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Abstract

We give the first examples of flat fiber type contractions of Fano manifolds onto varieties that

are not weak Fano, and we prove that these morphisms are Fano conic bundles. We also review

some known results about the interaction between the positivity properties of anticanonical

divisors of varieties of contractions.

1. Introduction

1. Introduction
Given a contraction ϕ : X → Y , i.e. a surjective morphism with connected fibers between

normal complex projective varieties, it is a natural and fundamental problem to try to under-

stand the link between the positivity properties of the anticanonical divisors of our varieties.

This matter can be viewed as a Positivity Problem for the anticanonical divisor of Y .

Assume that X, Y are smooth. In [10, Corollary 2.9], Kollár, Miyaoka and Mori proved

that when such a morphism is smooth, and X is Fano, then so is Y . Under the same assump-

tion of smoothness of the morphism, in [8, Theorem 1.1] Fujino and Gongyo showed that if

X is weak Fano (that is −KX is nef and big) then so is Y; while in [5, Theorem 1.1] Birkar

and Chen proved that if −KX is semiample, then so is −KY .

Weaker results are known when ϕ is not smooth: for instance, in [16, Theorem 2.9]

Prokhorov and Shokurov proved that if ϕ : X → Y is a contraction and X is log Fano, then

Y is also log Fano, in particular −KY is big. We recall that a normal projective variety X

is log Fano if there exists an effective Q-divisor △ of X such that −(KX + △) has a positive

multiple which is Cartier and ample and the pair (X,△) is klt (see [11] for the definition of

klt). Moreover, we refer the reader to [6, §3.6] for an overview and proofs of some results

mentioned above.

Let us denote by 1(X) the R-vector space of one-cycles with real coefficients, modulo

numerical equivalence, whose dimension is the Picard number ρX . A Fano conic bundle

f : X → Y is a contraction where X is smooth and Fano, and such that all fibers of f are

one-dimensional. We say that a Fano conic bundle f : X → Y is elementary if ρX − ρY = 1,

otherwise f is called non-elementary. We refer the reader to [17] for a detailed study of

non-elementary Fano conic bundles.

In this note we discuss some recent developments about the Positivity Problem introduced

above from the viewpoint of Fano conic bundles, and our main goal is to construct some new

examples.
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In [19] Wiśniewski posed a question related to our positivity problem: given a Fano conic

bundle f : X → Y , is Y also Fano? In [19, §5, 5.2] he gave an example of Fano conic bundle

onto a variety that is not Fano but it is weak Fano. This example was generalized by Debarre

in [6, Example 3.16 (3)]. Moreover, in [6, footnote 14] Debarre observed that Wiśniewski’s

construction does not seem able to provide an example of Fano conic bundle whose target

is not weak Fano. In this paper we overcome this problem, in fact with a modification of

Wiśniewski’s construction we get the first examples of Fano conic bundles onto varieties

that are not weak Fano, by proving the following result:

Theorem 1.1. For every m ∈ Z, m ≥ 2 there exists an elementary Fano conic bundle

f : X → Y where dim X = 3(m + 1), and −KY is not nef.

Notice that there exist examples where f : X → Y is a flat and not smooth contraction,

with X weak Fano and −KY not nef (see [8, Example 4.6]). Theorem 1.1 implies something

stronger: −KY is not always nef even if X is a Fano manifold.

We conclude with Section 4 where some open problems are presented.

2. Preliminaries

2. Preliminaries2.1. Notation and terminology.
2.1. Notation and terminology. We work over the field of complex numbers. Let X be

a smooth projective variety with arbitrary dimension n.

1(X) (respectively,  1(X)) is the R-vector space of one-cycles (respectively, Cartier

divisors) with real coefficients, modulo numerical equivalence.

dim1(X) = dim 1(X) =: ρX is the Picard number of X.

Let C be a one-cycle of X, and D a divisor of X. We denote by [C] (respectively, [D]) the

numerical equivalence class in 1(X) (respectively in  1(X)).

We denote by Eff (X) the Effective cone of X, that is the convex cone inside  1(X)

spanned by classes of effective divisors.

Let D ⊂ X be a Cartier divisor. The divisor D is movable if there exists m > 0, m ∈ Z

such that codim Bs |mD| ≥ 2.

We denote by Mov (X) the Movable cone of X, that is the convex cone of  1(X) spanned

by classes of movable divisors.

A contraction of X is a surjective morphism ϕ : X → Y with connected fibers, where Y is

normal and projective.

We denote by Exc(ϕ) the exceptional locus of ϕ, i.e. the locus where ϕ is not an isomor-

phism.

2.2. Preliminaries on Fano conic bundles.
2.2. Preliminaries on Fano conic bundles. A contraction f : X → Y is a conic bundle

if −KX is f -ample and every fiber of f is one-dimensional. When X is Fano, we call such a

contraction Fano conic bundle.

The following theorem is due to Ando ([2, Theorem 3.1]) and it is a generalization in

higher dimension of Mori’s result in dimension 3 (see [13, Theorem 3.5, (3.5.1)]). For the

second part we refer the reader to [4, Proposition 1.2 (ii)] and [19, §4].

An important consequence of this theorem is that conic bundles can be easily character-

ized among fiber type contractions of smooth varieties.

Theorem 2.1 ([2], Theorem 3.1 (ii)). Let X be a smooth projective variety and let f : X →

Y be a contraction where −KX is f -ample and every fiber is one-dimensional. Then Y is
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smooth.

Moreover, there exists a locally free sheaf  on Y of rank 3 such that the projection

π : P() → Y contains X embedded over Y as a divisor whose restriction to every fiber

of π is one-dimensional and it is an element of |P2(2)|, and f = π|X . The pushforward

f∗X(−KX) can be taken as the above  .

Moreover, X is defined by the vanishing of a section σ ∈ H0(P(),P()(2ξ + π
∗M)),

where M is a divisor of Y and using the adjunction formula it is easy to check that M ∼

− det  − KY .

In [4], Beauville introduced the following definition of the discriminant divisor of a conic

bundle f : X → Y:

△ f := {y ∈ Y | f −1(y) is singular}.

Using the same notation introduced above, we recall from [18, §1.7] that

(1) △ f ∈ |(det )⊗2 ⊗ Y(3M)|.

We can express the regularity conditions of the fibers of f in terms of the properties of △ f .

Indeed, we obtain the following explicit description of the singular locus of the discriminant

divisor (see for instance [3, §2], [18, Proposition 1.8, (5.c)]):

(2) Sing (△ f ) = {y ∈ Y | f −1(y) is non-reduced}.

Now, we recall the last results related to △ f that will be needed.

The following results are consequences of [19, Proposition 4.3] and its proof.

Proposition 2.2 ([19]). Let f : X → Y be a Fano conic bundle. Assume that Y is not

Fano. Let C be a rational curve of Y such that −KY ·C ≤ 0. Then C ⊆ Sing (△ f ).

Corollary 2.3 ([19]). Let f : X → Y be a Fano conic bundle. If f does not have non-

reduced fibers, then Y is Fano. Moreover, if dim X ≤ 4 or ρX ≤ 2, then Y is Fano.

We are going to study our Positivity Problem for the anticanonical divisors from the

viewpoint of Fano conic bundles.

We focus on the following problem studied in [19, §4] by Wiśniewski: given a Fano conic

bundle f : X → Y , is Y Fano or not?

The following result arises from the study of non-elementary Fano conic bundles of [17].

In particular, it is a consequence of [17, Theorem 1.1] and allows us to give an answer to

Wiśniewski’s question, in many cases.

Theorem 2.4 ([17], Corollary 1.2). Let f : X → Y be a Fano conic bundle, where Y is

not Fano. Then ρX − ρY = 2 or ρX − ρY = 1. If ρX − ρY = 2 then ρY ≥ 3, and Y has a smooth

P1-fibration.1

Thanks to the above theorem we deduce that the target of a non-elementary Fano conic

bundle is often Fano. In the next Section we use Theorem 2.4 to prove that the new examples

of Fano conic bundles are elementary.

1A smooth P1-fibration is a smooth morphism with fibers isomorphic to P1.
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3. New examples of elementary Fano conic bundles

3. New examples of elementary Fano conic bundles
In this section we give examples of Fano conic bundles f : X → Y , where −KY is not nef.

Putting our construction in a more general setting, we get the first examples of equidimen-

sional fiber type contractions of Fano varieties onto varieties Y which are not weak Fano.

Moreover, since we obtain equidimensional morphisms between smooth projective varieties,

these are flat morphisms, and by Corollary 2.3 we deduce that they have non-reduced fibers.

Let m ∈ Z, m ≥ 2, and set2 Y = PP3m(P3m ⊕ P3m(2m) ⊕ P3m(2m)).

One has ρY = 2, in particular  1(Y) is generated by the class of a divisor D associated

with the line bundle Y(1) and by the class of the pullback H of a hyperplane in P3m. Let

π : Y → P3m be the natural projection. Notice that D is a nef divisor, not ample, and that it is

base point free (see for instance [12, §2.3, Lemma 2.3.2]). Since D and H are both nef, not

ample divisors of Y and ρY = 2, then Nef (Y) = 〈[D], [H]〉 (see Figure 1).

Denote by V ⊂ Y the section corresponding to the trivial quotient P3m ⊕ P3m(2m) ⊕

P3m(2m)։ P3m , so that D|V � V . We have:

−KY = 3D + (1 − m)H

so that −KY is not nef, indeed if C is a line contained in V � P3m, then −KY ·C = 1−m < 0.

The section V is a complete intersection of two divisors G1, G2 ∼ D − 2mH. Indeed by

the two possible factorizations of the trivial quotient

P3m ⊕ P3m(2m) ⊕ P3m(2m)։ P3m ⊕ P3m(2m)։ P3m ,

we have the immersions:

V � P3m
= P(P3m) ֒→ G1 := P(P3m ⊕ P3m(2m)) ֒→ Y

V ֒→ G2 := P(P3m ⊕ P3m(2m)) ֒→ Y

and V is given by the intersection between G1 and G2. For i = 1, 2 we have Gi
(1) = D|Gi

and:

−KGi
= 2D|Gi

+ (m + 1)H|Gi

and by the adjunction formula we find that:

KGi
= (Gi − 3D + (m − 1)H)|Gi

so that (Gi − D + 2mH)|Gi
∼ 0. But ρGi

= ρY = 2 and the restriction Pic (Y)→ Pic (Gi) is an

isomorphism, then Gi ∼ D − 2mH.

Since D is base point free, the map associated to a sufficiently large multiple of D is a

contraction, which we denote by ϕ : Y → Y ′.

Using that D|V � V , it is easy to check that ϕ contracts V to a point, hence V ⊆ Exc (ϕ).

Notice that Exc (ϕ) = V . Indeed, if C is an irreducible curve of Y such that ϕ(C) is a point,

since ϕ∗(C) = 0 one has that D · C = 0, instead H · C > 0, then Gi · C < 0 for i = 1, 2, and

Exc (ϕ) ⊆ G1 ∩G2 = V . In particular, we observe that ϕ is a small elementary contraction.

Lemma 3.1. Notation as above. Then

Bs (|2D − 2mH|) = Bs (|D − mH|) = Bs (|2D − mH|) = V.

2As usual, we follow Grothendieck’s notation: for a vector bundle  , the projectivization P() is the space of

hyperplanes in the fibers of  .
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Proof. For every curve C ⊂ V , we have D ·C = 0 and H ·C > 0, thus (2D−2mH) ·C < 0,

then V ⊆ Bs (|2D − 2mH|).

We know that Bs (|2D − 2mH|) ⊆ Bs (|D − mH|), thus we are left to prove that

Bs (|D − mH|) ⊆ V .

We have already observed that V is a complete intersection of two divisors of |D − 2mH|,

hence Bs (|D − 2mH|) ⊆ V . Being H base point free, it follows that Bs (|D − mH|) ⊆

Bs (|D − 2mH|). Hence we get the following inclusions:

V ⊆ Bs (|2D − 2mH|) ⊆ Bs (|D − mH|) ⊆ Bs (|D − 2mH|) ⊆ V ,

so that Bs (|2D − 2mH|) = Bs (|D − mH|) = V . Using the same method, we observe that V ⊆

Bs (|2D − mH|) and since D is base point free one has Bs (|2D − mH|) ⊆ Bs (|D − mH|) = V ,

thus Bs (|2D − mH|) = V . �

Proposition 3.2. Let Y be as above. Let us consider the locally free sheaf  := (D)⊕2 ⊕

(D+mH) on Y of rank 3, and let Z = PY()
p
−→ Y be the projection. Set ξ := Z(1). Then

a general divisor X ∈ |2ξ− 2mp∗H| is smooth, and p|X : X → Y is an elementary Fano conic

bundle.

Proof. By Lemma 3.1 we deduce that  ⊗ Y(−mH) = Y(D − mH)⊕2 ⊕ Y(D) is

globally generated outside V , and by [12, Lemma 2.3.2] the tautological bundle ξ − mp∗H

of PY( ⊗ (−mH)) is spanned outside p−1(V).

Being Bs (|2ξ − 2mp∗H|) ⊆ Bs (|ξ − mp∗H|), also |2ξ − 2mp∗H| is globally generated

outside p−1(V); in particular |2ξ − 2mp∗H| � ∅.

By Bertini’s theorem it follows that a general divisor X ∈ |2ξ − 2mp∗H| is smooth outside

p−1(V).

Now we prove that −KZ − X is ample on Z. This will imply that X is Fano, once that we

show the smoothness of X. We have:

−KZ = 3ξ − p∗(KY + 3D + mH) = 3ξ + (1 − 2m)p∗H.

Being X ∈ |2ξ − 2mp∗H|, one has −KZ − X = ξ + p∗H.

Notice that ξ + p∗H is the tautological bundle of PY( ⊗ (H)) = PY((D + H)⊕2 ⊕

(D + (m + 1)H)) and being  ⊗ (H) sum of ample line bundles of Y , we conclude that

−KZ − X is ample on Z.

Now we show that the fibers of p : X → Y are isomorphic to plane conics.

We observe that the divisor X is given by a section of H0(Z,Z(2ξ − 2mp∗H)) �

H0(Y, Sym2 ( ⊗ (−mH))). Being

Sym2 ( ⊗ (−mH))) = Y(2(D − mH))⊕3 ⊕ Y(2D − mH)⊕2 ⊕ Y(2D),

X can be represented by a symmetric matrix of sections:

S =























s1 s2 λ1

s2 s3 λ2

λ1 λ2 σ























with s1, s2, s3 ∈ H0(Y,Y(2(D−mH))), λ1, λ2 ∈ H0(Y,Y(2D−mH)) andσ ∈ H0(Y,Y(2D)).

We prove that the matrix S vanishes nowhere.

Since D is base point free and D|V � V , σ can be chosen such that σ|V is constant and

non-zero.
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Then the possible common zeros of the sections of S are outside V . But by Lemma

3.1 we know that Bs (|2D − 2mH|) = Bs (|2D − mH|) = V , hence for a general choice of

these sections they have no common zeros and this allows to deduce that a general divisor

X ∈ |2ξ − 2mp∗H| gives a conic fibration over Y .

It remains to show that X is smooth in a neighborhood of p−1(V)∩X. To this end, we take

an open subset U ⊂ Y which trivializes  . If [z0 : z1 : z2] are projective coordinates of the

trivialization of P() over U compatible with the splitting of  , then on p−1(U) � U × P2,

the general divisor X ∈ |2ξ − 2mp∗H| is defined by the equation:

F := (z0, z1, z2) S (z0, z1, z2)t
= 0,

namely:

F = s1z2
0
+ 2s2z0z1 + 2λ1z0z2 + s3z2

1
+ 2λ2z1z2 + σz2

2
= 0.

Using Lemma 3.1, the equation F over V degenerates to σz2
2
= 0. Therefore, to prove the

smoothness of a general X we have to compute the differential dF over W := p−1(V) ∩ X =

p−1(V) ∩ {z2 = 0}.

Taking the covering of P2 given by the standard open subsets we can compute dF locally

over each U × Bi where Bi = {(z0 : z1 : z2) ∈ P2 | zi � 0} � A2 for every i = 0, 1, 2.

Take U×B0, where B0 � A
2
y,z, with coordinates y = z1

z0
, z =

z2

z0
. We evaluate the differential

of this equation over (U × B0) ∩ {z = 0}. Considering all the vanishing of the sections of the

matrix S (that are regular functions over U) due to Lemma 3.1, this differential becomes:

ds1 + 2yds2 + y
2ds3.

In the same way, we consider U × B1, where B1 � A
2
x,z, with coordinates x =

z0

z1
, z =

z2

z1
.

Then we evaluate dF over (U × B1) ∩ {z = 0}, getting:

x2ds1 + 2xds2 + ds3.

By these local computations, it follows that:

dF|W = z2
0
ds1 + 2z0z1ds2 + z2

1
ds3.

We have already observed that V ⊂ Y is given by a complete intersection of two divisors

G1,G2 ∈ |D− 2mH|. Let ν1, ν2 be the two sections of H0(Y,Y(D− 2mH)) corresponding to

these two divisors. Since G1 and G2 intersect transversally along V , their differentials dν1,

dν2 are independent everywhere on V .

To prove the smoothess of X, it is enough to show that there exists a divisor in |2ξ−2mp∗H|

which is smooth in a neighborhood of p−1(V) ∩ X.

To this end, let σ′ ∈ H0(Y,Y(D)) be a section such that σ′
|V

is constant and non-zero,

and set s1 = σ
′ν1 and s2 = s3 = σ

′ν2.

Then ds1 |V = σ
′
|V

dν1 |V , ds2 |V = ds3 |V = σ
′
|Vdν2 |V , and:

dF|W = σ
′
|V(z2

0
dν1 + z1(2z0 + z1)dν2)

does not vanish on W. Thus X is smooth, so that p|X is a Fano conic bundle. By Theorem

2.4 we conclude that ρX − ρY = 1 because ρY = 2, hence the statement. �

Using the above construction and results we prove Theorem 1.1. Proof of Theorem 1.1.

Setting as in Proposition 3.2. Take f := p|X .

We have already proved that f : X → Y is an elementary Fano conic bundle and that −KY

is not nef. Finally, since π : Y → P3m is a P2-bundle, dim (Y) = 3m + 2, and dim (X) =
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3(m + 1). �

Keeping the notation introduced above, we conclude this section with two remarks. In the

first one we describe the singular locus of the discriminant divisor of our examples of Fano

conic bundles. In the last remark we study the effective and movable cones of the targets of

these morphisms.

R 3.3. By the proof of Proposition 3.2 we can observe that the fibers of f : X → Y

over V are not reduced, so that by (2), it follows that V ⊆ Sing (△ f ).

Moreover, by (1) we know that △ f ∼ 2 det  + 3M where in our case  := (D)⊕2 ⊕

(D + mH), M ∼ −2mH, so that △ f ∼ 2(3D − 2mH), and being Bs (|2(3D − 2mH)|) ⊆

Bs (|3D − 2mH|) ⊆ Bs (|D − 2mH|) = V , we get Sing (△ f ) = V . Finally, if C ⊂ V � P3m is a

line, we can compute that △ f ·C = −4m.

R 3.4. Let us denote by g : Y � Ỹ the flip of ϕ : Y → Y ′, where we recall that ϕ is

the map associated to a sufficiently large multiple of D. We prove that:

Eff (Y) = Mov (Y) = Nef (Y) ∪ g∗Nef (Ỹ).

To this end, we show that the divisor D − 2mH gives a fiber type contraction on Ỹ , so

that [D − 2mH] sits in the boundary of the Effective and Movable Cone of Y (see Figure 1

below).

Recall that G1 ∼ G2 ∼ D−2mH. Let i ∈ {1, 2}. First we show that in Y we have Gi ·C = 0,

for every irreducible curve C ⊂ Gi such that C ∩ V = ∅. To this end, we take one of the two

divisor Gi, for simplicity assume that it is G1. If C ⊂ G1 is an irreducible curve such that

C ∩ V = ∅, by recalling that G1 ∩ G2 = V and G1 ∼ G2, it follows that G2 ∩ C = ∅, and

G1 ·C = G2 ·C = 0.

Recall that G1 is a P1-bundle over P3m and that V ⊂ G1 is a section. Denote by G̃1 ⊂ Ỹ

the transform of G1 through the flip g.

We observe that g|G1
: G1 → G̃1 is the divisorial contraction ϕ|G1

which sends V to a point,

and ρG̃1
= 1. By what we have already shown, G̃1 · Γ = 0 for a general irreducible curve

Γ ⊂ G̃1, and since ρG̃1
= 1, it follows that G̃1 · Γ̃ = 0 for every irreducible curve Γ̃ ⊂ G̃1.

Then G̃1 is a nef divisor of Ỹ , and being Ỹ a toric variety, G̃1 is semiample and gives a

Fig.1. We denote by g : Y � Ỹ the flip of the small contraction ϕ : Y → Y ′.

We get Eff (Y) = Mov (Y) = Nef (Y) ∪ g∗Nef (Ỹ).
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contraction onto P1 which sends itself to a point. In Figure 1 we represent the cones of Y .

4. Final Comments and Open Questions

4. Final Comments and Open Questions
Let us denote by f : X → Y a non-elementary Fano conic bundle, and by △ f its discrimi-

nant divisor. Thanks to Theorem 2.4 the positivity properties of −KY are well known when

ρX − ρY ≥ 3.

When ρX − ρY = 2, some open questions arise. In particular, we do not know if there

exists a Fano conic bundle f : X → Y with non-reduced fibers and ρX − ρY = 2. Using the

classification of Fano 3-folds of [14, 15] and [17, Theorem 1.1] it is easy to check that there

are no examples of Fano conic bundles f : X → S where dim (X) = 3, ρX − ρY = 2 and f

has non-reduced fibers. Our questions are the following:

Q 1. Are there examples of Fano conic bundles f : X → Y where ρX −ρY = 2 and

f has non-reduced fibers?

Q 2. Are there examples of Fano conic bundles f : X → Y where ρX −ρY = 2 and

Y is not Fano?

Notice that the two questions are related by Corollary 2.3.

The following corollary is a consequence of some results of Viehweg and Kollár (see [9]

and references therein). In particular, it follows applying [9, Theorem 3.30] and [9, Lemma

3.5] when f : X → Y is a Fano conic bundle:

Corollary 4.1. Let f : X → Y be a Fano conic bundle. Denote by △ f its discriminant

divisor. If C ⊂ Y is an irreducible curve such that −KY ·C < 0, then C ⊂ △ f .

On the other hand, by Proposition 2.2 we know that rational curves C ⊂ Y with −KY ·C <

0 cover at most the closed subset Sing (△ f ) which is properly contained in △ f .

By Corollary 2.3 it seems that there is a close link between the kind of singularities of the

fibers of f and the positivity properties of −KY . This remark induces the following question

posed by Ejiri in [7], where we refer the reader to [1, Definition 1.3] for the definition of

semi-log canonical singularities.

Q 3. Let X be a smooth Fano variety. Let f : X → Y be an equidimensional

fiber type contraction. Assume that f is not a smooth morphism, but its fibers have some

mild singularities, for example semi-log canonical singularities. Does −KY have some good

positivity properties?

As observed in [17, Remark 2.5], when f : X → Y is a Fano conic bundle, Corollary 2.3

gives a positive answer to Ejiri’s question. Indeed, the fibers of the conic bundle f have

semi-log canonical singularities if and only if they are reduced (see [1, Example 1.4]).

R 4.2. As we observed in the Introduction, by [16, Theorem 2.9] we know that the

target of a contraction of a log Fano variety is log Fano, so that in the setting of Question 3

(and thus in the specific case in which f is a Fano conic bundle) one has that −KY is always

a big divisor of Y .
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R 4.3. Notice that if in Question 3 we do not assume that f is equidimensional, it

is easy to find counterexamples. For instance in [6, Example 3.16 (2)] we find examples of

divisorial contractions ϕ : Z → Y , where Z is smooth and Fano, the fibers of ϕ are smooth,

but Y is not Fano. If we take the natural projection π : P1 × Z → Z, then ϕ ◦ π : P1 × Z → Y

gives a fiber type contraction of a Fano variety, where the fibers are smooth, but Y is not

Fano.

A. This paper is part of my Ph.D. thesis. I would like to thank my
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