cohomology of the pushforward of vanishing cycles to Y . There is

no a priori obvious comparison between H
(
τ∗ H(p∗φ

mon
f QX/G)

)
and

HG(X,φmon
f

Q) := H((τp)∗φ
mon
f QX/G),

where the equivariant cohomology of the vanishing cycle complex is defined as in
[KS11], τ : Y → pt is the structure morphism, and f is the induced function on X .
By contrast, in the case of morphisms that are approximated by proper maps, we
have the following degeneration result, which is one of the many uses of this notion.

Lemma 3.15. Assume that the map p : X/G → Y from the smooth stack X/G to
the variety Y is approximated by proper maps, f is a regular function on X/G which
can be written as f ′p for some function f ′ on Y , and τ : Y → pt is the structure
morphism. Then there is a (noncanonical) isomorphism

H((τp)∗φ
mon
f QX/G) ∼= H

(
τ∗ H(p∗φ

mon
f QX/G)

)
.

Proof. Fix a cohomological degree l, and fix a sufficiently large N ∈ N. Then there
is a chain of isomorphisms

Hl((τp)N,∗φ
mon
fN QUN/G) =Hl((τpN )∗φ

mon
fN QUN/G)

∼=Hl(τ∗φ
mon
f ′ pN,∗QUN/G) properness of pN

∼=Hl(τ∗φ
mon
f ′ H(pN,∗QUN/G)) decomposition theorem

∼=Hl(τ∗ H(φmon
f ′ pN,∗QUN/G)) exactness of φmon

f ′

∼=Hl(τ∗ H(pN,∗φ
mon
fN QUN/G)) properness of pN ,

and then the lemma follows, since once Hl′(pN,∗φ
mon
fN

QUN/G) stabilises for all l
′ ≤

l+dim(Y ), the final term in the chain of isomorphisms stabilises toHl(τ∗ H(p∗φ
mon
f QX/G)).

!

We now explain how certain maps from moduli stacks of CQ-modules to the
corresponding coarse moduli spaces are approximated by proper maps.

Definition 3.16 (Framed quiver). Let Q be an ice quiver, and let f ∈ Nn be a
dimension vector. We define Qf by

• (Qf )0 = Q0

∐
{∞}

• (Qf )1 = Q1

∐
{βi,g|i ∈ Q0, 1 ≤ g ≤ fi}

where t(βi,g) = ∞ and s(βi,g) = i. We set ∞ to be a principal vertex of Qf .

In what follows, for dimension vectors f ∈ Nn, we write f 0→ ∞ to mean that
each component of f is taken to be arbitrarily large.

Fix a dimension vector d ∈ Nm. Let

(19) Vf ,d =
∏

s≤m

Hom(Cfs ,Cds).

Then Vf ,d carries aGd-action via the GLds-actions on the vector spaces Cds . Define

V surj
f ,d ⊂ Vf ,d by V surj

f ,d =
∏

s≤m Homsurj(Cfs ,Cds). Composition of linear maps
provides a surjection of topological spaces

Hom(Cfs ,Cds−1)×Hom(Cds−1,Cds) →
(
Hom(Cfs ,Cds) \Homsurj(Cfs ,Cds)

)



POSITIVITY FOR QUANTUM CLUSTER ALGEBRAS 19

for which the domain has dimension fsds − fs + d2
s − ds and so we deduce

codimVf,d

(
Vf ,d \ V surj

f ,d

)
≥ |f |− d · d+ |d| 0→ ∞ as f 0→ ∞.(20)

We write (1,d) for the dimension vector for Qf that is 1 at the framing vertex ∞,
and d when restricted to the quiver Q.

Definition 3.17. Let ζ ∈ Hn
+ be a stability condition. Fix θ ∈ [0,π) a slope. We

extend ζ to a stability condition ζ(θ) for Qf by setting the argument of ζ
(θ)
∞ to be

equal to θ + ε for 0 < ε 3 1, and making |ζ
(θ)
∞ | very large (possibly depending on

d).

For a (1,d)-dimensional CQf -module ρ, ζ(θ)-stability is equivalent to the follow-
ing two conditions:

(1) If ρ′ is the underlying CQ-module of ρ, then every d′ in the Harder–
Narasimhan type of ρ′ has slope less than or equal to θ.

(2) If ρ′′ ⊂ ρ is the smallest sub CQf -module of ρ satisfying dim(ρ′′)∞ = 1,
then all of the d′ in the Harder–Narasimhan type of ρ/ρ′′ have slope greater
than θ.

It follows from the first condition that ρ′ must have slope less than or equal to
θ. It follows from the indivisibility of the dimension vector (1,d) that a (1,d)-
dimensional CQf -module is ζ(θ)-stable if it is ζ(θ)-semistable. The Gd-action on

X(Qf )
ζ(θ) -ss
(1,d) is scheme-theoretically free, by the standard argument recalled in [Efi,

Prop.3.7]. Let N ∈ Zn be the constant dimension vector (N, . . . , N). There are
natural open inclusions

X(Q)ζ[0,θ],d × V surj
f ,d ⊂ X(Qf )

ζ(θ) -ss
(1,d) ⊂ X(Q)ζ[0,θ],d × Vf ,d

of Gd-equivariant varieties, and so it follows from (20) that the spacesX(QN)ζ
(θ) -ss

(1,d)

provide a system of spaces UN fulfilling the requirements listed at the start of this
section for calculating direct images of vanishing cycles on M(Q)ζ[0,θ],d. We define

(21) M(Q)ζ,θ -sfr
f ,d := X(Qf )

ζ(θ) -ss
(1,d) /Gd,

the scheme-theoretic quotient. We denote by

π
ζ,θ -sfr
f ,d : M(Q)ζ,θ -sfr

f ,d → M(Q)d

the natural projection, taking a stable framed CQf -module to the semisimplification
of its underlying CQ-module.

By [BP90, Thm.1], for an arbitrary finite quiver Q′, and dimension vector d′ ∈
NQ′

0 , the Gd′ -invariant functions on X(Q′)d′ , are generated by the functions ρ 0→
Tr(ρ(c)), for c ∈ CQ′/[CQ′,CQ′] a cycle. As Qf contains no cycles not already

contained in Q, we deduce that πζ,θ -sfr
f ,d is projective, as it is the composition of the

GIT quotient map

X(Qf )
ζ(θ) -ss
(1,d) /Gd → M(Qf )(1,d)

and the forgetful isomorphism M(Qf )(1,d) → M(Q)d between the affinizations. In
conclusion, we may make identifications

H

(
pζ[0,θ],d,∗φ

mon
Tr(W )ζ

[0,θ],d

IC
M(Q)ζ

[0,θ],d
(Q)

)
=

lim
f -→∞

(
H

(
π
ζ,θ -sfr
f ,d,∗ φmon

T r(W )ζ,θ -sfr
f,d

ICM(Q)ζ,θ -sfr
f,d

(Q)

)
⊗ Lf ·d/2

)
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and

H

(
pζ[0,θ],d,!φ

mon
Tr(W )ζ

[0,θ],d

IC
M(Q)ζ

[0,θ],d
(Q)

)
=

lim
f -→∞

(
H

(
π
ζ,θ -sfr
f ,d,! φmon

T r(W )ζ,θ -sfr
f,d

ICM(Q)ζ,θ -sfr
f,d

(Q)

)
⊗ L−f ·d/2

)
,

and we have proved the following proposition.

Proposition 3.18. For an arbitrary stability condition ζ ∈ Hn
+ slope θ ∈ [0,π) and

dimension vector d ∈ Nm, the map pζ[0,θ],d : M(Q)ζ[0,θ],d → M(Q)d is approximated

by proper maps in the sense of Definition 3.14.

Corollary 3.19. The map (13):

(22) pζ -ss
d

: M(Q)ζ -ss
d

→ M(Q)ζ -ss
d

is approximated by proper maps.

Proof. Setting θ = Ξζ(d), there is a commutative diagram

M(Q)ζ -ss
d

pζ -ss
d ##

=

!!

M(Q)ζ -ss
d

M(Q)ζ[0,θ],d,

pζ

[0,θ],d

$$
!!!!!!!!!!!

where the vertical equality follows from the fact that if a d-dimensional CQ-module
M is not semistable, it has a Harder–Narasimhan filtration

0 = M0 ⊂ . . . ⊂ Mh = M

with h ≥ 2, and Ξζ(dim(Mh/Mh−1)) > Ξζ(d). The diagonal morphism in the
commutative diagram is approximated by proper maps by Proposition 3.18, and
the corollary follows. !

By [Sai90], (monodromic) vanishing cycle functors commute with taking the
direct image along proper maps, and are exact by Proposition 3.5, and so we deduce
from Proposition 3.18 that

H

(
pζ[0,θ],d,∗

(
φmon

Tr(W )ζ
[0,θ],d

IC
M(Q)ζ

[0,θ],d
(Q)

))
∼=(23)

φmon
T r(W )d

lim
f -→∞

(
H

(
π
ζ,θ -sfr
f ,d,∗ ICM(Q)ζ,θ -sfr

f,d
(Q)

)
⊗ Lf ·d/2

)
∼=

φmon
T r(W )d

H
(
pζ[0,θ],d,∗

(
IC

M(Q)ζ
[0,θ],d

(Q)
))

and

H

(
pζ[0,θ],d,!

(
φmon

Tr(W )ζ
[0,θ],d

IC
M(Q)ζ

[0,θ],d
(Q)

))
∼=(24)

φmon
T r(W )d

lim
f -→∞

(
H

(
π
ζ,θ -sfr
f ,d,! ICM(Q)ζ,θ -sfr

f,d
(Q)

)
⊗ L−f ·d/2

)
∼=

φmon
T r(W )d

H
(
pζ[0,θ],d,!

(
IC

M(Q)ζ
[0,θ],d

(Q)
))

.

We now have the notation at hand to give the promised proof of the following
lemma.

Lemma 3.20. [MR, Lem.2.1] The map M(Q)×M(Q)
⊕−→ M(Q) is finite.
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Proof. Quasi-finiteness is clear, since up to isomorphism, a direct sum of simple
CQ-modules can be written as a direct sum of direct sums of simple CQ-modules
in only finitely many ways. So all that remains is to prove properness. Fix two
dimension vectors d′,d′′ ∈ Nm. Setting ζ = (i, . . . , i) the moduli space

M(Q)-sfrf ,d := M(Q)
ζ,π/2 -sfr
f ,d

is just the usual noncommutative Hilbert scheme, i.e. the moduli space of framed
d-dimensional CQ-modules for which the framing vector generates the CQ-module,
as introduced in [Rei05]. Then for sufficiently large f ′, f ′′ (for instance if f ′ ≥ d′

and f ′′ ≥ d′′ for the natural partial ordering), the moduli spaces M(Q)-sfr
f ′,d′ and

M(Q)-sfr
f ′′,d′′ are nonempty, and the maps M(Q)-sfr

f ′,d′ → M(Q)d′ and M(Q)-sfr
f ′′,d′′ →

M(Q)d′′ are surjective on geometric points.
We claim that the natural map M(Q)-sfr

f ′,d′ ×M(Q)-sfr
f ′′,d′′ → M(Q)-sfr

f ,d is a closed

embedding, where we have set d = d′+d′′ and f = f ′+f ′′. We define ν′ : M(Q)-sfr
f ,d →

Z to be the lower semicontinuous function taking a framed representation to the
dimension of the CQ-module generated by the first f ′ framing vectors, and define
ν′′ similarly, by considering the last f ′′ framing vectors. Then ν := ν′ +ν′′ is lower
semicontinuous, and the desired inclusion is a component of the inclusion of the
set ν−1(τ), where τ =

∑
s∈Q0

ds is the minimal value of ν, thus proving the claim.

The map πf ,d : M(Q)-sfr
f ,d → M(Q)d is proper, as noted above. So in the diagram

M(Q)-sfr
f ′,d′ ×M(Q)-sfr

f ′′,d′′

%%❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

π
f′,d′×π

f′′,d′′

!!
M(Q)d′ ×M(Q)d′′

⊕
## M(Q)d

the diagonal map is proper, while the vertical map is surjective on points, and ⊕
is separated since M(Q)d′ and M(Q)d′′ are quasiprojective. Properness of the
horizontal map then follows via the valuative criterion of properness. !

3.5. Cohomological wall crossing. The following theorem is a categorification
of the identity in the quantum torus ÂQ induced by the existence and uniqueness of
Harder–Narasimhan filtrations. This identity is known as the wall crossing formula
in the work of Kontsevich, Soibelman, Joyce and Song. It is this theorem that
allows us to categorify the strategy for understanding quantum cluster mutation
that starts with Nagao’s quote from the introduction.

Theorem 3.21. There is an isomorphism in D≥,lf(MMHM(M(Q)))

(
H

(
pζ[0,θ],∗

(
φmon

Tr(W )ζ
[0,θ]

IC
M(Q)ζ

[0,θ]
(Q)

)))

nilp

∼=

"
tw

⊕,[θ
γ−→0]

(
H

(
qζγ,∗p

ζ -ss
γ,∗

(
φmon

Tr(W )ζ -ss
γ

IC
M(Q)ζ -ss

γ
(Q)

)))
nilp

,

where the monoidal product is taken over descending slopes.

Proof. Let HN[0,θ],d be the set of all Harder–Narasimhan types d = (d1, . . . ,dt) ∈
HNd such that all the slopes Ξζ(dg) belong to [0, θ]. By [Rei03, Prop.3.7] there is
a partial order ≤′ on the set HN[0,θ],d such that for all e ∈ HN[0,θ],d, the closure

of X(Q)ζ
e
is contained in

⋃
e′≤′e

X(Q)ζ
e′ . We complete ≤′ to a total order ≤ on
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HN[0,θ],d. For e ∈ HN[0,θ],d we define

X(Q)ζ≤e
:=

⋃

e′≤e

X(Q)ζ
e′ ,

X(Q)ζ<e
:=

⋃

e′<e

X(Q)ζ
e′ .

We denote by

ie : M(Q)ζ
e
→֒ M(Q)d

i<e : M(Q)ζ<e
→֒ M(Q)d

i≤e : M(Q)ζ≤e
→֒ M(Q)d

the obvious inclusions. Let m ∈ HN[0,θ],d be the maximum element with respect

to ≤. The variety X(Q)ζ[0,θ],d is open in X(Q)d (see e.g. the proof of [DMSS15,

Prop.4.20]), and so these schemes have the same dimension, and there is an iso-
morphism

H
(
pζ[0,θ],d,!i

∗
≤mICM(Q)d(Q)

)
∼= H

(
pζ[0,θ],d,!ICM(Q)ζ

[0,θ],d
(Q)

)
.

For all e ∈ HN[0,θ],d the inclusion Xe ⊂ X≤e is open, with complement X<e. As
such, there is a distinguished triangle

H
(
pd,!ie,!i

∗
e
ICM(Q)d(Q)

)
→ H

(
pd,!i≤e,!i

∗
≤e

ICM(Q)d(Q)
)
→ H

(
pd,!i<e,!i

∗
<e

ICM(Q)d(Q)
)
→ .

(25)

On the other hand, for e = (d1, . . . ,dt), there is an isomorphism, via the usual
diagram of affine fibrations and the biexactness of "⊕ (see e.g. the proof of the
cohomological wall crossing isomorphism in [DM16, Sec.4.2])
(26)

H
(
pd,!ie,!i

∗
e
ICM(Q)d(Q)

) ∼= H
(
qζ
dt,!p

ζ -ss
dt,! ICM(Q)ζ -ss

dt
(Q)

)
"

tw
⊕ . . ."tw

⊕ H
(
qζ
d1,!p

ζ -ss
d1,! ICM(Q)ζ -ss

d1
(Q)

)
.

Each of the terms on the right hand side of (26) is pure since for each g ≤ t the

map qζ
dg,!p

ζ -ss
dg,! is approximated by proper maps by Corollary 3.19 and properness

of qζ
dg,! (it is a GIT quotient map). It follows that the right hand side of (26) is

pure by properness of the direct sum map (Lemma 3.20) and Proposition 3.4, and
so the left hand side of (26) is pure, and we deduce that the first term of (25) is
pure.

It follows by induction with respect to the order ≤ that all of the terms in (25) are
pure, and the associated long exact sequence breaks up into short exact sequences
(one for each cohomological degree), which are moreover split by semisimplicity of
the category of pure mixed Hodge modules on M(Q)d [Sai90, (4.5.3)]. It follows
that there is an isomorphism

H
(
pζ[0,θ],d,!ICM(Q)ζ

[0,θ],d
(Q)

)
∼=

⊕

(d1,...,dt)∈(Ξζ)−1([0,θ])

Ξζ(d1)<...<Ξζ(dt)∑t
i=1 d

i=d

"
tw

⊕,i=1,...,t H
(
qζ
di,!p

ζ -ss
di,! ICM(Q)ζ -ss

di
(Q)

)
.

Summing over d and rearranging we obtain the isomorphism

(27) H
(
pζ[0,θ],!ICM(Q)ζ

[0,θ]
(Q)

)
∼="

tw

⊕,[0
γ−→θ] H

(
qζγ,!p

ζ -ss
γ,! IC

M(Q)ζ -ss
γ

(Q)
)
.

Taking Verdier duals, we obtain the isomorphism

(28) H
(
pζ[0,θ],∗ICM(Q)ζ

[0,θ]
(Q)

)
∼="

tw

⊕,[θ
γ−→0] H

(
qζγ,∗p

ζ -ss
γ,∗ IC

M(Q)ζ -ss
γ

(Q)
)
.
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The reversal in the order of the product between (27) and (28) is as in Remark
3.10. Applying the functor φmon

T r(W ) to (28), we obtain

φmon
T r(W ) H

(
pζ[0,θ],∗ICM(Q)ζ

[0,θ]
(Q)

)
∼= φmon

T r(W )"
tw

⊕,[θ
γ−→0] H

(
qζγ,∗p

ζ -ss
γ,∗ IC

M(Q)ζ -ss
γ

(Q)
)
.

Since Tr(W ) is identically zero on the nilpotent locus, we may apply the Thom–
Sebastiani isomorphism (11), after restriction to the nilpotent locus, to obtain the
isomorphism

H
(
φmon

T r(W )p
ζ
[0,θ],∗ICM(Q)ζ

[0,θ]
(Q)

)
nilp

∼="
tw

⊕,[θ
γ−→0] H

(
φmon

T r(W )γ
qζγ,∗p

ζ -ss
γ,∗ IC

M(Q)ζ -ss
γ

(Q)
)
nilp

,

where we have also used exactness of φmon
T r(W )γ

(Proposition 3.5) to commute the

vanishing cyce functor past the total cohomology functor. Since all relevant maps
are either proper or can be approximated by proper maps, and so commute with
vanishing cycle functors, we deduce that there is an isomorphism

(
H

(
pζ[0,θ],∗φ

mon
Tr(W )ζ

[0,θ]

IC
M(Q)ζ

[0,θ]
(Q)

))

nilp

∼=

"
tw

⊕,[θ
γ−→0]

(
H

(
qζγ,∗p

ζ -ss
γ,∗ φmon

Tr(W )ζ -ss
γ

IC
M(Q)ζ -ss

γ
(Q)

))
nilp

,

as required. !

Definition 3.22. In the following example, we use the plethystic exponential EXP,
defined as follows. If p(x1, . . . , xs, q

1/2) ∈ Z((q1/2))[[x1, . . . , xs]] is a formal power
series in commuting variables, written as

p(x1, . . . , xs, q
1/2) =

∑

g1,...,gs∈N,h∈Z

ag1,...,gs,hx
g1
1 . . . xgs

s (−q1/2)h

with ag1,...,gs,h = 0 if g1 = . . . = gs = 0, then we define

EXP
(
p(x1, . . . , xs, q

1/2)
)
=

∏

g1,...,gs∈N,h∈Z

(1 − xg1
1 . . . xgs

s (−q1/2)h)−ag1,...,gs,h .

The signs appearing next to half powers of q in the above definition are there in
order to accord with the signs in the definition of χQ (see (18)).

Example 3.23. Let Q be the ice quiver with vertices {1, 2}, with one arrow going
from 2 to 1, and no other arrows, and for which Qprinc = Q. Then

ÂQ = Z((q1/2))[[Y (1,0), Y (0,1)]],

with the commutation relation Y (1,0)Y (0,1) = qY (0,1)Y (1,0). Consider a stability
condition ζ, for which Ξζ((1, 0)) = π/4 and Ξζ((0, 1)) = π/2. We put W = 0
(there are no nonzero potentials for this quiver, as it is acyclic). Then the only
ζ-semistable CQ-modules are direct sums of the simple representations S(Q)s, for
s ∈ {1, 2}. Putting θ = 3π/4 in Theorem 3.21, and applying χQ to the resulting
equality in K0(D

≥,lf(MMHM(N2))), we obtain the identity

(29) χQ

(
[Dim∗(ICM(Q)(Q))]

)
= EXP

(
Y (0,1)

q−1/2 − q1/2

)
EXP

(
Y (1,0)

q−1/2 − q1/2

)
,

where we have used the well-known quantum dilogarithm identity

(30)
∑

g∈N

χq

(
H(pt /GLg,Q)⊗ Lg2/2,−q1/2

)
xg = EXP

(
x

q−1/2 − q1/2

)
,

considering x/(q−1/2 − q1/2) as a formal power series via the expansion
x

q−1/2 − q1/2
= x(q1/2 + q3/2 + . . .).
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On the other hand, picking ζ′ so that Ξζ′

((1, 0)) = π/2 and Ξζ′

((0, 1)) = π/4,
we obtain more semistable modules, namely, direct sums of the Jacobi algebra CQ,
considered as a module over itself. We thus obtain the identity
(31)

χq

(
[Dim∗(ICM(Q)(Q))]

)
= EXP

(
Y (1,0)

q−1/2 − q1/2

)
EXP

(
Y (1,1)

q−1/2 − q1/2

)
EXP

(
Y (0,1)

q−1/2 − q1/2

)
.

Multiplying (29) and (31) on the right by EXP
(

−Y (0,1)

q−1/2−q1/2

)
, considering the result-

ing identity as an identity between formal power series in Y (1,0), and considering
just the linear coefficient, we obtain the identity
(32)

EXP

(
Y (0,1)

q−1/2 − q1/2

)
Y (1,0) EXP

(
Y (0,1)

q−1/2 − q1/2

)−1

= Y (1,0)+Y (1,1) = Y (1,0)(1+q−1/2Y (0,1)).

This is a purely algebraic identity, holding in any sufficiently complete Z((q1/2))-
algebra such that Y (1,0)Y (0,1) = qY (0,1)Y (1,0).

Alternatively, multiplying (29) and (31) on the left by EXP
(

−Y (1,0)

q−1/2−q1/2

)
, we

obtain the identity

(33) EXP

(
Y (1,0)

q−1/2 − q1/2

)−1

Y (0,1) EXP

(
Y (1,0)

q−1/2 − q1/2

)
= Y (0,1) + Y (1,1).

The identity between the right hand sides of (29) and (31) is the simplest of
the “dilogarithm identities” associated to Dynkin quivers — see [Kel11b] for more
details of the relation between these identities and quantum cluster algebras.

Remark 3.24. Note that written in terms of the Z((q1/2))-basis provided by the
monomials Y d, the right hand sides of equations (32) and (33) do not involve
any powers of q1/2, and are in particular invariant under the substitution q1/2 0→
q−1/2. In the context of quantum cluster algebras, this well-known phenomenon
(see [BZ05, Prop.6.2]) also follows from the Lefschetz property for quantum cluster
transformations, part of our main theorem.

4. Cluster mutations from derived equivalences

4.1. Categorification of cluster mutation. Let (Q,W ) be a quiver with formal

potential. We recall Ginzburg’s construction of Γ̂(Q,W ) from [Gin06]. Firstly, we

form a graded quiver Q̃ from Q by setting

Q̃0 =Q0

(Q̃1)0 =Q1

(Q̃1)−1 ={a∗|a ∈ Q1}

(Q̃1)−2 ={ωi|i ∈ Q0}.

The numbers appearing outside of the brackets in the above expressions specify
the degrees of the arrows. For a ∈ Q1 we set s(a∗) = t(a) and t(a∗) = s(a). So in

degree -1, Q̃ is the opposite quiver of Q. For i ∈ Q0 we set s(ωi) = t(ωi) = i. We let

Γ̂(Q, 0) be the free path algebra of Q̃, completed at the two-sided ideal generated
by the degree zero arrows. We define a differential on the generators by setting

da =0 for a ∈ Q1,

da∗ =∂W/∂a,

dωi =ei
∑

a∈Q1

[a, a∗]ei for i ∈ Q0
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and extend d to a differential on Γ̂(Q, 0) by the Leibniz rule, linearity and continuity.

The resulting differential graded algebra is denoted Γ̂(Q,W ). Then Ĵac(Q,W ) ∼=
H0(Γ̂ (Q,W )), and there is an embedding of categories

Mod-Ĵac(Q,W ) ⊂ D(Mod-Γ̂(Q,W ))

as the heart of the natural t structure. Accordingly, we may consider S(Q)s as

the simple Γ̂(Q,W )-module concentrated in degree zero, with dimension vector 1s,

and for which all of the arrows act via the zero map. The algebra Γ̂(Q,W ) is
3–Calabi–Yau in the sense defined and proved in [Kel11a], so that there is a bifunc-

torial isomorphism Exti(M,N) ∼= Ext3−i(N,M)∗ on Df .d(Mod-Γ̂(Q,W )) [Kel08,
Lem.4.1].

For a dimension vector f ∈ Nn we define

Ĵac(Q,W )f :=
⊕

s≤n

(
es · Ĵac(Q,W )

)⊕fs

,

and define Γ̂(Q,W )f and Jac(Q,W )f similarly. For s ∈ Q0, tensoring the bimodule

resolution of Ĵac(Q,W ) (see [Gin06, Prop.5.1.9]) with S(Q)s, there is a canonical
resolution

0 → es · Γ̂(Q,W ) →
⊕

a∈Q1|s(a)=s

et(a) · Γ̂(Q,W ) →(34)

→
⊕

a∈Q1|t(a)=s

es(a) · Γ̂(Q,W ) → es · Γ̂(Q,W ) → S(Q)s → 0.

The map

dim: K0

(
Df .d(Mod-Γ̂(Q,W ))

)
→ Zn

is an isomorphism, which extends in the obvious way to morphisms K0(mod-Jac(Q,W )) →
Zn in the case of algebraic W , and K0(mod-CQ) → Zn, which are isomorphisms if

CQ is acyclic. We denote byDf .d
princ(Mod-Γ̂(Q,W )) the full subcategory ofD(Mod-Γ̂(Q,W ))

whose objects have finite-dimensional total cohomology, supported on the principal

part of Q. We identify Zm with K0

(
Df .d

princ(Mod-Γ̂(Q,W ))
)
via the map sending

1s 0→ [S(Q)s].

Recall that we define Perf(Γ̂(Q,W )) ⊂ D(Mod-Γ̂(Q,W )) to be the smallest
strictly full subcategory, closed under shifts, cones and direct summands, contain-

ing the modules es · Γ̂(Q,W ), for s ∈ Q0. We identify Zn with K0(Perf(Γ̂(Q,W )))

via the map sending 1s 0→ [es · Γ̂(Q,W )]. This map is indeed an isomorphism —
this appears to be a standard fact, which one may prove2 by combining [Bon10,
Lem.5.2.1] and [KY11, Lem.2.17], or using the fact that under the Koszul duality

functor Hom(
⊕

i∈Q0
S(Q)i,−) the set of perfect modules ei · Γ̂(Q,W ) is sent to the

set of simple modules Si for the Koszul dual quiver algebra [LPWZ08, Thm.5.4], and
the category of iterated shifts and extensions of this set of objects is the category
of differential graded modules with nilpotent finite-dimensional total cohomology,
which is closed under taking direct summands.

The following proposition follows from compatibility of B̃ and Λ, and the exis-
tence of the resolution (34).

Proposition 4.1. There is an inclusion of triangulated categories

ν : Df .d
princ(Mod-Γ̂(Q,W )) →֒ Perf(Γ̂(Q,W )),

2Thanks to Bernhard Keller for pointing out this argument.
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and the diagram

K0

(
Df .d

princ(Mod-Γ̂(Q,W ))
)

!!

K0(ν) ## K0

(
Perf(Γ̂(Q,W ))

)

!!
Zm B̃· ## Zn

commutes. Furthermore, giving Zn the bilinear form induced by Λ, and Zm the

bilinear form − ⟨•, •⟩Q, and K0(D
f .d
princ(Mod-Γ̂(Q,W ))) the bilinear form

⟨[N ], [N ′]⟩ =
∑

g∈Z

(−1)g dim (Extg(N,N ′)) ,

all bilinear forms are preserved in the above diagram.

We set ι = − K0(ν), a homomorphism of lattices with inner product, and also
denote by ι the induced inclusions

ι : AQ → TΛ

ι : ÂQ → T̂Λ.

By Proposition 4.1, this definition of the map ι agrees with our previous definition

(6) of ι as the map sending Y d 0→ X−B̃·d.

Remark 4.2. Via the identification Zm ∼= K0

(
Df .d

princ(Mod-Γ̂(Q,W ))
)
, there are

now three skew-symmetric bilinear forms on Zm, which we denote ⟨•, •⟩Q, B̃(•, •),

and ⟨•, •⟩χ, where the second is defined via the principal part of B̃, and the third

is the Euler pairing on K0

(
Df .d

princ(Mod-Γ̂(Q,W ))
)
. Since this is potentially quite

confusing, we collect together the relations between these three pairings:

(35) ⟨•, •⟩χ = B̃(•, •) = −⟨•, •⟩Q.

Remark 4.3. Given M ∈ Df .d
princ

(
Mod-Γ̂(Q,W )

)
and N ∈ Perf

(
Γ̂(Q,W )

)
, there

is an equality

Λ ([N ], ι([M ])) =
∑

g∈Z

(−1)g dim (Extg(N,M)) .

To show this, we remark that it is sufficient to prove the statement for the natural

generating sets of K0

(
Df .d

princ

(
Mod-Γ̂(Q,W )

))
and K0

(
Perf

(
Γ̂(Q,W )

))
. If we

identify Λ with the n× n matrix defining it with respect to the standard basis, then
by the compatibility of Λ and B̃, we have the equality

−ΛB̃ = ĨT

where Ĩ is the n×m matrix with Im×m for the first m columns, and zeroes elsewhere.
By the definition of ι, it then follows that then Λ(1s′ , ι(1s′′ )) = δs′,s′′ , where δs′,s′′

is the Kronecker delta function. Then the claim follows from the equation
∑

g∈Z

(−1)g dim
(
Extg(es′ · Γ̂(Q,W ), S(Q)s′′)

)
=dim

(
Hom(es′ · Γ̂(Q,W ), S(Q)s′′ )

)

=δs′,s′′ .

It follows that if

Ψ : Perf
(
Γ̂(Q,W )

)
→ Perf

(
Γ̂(Q,W )

)

is an autoequivalence of triangulated categories, restricting to an autoequivalence

Ψ : Df .d
princ

(
Mod-Γ̂(Q,W )

)
→ Df .d

princ

(
Mod-Γ̂(Q,W )

)
, then there is an identity

Λ
(
Ψ([N ]), ιΨ([M ])

)
= Λ([N ], [M ])
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for all N,M as above, where we have used the same letter Ψ to denote the induced
automorphisms of the respective Grothendieck groups.

4.2. Nagao’s torsion pair. The following is proved in [KY11, Thm.3.2, Rem.3.3].

Theorem 4.4. Let (Q,W ) be a QP which is nondegenerate with respect to the
sequence of principal vertices s = (s1, . . . , st), and let ε ∈ {±}t be a sequence of
signs of length t. There is a quasi-equivalence

Φs,ε : D
(
Mod-Γ̂(Q,W )

)
→ D

(
Mod-Γ̂(µs(Q,W ))

)

restricting to quasi-equivalences

Φs,ε : Perf
(
Γ̂(Q,W )

)
∼−→ Perf

(
Γ̂(µs(Q,W ))

)

and

(36) Φs,ε : D
f .d
princ

(
Mod-Γ̂(Q,W )

)
∼−→ Df .d

princ

(
Mod-Γ̂(µs(Q,W ))

)
.

If εt = +, there is an exact triangle
(37)

Φ
−1
s,ε

(
est · Γ̂(µs(Q,W ))

)
→

⊕

a∈µs′(Q)1|t(a)=st

Φ
−1
s′,ε′

(
es(a) · Γ̂(µs′(Q,W ))

)
→ Φ

−1
s′,ε′

(
est · Γ̂(µs′(Q,W ))

)
→

while if εt = − there is an exact triangle
(38)

Φ
−1
s′,ε′

(
est · Γ̂(µs′(Q,W ))

)
→

⊕

a∈µs′(Q)1|s(a)=st

Φ
−1
s′,ε′

(
et(a) · Γ̂(µs′(Q,W ))

)
→ Φ

−1
s,ε

(
est · Γ̂(µs(Q,W ))

)
→ .

In either case, there is a quasi-isomorphism

(39) Φ
−1
s,ε

(
ei · Γ̂(µs(Q,W ))

)
∼= Φ

−1
s′,ε′

(
ei · Γ̂(µs′(Q,W ))

)

for i ̸= st.

Remark 4.5. Let s = (s) be a sequence consisting of a single vertex. Then Φs,− is
the quasi-inverse to the functor F of [KY11, Thm.3.2].

Definition 4.6. A torsion structure (T ,F) on an Abelian category A is a pair of
full subcategories T ,F ⊂ A such that

(1) For all M ′ ∈ T and M ′′ ∈ F , HomA(M
′,M ′′) = 0.

(2) For every M ∈ A there exists a short exact sequence

0 → M ′ → M → M ′′ → 0

with M ′ ∈ T and M ′′ ∈ F .

Let s = (s1, . . . , st) be a sequence of principal vertices of the ice quiver Q,
and let W ∈ CQ/[CQ,CQ] be a nondegenerate algebraic potential with respect to
s. Following [Nag13], though with the modification discussed in Remark 1.1, we

recursively define a torsion structure (Ts,Fs) on the category Mod-Ĵac(Q,W ), as

well as a sequence of signs εs. We start by setting T∅ = Mod-Ĵac(Q,W ) and setting
F∅ to be the full subcategory containing the zero module. This obviously provides

a torsion structure for Mod-Ĵac(Q,W ).
Now assume that we have defined Ts′ , Fs′ and εs′ . We define

Ss := Φ
−1
s′,εs′

(S(µs′(Q))st).

As in [Nag13, Thm.3.4] there is an isomorphism

Φ
−1
s′,εs′

(
Mod-Ĵac(µs′(Q,W ))

)
∼= Mod-Ĵac(Q,W )(Fs′ [1],Ts′ ),
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and so, in particular, (Φs′,εs′ (Fs′)[1],Φs′,εs′ (Ts′)) is a torsion structure on Mod-Ĵac(µs′(Q,W )).
Since S(µs′(Q))st is simple, it follows that either Ss ∈ Fs′ [1] or Ss ∈ Ts′ . Given two
subcategories A′ and A′′ of an Abelian category A, we define A′ ⋆ A′′ ⊂ A to be
the full subcategory containing those objects M for which there is a short exact
sequence

0 → M ′ → M → M ′′ → 0

with M ′ ∈ A′ and M ′′ ∈ A′′. Given an object M ∈ A, we let M⊕ ⊂ A be the full
subcategory containing all direct sums of M . We set

(40) Fs =

{
S⊕s ⋆Fs′ if Ss ∈ Ts′

Fs′ ∩ (Ss[−1]⊥) if Ss ∈ Fs′ [1].

We then define Ts :=
⊥Fs. In the first instance, we extend εs′ to a sequence εs by

adding a −, in the second instance we add a +.

Definition 4.7. If the sequence of signs εs ends with a − we call it additive,
otherwise we call it subtractive.

The reason for this odd-looking convention is that in the part of the torsion
structure we care about the most is Fs, and in the additive case, we add objects to
Fs at the final stage of its recursive definition. We will sometimes abbreviate Φs,εs

to Φs for notational convenience.

Definition 4.8. We define

Ss :=

{
Ss if s is additive

Ss[−1] if s is subtractive.

In other words, we define Ss to be the shift of Ss that belongs to the heart of the

natural t structure of D(Mod-Γ̂(Q,W )). Accordingly, in both cases, we consider Ss
as a Ĵac(Q,W )-module.

The following is proved in [KY11, Lem.3.11].

Lemma 4.9. There are isomorphisms

Φ(s),+(S(Q)s) ∼=S(µs(Q))s[1]

Φ(s),−(S(Q)s) ∼=S(µs(Q))s[−1](41)

and distinguished triangles

Φ
−1
(s),+ (S(µs(Q))j) → Ext1 (S(Q)s, S(Q)j)⊗ S(Q)s → S(Q)j [1] →(42)

S(Q)j [−1] → Ext2 (S(Q)s, S(Q)j)⊗ S(Q)s → Φ
−1
(s),− (S(µs(Q))j) → .(43)

The existence of the second distinguished triangle follows from the existence of

the first one, the isomorphism (41), the 3–Calabi–Yau pairing onDf .d(Mod-Γ̂(Q,W )),
and the fact, proved in [KY11, Lem.3.11], that

Φ(s),− : D
(
Mod-Γ̂(Q,W )

)
→ D

(
Mod-Γ̂(µs(Q,W ))

)

is a quasi-inverse to

Φ(s),+ : D
(
Mod-Γ̂(µs(Q,W ))

)
→ D

(
Mod-Γ̂(Q,W )

)
.

Here the second functor is as in Theorem 4.4, considering (s) as a sequence of
vertices of the mutated quiver µs(Q). Given a sequence of vertices s and a sequence
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of signs ε, both of the same length, we defineΨs,ε to be the map making the following
diagram commute

K0

(
Df .d

princ(Mod-Γ̂(Q,W ))
)

=

!!

K0(Φs,ε) ## K0

(
Df .d

princ(Mod-Γ̂(µs(Q,W )))
)

=

!!
Zm

Ψs,ε ## Zm.

Note that Ψs,ε depends on s and ε, but not on W . We abbreviate Ψs,εs to Ψs.

Proposition 4.10. For all s = (s1, . . . , st), all sequences of signs ε of length t, and
for all d ∈ Zm we have

(Ψs,ε(d),Ψs,ε(d))µs(Q) = (d,d)Q mod 2.

Proof. For the inductive step we can assume that

(Ψs,ε(d),Ψs,ε(d))µs(Q) = (Ψs1,ε1(d),Ψs1,ε1(d))µs1 (Q) mod 2.

For M ′ and M ′′ a pair of Ĵac(Q,W )-modules, there is an identity

([M ′], [M ′′])Q + ([M ′′], [M ′])Q =⟨[M ′], [M ′′]⟩Q mod 2

=
∑

g∈Z

dim (Extg(M ′,M ′′)) mod 2,

and so, since the Euler form of a category is invariant under derived equivalence,
we deduce that for all dimension vectors d′,d′′, there is an equality

(Ψ−1
s,±(d

′),Ψ−1
s,±(d

′′))Q+(Ψ−1
s,±(d

′′),Ψ−1
s,±(d

′))Q = (d′,d′′)µs(Q)+(d′′,d′)µs(Q) mod 2.

It follows that it is enough to show that

(Ψ−1
s,±(1i),Ψ

−1
s,±(1i))Q = 1 mod 2

for all i, s ≤ m. By Lemma 4.9, Ψ−1
s,±(1s) = − 1s, and so we only need to consider

the case in which i ̸= s. Then we have Ψ
−1
s,±(1i) = 1i −max(0,±bsi) · 1s from (42),

and so in both the additive and subtractive cases we calculate

(Ψ−1
s,±(1i),Ψ

−1
s,±(1i))Q = 1 +max(0,±2b2si).

!

Given a stability condition ζ ∈ H
Q0

+ on a quiver Q, an algebraic potential W for

Q, and an interval S ⊂ [0,π), we denote by (mod-Jac(Q,W ))ζS the full subcategory
of mod-Jac(Q,W ) containing those modules N such that the Harder–Narasimhan

type (d1, . . . ,dt) of N only contains terms satisfying Ξζ(dg) ∈ S, and for W a

formal potential we define (mod-Ĵac(Q,W ))ζS similarly.
The next proposition is only a slight modification of [Nag13, Prop.4.1], but we

offer the proof for completeness, modifying the proof of [Efi, Thm.4.17] for our
purposes.

Proposition 4.11. Let W be a potential for Q, nondegenerate with respect to the
sequence of vertices s. Then there is a Bridgeland stability condition ζs ∈ Hn

+, and
an angle θs ∈ [0,π) such that

(mod-Ĵac(Q,W ))ζs

[0,θs]
= Fs ∩mod-Ĵac(Q,W )

and
(mod-Ĵac(Q,W ))ζs

(θs,π) = Ts ∩mod-Ĵac(Q,W ).

Furthermore, we can choose ζs and θs so that

(mod-Ĵac(Q,W ))ζs

(θs−δ,θs+δ) = S
⊕
s

⋂(
mod-Ĵac(Q,W )

)
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for sufficiently small δ.

Proof. Let s = (s1, . . . , st). First consider the additive case. The conditions on ζs
and θs are implied by the conditions

(1)

Im
(
exp(−θs

√
−1) Zζs

(
[Φ−1

s,εs
(S(µs(Q))j)]

))
> 0

for all j ̸= st, and
(2)

Im
(
exp(−θs

√
−1) Zζs([Ss])

)
=0

Re
(
exp(−θs

√
−1) Zζs([Ss])

)
>0.

To see this, we first note that the conditions imply that

Fs ∩mod-Ĵac(Q,W ) ⊂(mod-Ĵac(Q,W ))ζs

[0,θs]

Ts ∩mod-Ĵac(Q,W ) ⊂(mod-Ĵac(Q,W ))ζs

(θs,π)

S
⊕
s

⋂(
mod-Ĵac(Q,W )

)
=(mod-Ĵac(Q,W ))ζs

(θs−δ,θs+δ).

Then equality follows from the inclusions

(mod-Ĵac(Q,W ))ζs

[0,θs]
= ((mod-Ĵac(Q,W ))ζs

(θs,π))
⊥ ⊂ (Ts ∩mod-Ĵac(Q,W ))⊥ = Fs ∩mod-Ĵac(Q,W )

(mod-Ĵac(Q,W ))ζs

(θs,π) =
⊥(mod-Ĵac(Q,W ))ζs

[0,θs]
⊂⊥(Fs ∩mod-Ĵac(Q,W )) = Ts ∩mod-Ĵac(Q,W )

We achieve conditions (1) and (2) by setting

(44) Im(Zζs(1s)) = 1

for all s ∈ Q0, and

Re(Zζs(Φ−1
s,εs

(S(µs(Q,W ))j))) = − 1

for j ̸= st and Re(Zζs(Ss)) = 0, and setting θs = π/2. For the subtractive case, we

set Re(Zζs([Ss])) = −δ′ for 0 < δ′ 3 1. !

We denote by (D≤0
s , D≥1

s ) the t structure on D(Mod-Γ̂(Q,W )) obtained by

pulling back the standard t structure on D(Mod-Γ̂(µs(Q,W ))) along the quasi-
equivalence Φs, and we denote by Hn

s (M) the nth cohomology of M with respect to
this t structure. Let f ∈ Nn. Since this t structure is a tilt of the usual t structure
with respect to the torsion structure (Ts,Fs) it follows that Γ̂(Q,W )f ∈ D≤1

s . On
the other hand, since each simple module S(µs(Q))j is in Φs(Fs)[1] or Φs(Ts) it

follows that Γ̂(Q,W )f ∈ ⊥D≤−1
s . It follows by [Pla11, Lem.2.11] that there is an

isomorphism

(45) Φs(Γ̂(Q,W )f ) ∼= Γ̂(µs(Q,W ))f ′ ⊕ Γ̂(µs(Q,W ))f ′′ [−1]

for some dimension vectors f ′, f ′′ ∈ Nn, where the isomorphism is in the category of
graded modules (forgetting the differential). In other words, i.e. in the terminology

of [Pla11], Φs(Γ̂(Q,W )f ) ∈ prD(Mod-Γ̂(µs(Q,W ))) Γ̂(µs(Q,W ))[−1].

Proposition 4.12. Let Q be a quiver, and let W be a potential for Q, nonde-
generate with respect to the sequence of vertices s = (s1, . . . , st). Let f ∈ Nn be

a dimension vector. Then H1
s

(
Γ̂(Q,W )f

)
is represented by a finite dimensional

Ĵac(Q,W )-module.

This is basically [Efi, Cor.4.11], but our proof is a little different, in part because
our setup is different, by Remark 1.1.
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Proof. It is sufficient to consider the case f = 1s for some s ∈ Q0. By isomorphism

(45), Φs(Γ̂(Q,W )1s) is concentrated in degrees 1 and below, and so there is a natural

map h : Ĵac(Q,W )1s → Rs,s, where we define

Rs,s = H1
s (Γ̂(Q,W )1s).

The map h is just the map from Ĵac(Q,W )1s to its torsion-free part with respect to

the torsion structure (Ts,Fs), and so in particular h is a surjection onto a Ĵac(Q,W )-
module. Recall that the top of a module is its largest semisimple quotient. The
map h induces a surjection

S(Q)s = top
(
Ĵac(Q,W )1s

)
→ top (Rs,s)

from which we deduce that there is an isomorphism top(Rs,s) ∼= S(Q)s, and Rs,s

is indecomposable. Now the proof is by induction. First, assume that s is sub-
tractive, then the surjection h factors through a map Rs′,s → Rs,s and the finite-
dimensionality of Rs,s follows from the finite-dimensionality of Rs′,s. On the other
hand, if s is additive, then since Rs,s ∈ Fs there is a short exact sequence

0 →
⊕

P

Ss → Rs,s → Rs′,s → 0

where P is some indexing set, by the construction of the torsion structure (40).
Since Rs,s is indecomposable, it follows that |P | ≤ dim(Ext1(Rs′,s, Ss)), which is
finite by finite dimensionality of Rs′,s, and so Rs,s is an extension of two finite-
dimensional modules.

!

Proposition 4.13. Let Q be a quiver, let W be an algebraic potential for Q, non-
degenerate with respect to the sequence of principal vertices s. Let θs and ζs be as
in Proposition 4.11, and let d ∈ Nm be a dimension vector with Ξζs(d) ≤ θs. Then
there is an isomorphism of schemes

(46) Gr−Ψs(d)

(
H1(Φs(Γ̂(Q,W )f ))

)
∼= M(Q,W )ζs,θs -sfr,nilp

f ,d ,

and the right hand side of (46) is a union of connected components of M(Q,W )ζs,θs -sfr
f ,d .

The right hand side of (46) is introduced in equation (21), which uses the stability
condition introduced just above (21). The notation on the right hand side of (46)
uses Convention 3.9. On the left hand side of (46), the first subscript −Ψs(d) is as
defined before Proposition 4.10.

Proof. This is almost the result stated in [Efi, Prop.6.3], and carefully proved as
[DMSS15, Prop.4.35]. The proof of [DMSS15, Prop.4.35] gives the isomorphism
(46) without modificaton. The second statement is a consequence of [Efi, Prop.3.1]
for the case of generic W , and is given by the proof of [DMSS15, Prop.4.28] for
general nondegenerate W . !

Corollary 4.14. If W ∈ CQ/[CQ,CQ] is a nondegenerate algebraic potential with

respect to the sequence of mutations s, and d ∈ Nm satisfies Ξζs(d) ≤ θs, then

the stack crit
(
Tr(W )ζs

[0,θs],d

)
∩M(Q)ζs,nilp

[0,θs],d
is a union of connected components of

crit(Tr(W )ζs

[0,θs],d
).

For generic W , this is a direct consequence of [Efi, Prop.3.1].
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Proof. The claim is equivalent to the claim that crit
(
Tr(W )ζs

[0,θs],d

)
∩X(Q)ζs,nilp

[0,θs],d

is a union of connected components of crit
(
Tr(W )ζs

[0,θs],d

)
. Pick f ∈ Nm satisfying

f ≥ d. Let f be the function induced by Tr(W )d on the stack

(X(Q)ζs

[0,θs],d
× V surj

f ,d )/Gd,

where V surj
f ,d is as introduced after (19). This stack is a scheme by [EG98, Prop.23].

It is sufficient to prove that

crit(f) ∩
(
X(Q)ζs,nilp

[0,θs],d
× V surj

f ,d

)
/Gd

is a union of connected components of crit(f). This follows from the fact that
(
X(Q)ζs

[0,θs],d
× V surj

f ,d

)
/Gd ⊂ M(Q)ζs,θs -sfr

f ,d

is an open inclusion of schemes, along with the last part of Proposition 4.13.
!

Let d ∈ Nm satisfy Ξζs(d) ≤ θs. Following our conventions, we define

H

(
pζs

[0,θs],d,∗

(
φmon

Tr(W )
ζs
[0,θs],d

Q
M(Q)

ζs
[0,θs],d

)

nilp

)
:=

lim
f -→∞

(
H

(
π
ζs,θs -sfr
f ,d,∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

Q
M(Q)

ζs,θs -sfr

f,d

)

nilp

))

and

H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs],d

Q
M(Q)

ζs
[0,θs],d

)

nilp

)
:=

lim
f -→∞

(
H

(
dim∗ π

ζs,θs -sfr
f ,d,∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

Q
M(Q)

ζs,θs -sfr

f,d

)

nilp

))
.

By Corollary 4.14,

M(Q)ζs,θs -sfr,nilp
f ,d ∩ supp

(
φmon

T r(W )
ζs,θs -sfr

f,d

Q
M(Q)

ζs,θs -sfr

f,d

)
=

(πζs,θs -sfr
f ,d )−1(0) ∩ supp

(
φmon

T r(W )
ζs,θs -sfr

f,d

Q
M(Q)

ζs,θs -sfr

f,d

)

is a union of connected components of supp

(
φmon

T r(W )
ζs,θs -sfr

f,d

Q
M(Q)

ζs,θs -sfr

f,d

)
, and so

there are natural isomorphisms

H

(
π
ζs,θs -sfr
f ,d,∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

Q
M(Q)

ζs,θs -sfr

f,d

)

nilp

)
∼=

(
H

(
π
ζs,θs -sfr
f ,d,∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

Q
M(Q)

ζs,θs -sfr

f,d

)))

nilp

and

H

(
pζs

[0,θs],d,∗

(
φmon

Tr(W )
ζs
[0,θs],d

IC
M(Q)

ζs
[0,θs],d

(Q)

)

nilp

)
∼=(47)

(
H

(
pζs

[0,θs],d,∗

(
φmon

Tr(W )
ζs
[0,θs],d

IC
M(Q)

ζs
[0,θs],d

(Q)

)))

nilp

.

There is a natural inclusion of monoids Nm → M(Q) sending d to the point
representing the direct sum

⊕
s≤m S(Q)ds , which is an isomorphism ontoM(Q)nilp,
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and has left inverse dim: M(Q) → Nm. We deduce from (47) that there is an
isomorphism

H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs],d

IC
M(Q)

ζs
[0,θs],d

(Q)

)

nilp

)
∼=(48)

dim∗

((
H

(
pζs

[0,θs],d,∗

(
φmon

Tr(W )
ζs
[0,θs],d

IC
M(Q)

ζs
[0,θs],d

(Q)

)))

nilp

)

and by the same argument, there is an isomorphism

H

(
Dim∗

(
φmon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)
)
nilp

)
∼=(49)

dim∗

((
H

(
pζs -ss
d,∗

(
φmon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)
)))

nilp

)
.

4.3. Cluster mutation from torsion pairs.

Proposition 4.15. Let Q be a quiver, and let W ∈ CQ/[CQ,CQ] be an alge-
braic potential, nondegenerate with respect to the sequence of principal vertices
s = (s1, . . . , st). Let ζs be as in Proposition 4.11, and set γ = Ξζs(Ss). Then

(50) H

(
Dim∗

(
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)
)
nilp

)

is pure, of Tate type. Furthermore, the pure monodromic mixed Hodge module

(51) H

(
Dim∗

(
φmon

Tr(W )
ζs -ss
γ

Q
M(Q)

ζs -ss
γ

)
nilp

)

has trivial monodromy in the sense of Definition 3.6.

Proof. By the construction of ζs (see Proposition 4.11), the only semistable nilpo-

tent Jac(Q,W )-modules of dimension vector d, where Ξζs(d) = γ, are direct sums

of Ss. Fix d = k dim(Ss). Then by Corollary 4.14, M(Q,W )ζs -ss,nilp
d

is a connected

component of M(Q,W )ζs -ss
d

, and is furthermore isomorphic to the smooth stack
pt /GLk, since it is isomorphic to the stack of nilpotent d-dimensional representa-
tions of Jac(Q,W ), and so by the above comment, is isomorphic to the classifying

stack of Aut(S
⊕k

s ).

Since Ξζs(d) = γ there is an equality M(Q)ζs -ss
d

= M(Q)ζs

[0,γ],d. By (23), there

is an isomorphism

H

(
Dim∗

(
φmon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)
)
nilp

)
∼=(52)

lim
f -→∞

H

(
dim∗

(
φmon

T r(W )
ζs,γ -sfr

f,d

IC
M(Q)

ζs,γ -sfr

f,d

(Q)

)

nilp

⊗ Lf ·d/2

)
.

By Proposition 4.13 there is an isomorphism of schemes

M(Q,W )ζs,γ -sfr,nilp
f ,d

∼= Grk·1st (H
1(Φs(Γ̂(Q,W )f )))(53)

taking points of the left hand side to surjections H1(Φs(Γ̂(Q,W )f )) → S(µs(Q))⊕k
st .

We write

top(H1(Φs(Γ̂(Q,W )f ))) =
⊕

s≤n

S(µs(Q))⊕cs
s

for some integers cs. Then

Grk·1st (H
1(Φs(Γ̂ (Q,W )f ))) ∼= Gr(k, cst).(54)
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In particular, we deduce that Grk·1st (H
1(Φs(Γ̂(Q,W )f ))) is scheme-theoretically

smooth, and has trivial fundamental group. Since M(Q,W )ζs,γ -sfr,nilp
f ,d is a scheme-

theoretically smooth component of the critical locus of T r(W )ζs,γ -sfr
f ,d , we deduce

from the holomorphic Bott–Morse lemma (proved as in [Mil63, Lem.2.2]) that

for any x ∈ M(Q,W )ζs,γ -sfr,nilp
f ,d there is an analytic open neighbourhood U of

x in M(Q)ζs,γ -sfr
f ,d where T r(W )ζs,γ -sfr

f ,d is written, after complex analytic change

of coordinates, as
∑t

i=1 x
2
i , with x1, . . . , xt local defining equations for the variety

M(Q,W )ζs,γ -sfr,nilp
f ,d , and t its codimension inside M(Q,W )ζs,γ -sfr

f ,d . By the Thom–

Sebastiani isomorphism, and the fact that the dimension of Hc(A
1,φx2) is one, the

complex of perverse sheaves

φ
T r(W )

ζs,γ -sfr

f,d

Q
M(Q)

ζs,γ -sfr

f,d

[dim(M(Q)ζs,γ -sfr
f ,d )− 1],

restricted to M(Q,W )ζs,γ -sfr,nilp
f ,d , is a rank one local system, and a perverse sheaf,

since φ
T r(W )

ζs,γ -sfr

f,d

[−1] preserves the perverse t structure [BBD83]. By triviality of

the fundamental group of its support, this local system is globally trivial, and so

(
φmon

T r(W )
ζs,γ -sfr

f,d

IC
M(Q)

ζs,γ -sfr

f,d

(Q)

)

nilp

∼=Q
M(Q)

ζs,γ -sfr,nilp

f,d

⊗ Lt/2 ⊗ L
− dim(M(Q)

ζs,γ -sfr

f,d )/2

(55)

∼=IC
M(Q)

ζs,γ -sfr,nilp

f,d

(Q).

It then follows from (53) and (54) that

(56) H

(
dim∗

(
φmon

T r(W )
ζs,γ -sfr

f,d

IC
M(Q)

ζs,γ -sfr

f,d

(Q)

)

nilp

)
∼= H(Gr(k, cst),Q)vir,

and so both sides of (52) are pure.

For the monodromy statement, we tensor both sides of (56) with L
dim(M(Q)

ζs,γ -sfr

f,d )/2

to obtain

(57) H

(
dim∗

(
φmon

T r(W )
ζs,γ -sfr

f,d

Q
M(Q)

ζs,γ -sfr

f,d

)

nilp

)
∼= H(Gr(k, cst),Q)⊗ Lt/2,

where t is the codimension of M(Q,W )ζs -ss,nilp
d

inside M(Q)ζs -ss
d

. By definition,
the monodromic mixed Hodge module (51) is given by (57) as we let f 0→ ∞. The
number t is equal to the difference

(Ψ−1
s (k · 1st),Ψ

−1
s (k · 1st))Q − (k · 1st , k · 1st)µs(Q)

where the notation is as in Proposition 4.10. By Proposition 4.10 this number is
even, and so the right hand side of (57) has trivial monodromy by Remark 3.7. !

In the course of the proof we have shown that for γ = Ξζs(Ss), the monodromic

mixed Hodge module H

(
Dim∗

(
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)

)

nilp

)
is isomorphic to

H
(
Dim∗ IC

M(Q,W )
ζs -ss,nilp
γ

(Q)
)
. Loosely3 speaking, this means that for d of slope

γ, we can replace the restriction to the nilpotent locus of the vanishing cycle mon-
odromic mixed Hodge module on M(Q)ζs -ss

d
by (a twist of) the constant mon-

odromic mixed Hodge module supported on the smooth connected component of

3Loose, because we do not actually define these mixed Hodge modules, but work with approx-
imations to them on algebraic varieties.
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the critical locus of Tr(W )ζs -ss
d

corresponding to nilpotent modules. More explicitly,
the proof shows that there are isomorphisms

H

(
Dim∗

(
φmon

Tr(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)
)
nilp

)
∼=H

(
Dim∗ IC

M(Q,W )
ζs -ss,nilp

d

(Q)
)

∼=H(pt /GLk)vir(58)

where d = k dim(Ss).
The following proposition is a consequence of Theorem 3.21 (the wall-crossing

isomorphism), and isomorphisms (48) and (49). It gives a recursive formula for the
vanishing cycle cohomology of the stack of all finite-dimensional modules in Fs.

Proposition 4.16. Let Q be an ice quiver, let s = (s1, . . . , st) be a sequence of
principal vertices of Q, and let W be an algebraic potential for Q, nondegenerate
with respect to s. Let θs and ζs be as in Proposition 4.11. Let γ = Ξζs(Ss). If s is
additive, then there is an isomorphism of monodromic mixed Hodge modules.

H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)
∼=

(59)

H
(
Dim∗ ICM(Q,W )

ζs -ss,nilp
γ

(Q)
)
"

tw
+ H

⎛
⎝Dim∗

(
φmon

Tr(W )
ζ
s′

[0,θ
s′

]

IC
M(Q)

ζ
s′

[0,θ
s′

]

(Q)

)

nilp

⎞
⎠ ,

while if s is subtractive, there is an isomorphism

H

⎛
⎝Dim∗

(
φmon

Tr(W )
ζ
s′

[0,θ
s′

]

IC
M(Q)

ζ
s′

[0,θ
s′

]

(Q)

)

nilp

⎞
⎠ ∼=

(60)

H
(
Dim∗ IC

M(Q,W )
ζs -ss,nilp
γ

(Q)
)
"

tw
+ H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)
.

Remark 4.17. For future reference, we write down the untwisted versions of iso-
morphisms (59) and (60). Tensoring both sides of the component of (59) supported
at d by L−(d,d)/2, the isomorphism becomes

H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

Q
M(Q)

ζs
[0,θs]

)

nilp

)
∼=(61)

⊕

d
′′∈Nm|Ξζs(d′′)≤θs

d
′∈N dim(Ss)

H
(
Dim∗ QM(Q,W )

ζs -ss,nilp

d′

)
"+

"+ H

⎛
⎝Dim∗

(
φmon

Tr(W )
ζ
s′

[0,θ
s′

],d′′

Q
M(Q)

ζ
s′

[0,θ
s′

],d′′

)

nilp

⎞
⎠⊗ L−(d′,d′′),
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while (60) becomes

H

⎛
⎝Dim∗

(
φmon

Tr(W )
ζ
s′

[0,θ
s′

]

Q
M(Q)

ζ
s′

[0,θ
s′

]

)

nilp

⎞
⎠ ∼=(62)

⊕

d
′′∈Nm|Ξζs(d′′)≤θs

d
′∈N dim(Ss)

H
(
Dim∗ Q

M(Q,W )
ζs -ss,nilp

d′

)
"+

"+ H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs],d

′′

Q
M(Q)

ζs
[0,θs],d

′′

)

nilp

)
⊗ L−(d′,d′′).

Applying χQ to the equalities in the Grothendieck group of D≥,lf(MMHM(NQ0))
induced by the isomorphisms (59) and (60) respectively, we deduce the following
corollary.

Corollary 4.18. In the ring ÂQ, there is an equality

χQ

([
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

])
=

EXP

(
Y ± dim(Ss)

q−1/2 − q1/2

)±1

χQ

⎛
⎝
⎡
⎣Dim∗

(
φmon

Tr(W )
ζ
s′

[0,θ
s′

]

IC
M(Q)

ζ
s′

[0,θ
s′

]

(Q)

)

nilp

⎤
⎦
⎞
⎠ ,

where the sign is positive in the additive case, and negative in the subtractive case.

In the above corollary, we have used equation (30) and (58) to write

χQ

(
H

(
Dim∗ IC

M(Q,W )
ζs -ss,nilp
γ

(Q)
))

= EXP

(
Y dim(Ss)

q−1/2 − q1/2

)
,

where Ss is as in Definition 4.8.

Theorem 4.19. [Efi, Thm.5.11] Let Q be an ice quiver, let s be a sequence of
vertices of Qprinc, and let W be an algebraic potential, nondegenerate with respect

to s. Then there is an identity in T̂Λ

µs(M)(f) =ιχQ

([
H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)])
X [Γ̂(Q,W )f ]

(63)

(
ιχQ

([
H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)]))−1

.

Proof. Let s = (s1, . . . , st). As ever the proof is by induction on the length of s.
There is an equality
(64)

EXP

(
ι(Y ±[Ss])

q−1/2 − q1/2

)±1

X [Φ−1

s′
(es·Γ̂(µs′ (Q,W )))] EXP

(
ι(Y ±[Ss])

q−1/2 − q1/2

)∓1

= X [Φ−1

s′
(es·Γ̂(µs′(Q,W )))]

if st ̸= s, since then ι(Y ±[Ss]) and X [Φ−1

s′
(es·Γ̂(µs′ (Q,W )))] commute by Remark 4.3.

In the additive case, we set the first sign to be positive, in the subtractive case we
set it to be negative. By the last statement of Theorem 4.4, if s ̸= st we have the
equality

X [Φ−1

s′
(es·Γ̂(µs′ (Q,W )))] = X [Φ−1

s (es·Γ̂(µs(Q,W )))].

This demonstrates the inductive step, for s additive or subtractive, and for st ̸= s.
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Now say st = s. Firstly, assume that s is additive. Then

X [Φ−1

s′
(es·Γ̂(µs′ (Q,W )))]ι(Y [Ss]) = qι(Y [Ss])X [Φ−1

s′
(es·Γ̂(µs′ (Q,W )))]

by Remark 4.3. By Example 3.23, the left hand side of (64) is equal to

X [Φ−1

s′
(es·Γ̂(µs′ (Q,W )))] +X [Φ−1

s′
(es·Γ̂(µs′ (Q,W )))]+ι[Ss].

By (38) we have the identity

[Φ−1
s (est ·Γ̂(µs(Q,W )))] =

∑

a∈µs′ (Q)1|s(a)=st

[Φ−1
s′ (et(a)·Γ̂(µs′(Q,W )))]−[Φ−1

s′ (est ·Γ̂(µs′(Q,W )))]

while Proposition 4.1 and (34) give the identity

ι[Ss] :=−K0(ν)([Ss])

(65)

=−

⎛
⎝ ∑

a∈µs′ (Q)1|s(a)=st

[Φ−1
s (et(a) · Γ̂(µs(Q,W ))]

⎞
⎠ +

⎛
⎝ ∑

a∈µs′ (Q)1|t(a)=st

[Φ−1
s (es(a) · Γ̂(µs(Q,W ))]

⎞
⎠ .

We have again used that [Φ−1
s′ (es · Γ̂(µs′(Q,W )))] = [Φ−1

s (es · Γ̂(µs(Q,W )))] for
s ̸= st. Finally, we deduce that in the case s = st, with s additive, the left hand
side of (64) is equal to

EXP

(
ι(Y [Ss])

q−1/2 − q1/2

)
X [Φ−1

s′
(es·Γ̂(µs′(Q,W )))] EXP

( −ι(Y [Ss])

q−1/2 − q1/2

)
=(66)

X
∑

a∈µ
s′

(Q)1 |s(a)=s[Φ
−1
s (et(a)·Γ̂(µs(Q,W )))]−[Φ−1

s (es·Γ̂(µs(Q,W )))]
+

X
∑

a∈µ
s′

(Q)1 |t(a)=s[Φ
−1
s (es(a)·Γ̂(µs(Q,W )))]−[Φ−1

s (es·Γ̂(µs(Q,W )))]

as required.
By (37), in the subtractive case, we have the identity

(67)

[Φ−1
s (est ·Γ̂(µs(Q,W )))] =

∑

a∈µs′ (Q)1|t(a)=st

[Φ−1
s′ (es(a)·Γ̂(µs′(Q,W )))]−[Φ−1

s′ (est ·Γ̂(µs′(Q,W )))].

By Remark 4.3, we have the commutation relation

X [Φ−1

s′
(es·Γ̂(µs′(Q,W )))]ι(Y [Ss[−1]]) = q−1ι(Y [Ss[−1]])X [Φ−1

s′
(es·Γ̂(µs′ (Q,W )))].

By (33), there is an identity

EXP

(
ι(Y −[Ss])

q−1/2 − q1/2

)−1

X [Φ−1

s′
(es·Γ̂(µs′ (Q,W )))] EXP

(
ι(Y −[Ss])

q−1/2 − q1/2

)
=(68)

X [Φ−1

s′
(es·Γ̂(µs′ (Q,W )))] +X [Φ−1

s′
(es·Γ̂(µs′ (Q,W )))]+ι([Ss[−1]]) =(69)

X
∑

a∈µ
s′

(Q)1|t(a)=s[Φ
−1
s (es(a)·Γ̂(µs(Q,W )))]−[Φ−1

s (es·Γ̂(µs(Q,W )))]
+

X
∑

a∈µ
s′

(Q)1|s(a)=s[Φ
−1
s (et(a)·Γ̂(µs(Q,W )))]−[Φ−1

s (es·Γ̂(µs(Q,W )))]

where the final identity is given by (65) and (67).
!

It follows that the right hand side of (63) is in TΛ, as opposed to the completion

T̂Λ, by [BZ05, Cor.5.2]. We will see how to derive that result within the present
framework in Section 6.
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5. Proof of the purity conjecture

The goal of this section is to prove Theorem 5.2, which is a purity result for the
monodromic mixed Hodge module categorifying quantum cluster coefficients.

Proposition 5.1. Let Q be an ice quiver. Let s = (s1, . . . , st) be a sequence of
principal vertices of Q, let W be an algebraic potential for Q, nondegenerate with
respect to s, and let ζs and θs be as in Proposition 4.11. Then the monodromic
mixed Hodge module

(70) H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)

is pure, of Tate type. Furthermore, the monodromic mixed Hodge module

(71) H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

Q
M(Q)

ζs
[0,θs]

)

nilp

)

has trivial monodromy.

Proof. We prove the proposition by induction on the length of s. The result is
clearly true for s = ∅, since then Fs contains only the zero module, and (70) and
(71) are isomorphic to Q{0}, the constant pure mixed Hodge module supported at

the origin 0 ∈ Nm. As in Proposition 4.15 we set γ = Ξζs(Ss). By the proof of

Proposition 4.15 (see isomorphism (58)), H
(
Dim∗ ICM(Q,W )

ζs -ss,nilp
γ

(Q)
)
is pure.

So if s is additive, purity follows from the isomorphism (59) and the inductive
hypothesis, since "

tw
+ preserves purity, by Proposition 3.4 and Lemma 3.20. On

the other hand, if s is subtractive, then impurity of

(72) H

⎛
⎝Dim∗

(
φmon

Tr(W )
ζ
s′

[0,θs′ ]

IC
M(Q)

ζs′

[0,θ
s′

]

(Q)

)

nilp

⎞
⎠

or its failure to be of Tate type, is implied by impurity of

(73) H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)

or its failure to be of Tate type, since there is an inclusion of the monoidal unit

Q{0} ⊂ H
(
Dimζs -ss

γ,∗ IC
M(Q,W )

ζs -ss,nilp
γ

(Q)
)

as a direct summand, and so (60) implies there is an inclusion (73) ⊂ (72) as a direct
summand. So purity, of Tate type, follows again from the inductive hypothesis. The
monodromy statement is proved in exactly the same way, using the monodromy
statement of Proposition 4.15 in the inductive step, and the modified isomorphisms
of Remark 4.17 (in which no half Tate twists appear). !

The next theorem is a modification, in the sense elaborated upon in Remark
1.1, of a conjecture of Kontsevich and Efimov, stated as Conjecture 6.8 of [Efi]. In
addition to proving the conjecture, we prove that the relevant monodromic mixed
Hodge module is of Tate type, and after a half Tate twist determined by d, it has
trivial monodromy.

Theorem 5.2. Let f ∈ Nn be a framing vector, and let d ∈ Nm be a dimension
vector satisfying Ξζs(d) ∈ [0, θs]. The monodromic mixed Hodge module

H = H

(
dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

IC
M(Q)

ζs,θs -sfr

f,d

(Q)

)

nilp

)
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is pure, of Tate type, and admits a Lefschetz operator l : H → H[2] such that for
all k ∈ N, lk : H−k → Hk is an isomorphism. Furthermore, the monodromic mixed
Hodge module

H

(
dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

Q
M(Q)

ζs,θs -sfr

f,d

)

nilp

)

has trivial monodromy.

Proof. We write N(Qf,princ)0 = Nm+1, where the identification is via the ordering

(∞, 1, . . . ,m) of the principal vertices of Qf . Let ξ = ζ
(θs)
s be as in Definition 3.17.

Set κ = Ξξ(1∞). Recall that, by construction, κ is slightly larger than θs. By
Theorem 3.21, there is an isomorphism in D≥,lf(MMHM(Nm+1))

H

(
Dim∗

(
φmon

Tr(W )ξ
[0,κ]

IC
M(Qf )

ξ

[0,κ]
(Q)

)

nilp

)
∼=(74)

"
tw

+,[κ
γ−→0] H

(
Dim∗

(
φmon

Tr(W )ξ -ss
γ

IC
M(Qf )

ξ -ss
γ

(Q)
)
nilp

)
,

where we have again commuted the operations of passing to total cohomology and
restricting to the nilpotent locus via Corollary 4.14. Since

H
(
Dim∗ φ

mon
Tr(W )ξ -ss

0
IC

M(Qf )
ξ -ss
0

(Q)
)
∼= Q{0},

the constant pure mixed Hodge module on the point 0, we deduce that for each
γ ∈ [0,κ],

(75) H

(
Dim∗

(
φmon

Tr(W )ξ -ss
γ

IC
M(Qf )

ξ -ss
γ

(Q)
)
nilp

)

is a direct summand of the left hand side of (74), since there is an isomorphism

H

(
Dim∗

(
φmon

Tr(W )ξ -ss
γ

IC
M(Qf )

ξ -ss
γ

(Q)
)
nilp

)
∼=

(
"

tw

+,[κ
γ′−→γ)

Q{0}

)
"

tw
+ H

(
Dim∗

(
φmon

Tr(W )ξ -ss
γ

IC
M(Qf )

ξ -ss
γ

(Q)
)
nilp

)
"

tw
+

(
"

tw

+,(γ
γ′−→0]

Q{0}

)
.

So purity of (75) is implied by the purity of the left hand side of (74), which we
now demonstrate.

Define a new stability condition ξ′ ∈ H
Qf

+ by setting ξ′|Q0 = ζs = ξ|Q0 , and
ξ′∞ = 1. Note that, by construction of ζs (in particular (44)), the imaginary part of
ζs ·d is greater than zero, for all d ∈ NQ0 \ {0}, and so with respect to the stability
condition ξ′ any CQf -module that is not entirely supported at the vertex ∞ has
strictly greater slope than a CQf -module supported entirely at ∞. In particular,
any CQf -module which is supported both at the vertex ∞ and on the original
quiver Q is destabilised by its underlying CQ-module.

There is an equality

H

(
Dim∗

(
φmon

Tr(W )ξ
[0,κ]

IC
M(Qf )

ξ

[0,κ]
(Q)

)

nilp

)
=(76)

H

(
Dim∗

(
φmon

Tr(W )ξ
′

[0,κ]

IC
M(Qf )

ξ′

[0,κ]

(Q)

)

nilp

)

since a CQf -module belongs to (mod-CQf )
ξ
[0,κ], equivalently (mod-CQf )

ξ′

[0,κ], if and

only if the underlying CQ-module belongs to (mod-CQ)ζs

[0,θs]
. Applying Theorem
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3.21 again, there are isomorphisms in the category D≥,lf(MMHM(Nm+1))

H

(
Dim∗

(
φmon

Tr(W )ξ
′

[0,κ]

IC
M(Qf )

ξ′

[0,κ]

(Q)

)

nilp

)
(77)

∼="
tw

+,[κ
γ−→0] H

(
Dim∗

(
φmon

Tr(W )ξ
′ -ss

γ

IC
M(Qf )

ξ′ -ss
γ

(Q)
)
nilp

)

∼="tw

+,[θs

γ−→0] H

(
Dim∗

(
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)
)
nilp

)
"

tw
+

"
tw
+ H

(
Dim∗ ICM(Qf )(N,0,...,0)(Q)

)

∼=H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)
"

tw
+

"
tw
+ H

(
Dim∗ ICM(Qf )(N,0,...,0)(Q)

)
.

Here the termM(Qf )(N,0,...,0) is the stack of finite-dimensional CQf -modules having
dimension vector 0 when restricted to CQ. This, in turn, is the moduli stack

∐

r≥0

(pt /GLr),

which has pure cohomology, of Tate type. As such, the term

H
(
Dim∗ ICM(Qf )(N,0...,0)(Q)

)

is pure, of Tate type, as is

H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)

by Proposition 5.1. Since "tw
+ takes pairs of pure objects to pure objects by Propo-

sition 3.4, we finally deduce that (77) is pure, of Tate type. It then follows that the
left hand side of (74) is pure, of Tate type, via the equality (76).

Now fix d satisfying Ξζs(d) ∈ [0, θs]. We have shown that

H

(
Dim∗

(
φmon

Tr(W )ξ -ss
(1,d)

IC
M(Qf )

ξ -ss
(1,d)

(Q)

)

nilp

)
∼=(78)

H

(
dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

IC
M(Q)

ζs,θs -sfr

f,d

(Q)

)

nilp

)
⊗H(pt /C∗,Q)vir

is pure, of Tate type, which gives the purity (of Tate type) of

(79) H

(
dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

IC
M(Q)

ζs,θs -sfr

f,d

(Q)

)

nilp

)
.

The monodromy statement is proved in exactly the same way, using the monodromy
statement of Proposition 5.1.

By Proposition 4.13, the cohomology of (79) is the cohomology of a restriction
of

φmon

T r(W )
ζs,θs -sfr

f,d

IC
M(Q)

ζs,θs -sfr

f,d

(Q)

to a proper union of connected components of its support. As explained in [DMSS15,
Thm.2.3], using the machinery of [Sai88] and the fact that this is an example of



POSITIVITY FOR QUANTUM CLUSTER ALGEBRAS 41

case (c) of [DMSS15, Thm.2.1], we deduce that

H

(
dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

IC
M(Q)

ζs,θs -sfr

f,d

(Q)

)

nilp

)

carries a Lefschetz operator, as required. !

6. Proof of the main theorem

We recall from [Efi] the passage from Kontsevich’s conjecture to the quantum
cluster positivity conjecture. From now on we leave out the symbols H(. . .); we now
have purity of all relevant mixed Hodge modules, and so all mixed Hodge modules
that are well-defined before passing to total cohomology are nonetheless isomorphic
to their total cohomology.

Proof of Theorem 2.4. As in the proof of Theorem 5.2, we use Definition 3.17 and

set ξ = ζ
(θs)
s . Define

R := {d ∈ Nm|Ξζs(d) ∈ [0, θs]}.

Combining isomorphisms (74) (76) and (77) from the proof of Theorem 5.2, and
restricting to {1}×R, there is an isomorphism

Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

"
tw
+ Dim∗ ICM(Qf )(1,0,...,0)(Q) ∼=

(80)

Dim∗

(
φmon

Tr(W )ξ -ss
{1}×R

IC
M(Qf )

ξ -ss
{1}×R

(Q)

)

nilp

"
tw
+ Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

.

There is an equality

Dim∗ ICM(Qf )(1,0,...,0)(Q) = (q−1/2 − q1/2)−1Y 1∞

arising from the identity

χq

(
H(pt /C∗,Q)vir, q

1/2
)
= −(q−1/2 − q1/2)−1

(recall from (17) the sign change in the definition of χQf
). Applying χQf

to the
identity in K0(D

≥,lf(MMHM(Nm+1))) resulting from (80), and multiplying both
sides on the right by

(
q−1/2 − q1/2

)
χQf

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)−1

,

we obtain the identity

χQf

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)
Y 1∞(81)

χQf

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)−1

=

∑

d∈R

χQf

(
dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

IC
M(Q)

ζs,θs -sfr

f,d

(Q)

)

nilp

)
.
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Here we have used the identity

∑

d∈R

χQf

(
dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

IC
M(Q)

ζs,θs -sfr

f,d

(Q)

)

nilp

)
(q−1/2 − q1/2)−1 =

χQf

(
H

(
Dim∗

(
φmon

Tr(W )ξ -ss
(1,d)

IC
M(Qf )

ξ -ss
(1,d)

(Q)

)

nilp

))

arising from (78).

We extend the homomorphism ι : ÂQ → T̂Λ to a homomorphism ιf : ÂQf
→ T̂Λ

by sending Y 1∞ to X f . The map ιf is indeed a ring homomorphism, as can be
verified via the relations (35) and the calculation

⟨1∞,d⟩Qf
=− d · f

=Λ(−B̃d, f),

where the second equality follows from (4). The following identity, expressing mu-
tated cluster variables in terms of vanishing cycle cohomology, then follows from
(81) and Theorem 4.19:

(82) µs(M)(f) =
∑

d∈R

ιfχQf

(
dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d

IC
M(Q)

ζs,θs -sfr

f,d

(Q)

)

nilp

)
.

By Theorem 5.2, the mixed Hodge module on the right hand side of (82) is pure
and carries a Lefschetz operator. Positivity, and the Lefschetz property then follow.

Finally, note that each of the nonzero polynomials ad(q
1/2) appearing in the

theorem is given by the weight polynomial of the single monodromic mixed Hodge
structure

dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d′

IC
M(Q)

ζs,θs -sfr

f,d′
(Q)

)

nilp

for d′ satisfying ι(d′) + f = d, since ι is injective by (4). Since the monodromic
mixed Hodge structure

dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d′

Q
M(Q)

ζs,θs -sfr

f,d′

)

nilp

is pure, of Tate type, with trivial monodromy by Theorem 5.2, we deduce that

χq

(
dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d′

IC
M(Q)

ζs,θs -sfr

f,d′
(Q)

)

nilp

, q1/2

)

= χq

(
L
− dim(M(Q)

ζs,θs -sfr

f,d′ )
, q1/2

)
χq

(
dim∗

(
φmon

T r(W )
ζs,θs -sfr

f,d′

Q
M(Q)

ζs,θs -sfr

f,d′

)

nilp

, q1/2

)

= (−q1/2)
− dim(M(Q)

ζs,θs -sfr

f,d′ )
h(q)

for h(q) ∈ N[q]. The sign before the half power of q in the final line is as in Remark
3.11, and is cancelled by definition of the map χQf

(see (18)). Combining this
statement with the Lefschetz property finishes the proof of Theorem 2.4. !

By combining Theorem 2.4 and Remark 2.1 we recover the following corollary,
which is the classical positivity theorem, due to Lee and Schiffler.

Theorem 6.1. [LS15] Let Q be a quiver. Then the classical positivity conjecture
holds for the cluster algebra AQ.
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Appendix A. No exotics property for motivic Donaldson–Thomas

invariants

In this appendix we prove a theorem related to the quantum cluster positivity
theorem, regarding Donaldson–Thomas invariants for cluster collections. Let Q be
a quiver without loops and 2-cycles, and let W ∈ CQ/[CQ,CQ] be an algebraic
potential. For the purposes of this section we assume that Q has no frozen vertices,
i.e. we identify the vertices of the quiver with the numbers {1, . . . ,m}, and place
no restrictions apart from finiteness on the dimension vector d of our CQ-modules.
The bilinear form Λ plays no role in this section, and so in particular we do not
require that the coefficients of B̃−1 are integral, or indeed that B̃−1 exists. Let
ζs ∈ Hm

+ be a stability condition, and let θs be a slope, satisfying the conditions of

Proposition 4.11, though without the stipulation on the slope Ξζs(Ss) of Ss.
We assume that ζs is generic, in the sense that if d and d′ are two dimension

vectors satisfying Ξζs(d) = Ξζs(d′) ≤ θs, then ⟨d,d′⟩Q = 0. For an arbitrary
stability condition satisfying the conditions of Proposition 4.11 this can be achieved,
for example, by perturbing ζs within the space of stability conditions satisfying the
conditions of Proposition 4.11, so that Ξζs(d) = Ξζs(d′) if and only if d = rd′ for
some r ∈ R>0. For γ ∈ [0,π) we define

Λζs
γ = {d ∈ Nm \ {0}|Ξζs(d) = γ} ∪ {0},

i.e. Λζs
γ is the monoid of dimension vectors of slope γ with respect to the sta-

bility condition ζs. Then for γ ∈ [0, θs], restricting the twisted product "
tw
+ to

D≥,lf(MMHM(Λζs
γ )), it becomes a symmetric monoidal product, as the Tate twist

L⟨d′,d′′⟩Q/2 is trivial for d′,d′′ ∈ Λζs
γ . We define

Λζs,+
γ := Λζs

γ \ {0}.

Given F ∈ D≥,lf(MMHM(Λζs,+
γ )), we define Sym"+

(F) ∈ D≥,lf(MMHM(Λζs
γ )) to

be the free symmetric unital algebra generated by F in the categoryD≥,lf(MMHM(Λζs
γ )).

We define the plethystic exponential

EXPHodge : K0(D
≥,lf(MMHM(Λζs,+

γ ))) →K0(D
≥,lf(MMHM(Λζs

γ )))

[F ] 0→[Sym"+
(F)].

The map EXPHodge is an isomorphism onto its image, which is 1+K0(D
≥,lf(MMHM(Λζs,+

γ ))).
It is also a lift of the map EXP of Definition 3.22, in the sense that

EXP ◦χQ|K0(D≥,lf(MMHM(Λ
ζs,+
γ )))

= χQ ◦ EXPHodge .

We define Â
Hodge

Q to be the free K0(D
≥,lf(MMHM(pt)))-module generated by sym-

bols Y e, with e ∈ Nm, and with multiplication defined by

[G]Y e · [G′]Y d = [L⟨d,e⟩Q/2 ⊗ G ⊗ G′]Y e+d,

completed with respect to the ideal generated by Y e for e ∈ Nm \ {0}. We define
the isomorphism

χ
Hodge
Q : K0

(
D≥,lf(MMHM(Nm))

)
→Â

Hodge

Q

[F ] 0→
∑

d∈Nm

[Fd]Y
d.

Let γ ∈ [0, θs]. The Hodge-theoretic Donaldson–Thomas invariants Ω
ζs

d
∈

K0(D
≥,lf(MMHM(pt))) for the category of ζs-semistable Jac(Q,W )-modules of
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slope γ are defined to be the classes satisfying
(83)

χ
Hodge
Q

([
H

(
Dimζs -ss

γ,∗

(
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)
))])

= EXPHodge

⎛
⎝
∑

d∈Λ
ζs,+
γ

Ω
ζs

d
Y d

[L−1/2]− [L1/2]

⎞
⎠ ,

where we define the right hand side via the identification

K0(D
≥,lf(MMHM(Λζs

γ ))) = K0(D
≥,lf(MMHM(pt)))[[Y e|e ∈ Λζs

γ ]]

induced by χ
Hodge
Q , and the expansion

1/([L−1/2]− [L1/2]) = [L1/2] + [L3/2] + . . . .

Similarly, the DT invariants Ωζs,nilp
d

are defined by the equation
(84)

χ
Hodge
Q

([
H

(
Dimζs -ss

γ,∗

(
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)
)
nilp

)])
= EXPHodge

⎛
⎝
∑

d∈Λ
ζs,+
γ

Ω
ζs,nilp
d

Y d

[L−1/2]− [L1/2]

⎞
⎠ .

Remark A.1. Strictly speaking, the correct formulation of the second definition is
(85)

χ
Hodge
Q

([
Dmon

Λ
ζs
γ

H

(
Dimζs -ss

γ,!

(
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)
)
nilp

)])
= EXPHodge

⎛
⎝
∑

d∈Λ
ζs,+
γ

Ω
ζs,nilp
d

Y d

[L−1/2]− [L1/2]

⎞
⎠

instead of (84). However, the left hand sides of (84) and (85) are equal, by self-
duality of the vanishing cycle complex and Corollary 4.14.

In the language of motivic Donaldson–Thomas theory [KS08], the classes Ωζs

d
and

Ω
ζs,nilp
d

are the Hodge–theoretic realisations of the respective motivic Donaldson–
Thomas invariants, as explained in [KS11]. As in [DM15] and [DM16], we define

DTζs
γ ∈ Db(MMHM(Λζs,+

γ ))

by the condition that, for d ∈ Λ
ζs,+
γ ,

DTζs

d
=

⎧
⎨
⎩
H

(
τ∗φ

mon

T r(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)

)
if M(Q)ζs -st

d
̸= ∅

0 otherwise,

where τ : M(Q)ζs -ss
d

→ pt is the map to a point. Similarly, we define

DTζs,nilp
d

=

⎧
⎪⎨
⎪⎩
H

(
τ∗

(
φmon

T r(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)

)

nilp

)
if M(Q)ζs -st

d
̸= ∅

0 otherwise.

Then by [DM16, Thm.A], there are isomorphisms

H
(
Dimζs -ss

γ,∗

(
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)
))

∼=Sym"+

(
DTζs

γ ⊗H(pt /C∗,Q)vir

)
(86)

H

(
Dimζs -ss

γ,∗

(
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)
)
nilp

)
∼=Sym"+

(
DTζs,nilp

γ ⊗H(pt /C∗,Q)vir

)
,

(87)

from which we deduce that

Ω
ζs

d
=[DTζs

d
]

Ω
ζs,nilp
d

=[DTζs,nilp
d

].
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We now state our main results regarding Donaldson–Thomas invariants.

Theorem A.2. For ζs and θs as above, and d ∈ Nm of slope less than or equal

to θs, the Hodge–theoretic Donaldson–Thomas invariants Ω
ζs,nilp
d

can be written as

hd(L
1/2), for hd(q

1/2) = hd(q
−1/2) equal to bd(q)q

−deg(bd(q))/2, for some polyno-
mial bd(q) ∈ N[q] with unimodal coefficients.

This theorem is in turn a consequence of the following one.

Theorem A.3. For ζs, θs,d as above, the monodromic mixed Hodge module H =

DTζs,nilp
d

is pure, of Tate type, and carries a Lefschetz operator l : H• → H•+2 such

that lk : H−k → Hk is an isomorphism for all k. Moreover, either H or H ⊗ L1/2

has trivial monodromy.

Proof. By Theorem 3.21 we may write

H

(
Dim∗

(
φmon

Tr(W )
ζs
[0,θs]

IC
M(Q)

ζs
[0,θs]

(Q)

)

nilp

)
∼=(88)

"
tw

+,[θs

γ−→0] H

(
Dim∗

(
φmon

Tr(W )
ζs -ss
γ

IC
M(Q)

ζs -ss
γ

(Q)
)
nilp

)
(89)

and by Proposition 5.1 we moreover deduce that (88) is pure, of Tate type. It
follows as in the proof of Theorem 5.2 that each of the terms in the product (89)

is pure, of Tate type. As each DTζs,nilp
d

is a summand of (89), we deduce that all

of the monodromic mixed Hodge structures DTζs,nilp
d

are pure, of Tate type.
In addition, from Corollary 4.14 it follows that

(
φmon

T r(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)
)
nilp

is the restriction of

φmon

T r(W )
ζs -ss

d

IC
M(Q)

ζs -ss

d

(Q)

to a proper union of components of its support, i.e. the preimage of the origin
under the proper map qζs

d
: M(Q)ζs -ss

d
→ M(Q)d, and so its cohomology carries

a Lefschetz operator, as in the proof of [DMSS15, Thm.2.3]. Moreover, since by
Proposition 5.1, (88) has trivial monodromy (possibly after tensoring by a half Tate

twist, depending on d), we deduce that the same is true of each DTζs,nilp
d

. !

Remark A.4. The above is a kind of categorified “no exotics” statement for the
BPS/DT invariants associated to cluster collections — compare with [CDM+14],
where in the physics context the no exotics property of refined DT invariants is
explained by the principal that the cohomology of the spaces of BPS states that
they derive from carry a Lefschetz operator, as representations of sl2. We use
the word “categorified” here to mean that for cohomological DT invariants coming
from cluster collections, we can construct the Lefschetz action itself, in addition to
deducing the no exotics property on the underlying refined DT invariants, which in
our context is the Tate type property.

Corollary A.5. Let (Q,W ) be an algebraic QP, such that there is a sequence of

vertices s, for which W is nondegenerate, and for which Fs ∩ mod-Ĵac(Q,W ) =

mod-Ĵac(Q,W ). Then for a generic stability condition ζ, the Hodge–theoretic

Donaldson–Thomas invariants Ω
ζs,nilp
d

can be written as hd(L
1/2), for hd(q

1/2) =

hd(q
−1/2) equal to bd(q)q

−deg(bd(q))/2, for bd(q) ∈ N[q] with unimodal coefficients.
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As a special case, we recover the following result from [MR]; note however that
this is not a new proof, as the proof of [DM16, Thm.A] uses the results of [MR]
in an essential way. For an example of a QP satisfying the conditions of Corollary
A.5, and for which Q is not acyclic, see the example worked out after Conjecture
6.8 of [Efi].

Corollary A.6. [MR, Cor.1.2] Let Q be acyclic. Then for a generic stability con-

dition ζ the Hodge–theoretic Donaldson–Thomas invariants Ω
ζs,nilp
d

can be written

as hd([L
1/2]), for hd(q

1/2) = hd(q
−1/2) equal to bd(q)q

−deg(bd(q))/2, for some poly-
nomial bd(q) ∈ N[q] with unimodal coefficients.
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[Sai89c] , Mixed Hodge modules and admissible variations, CR Acad. Sci. Paris 309

(1989), no. 6, 351–356.
[Sai90] , Mixed Hodge modules, Publ. RIMS 26 (1990), 221–333.

[SZ85] J. Steenbrink and S. Zucker, Variation of mixed Hodge structure. I, Inventiones math-
ematicae 80 (1985), no. 3, 489–542.

B. Davison: School of Mathematics and Statistics

University of Glasgow, University Place

Glasgow G12 8SQ

E-mail address: ben.davison@glasgow.ac.uk

http://arxiv.org/abs/1411.4062

	1. Introduction
	1.1. Background
	1.2. Standing conventions
	1.3. Acknowledgements

	2. Quivers and cluster algebras
	2.1. Quantum cluster algebras
	2.2. Mutation of quivers with potential

	3. Some Donaldson–Thomas theory
	3.1. Monodromic mixed Hodge modules
	3.2. Moduli spaces of quiver representations and stability conditions
	3.3. Categorification of the completed quantum space Q
	3.4. Critical cohomology
	3.5. Cohomological wall crossing

	4. Cluster mutations from derived equivalences
	4.1. Categorification of cluster mutation
	4.2. Nagao's torsion pair
	4.3. Cluster mutation from torsion pairs

	5. Proof of the purity conjecture
	6. Proof of the main theorem
	Appendix A. No exotics property for motivic Donaldson–Thomas invariants
	References

