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The concept of a duality mapping was introduced by Beurling and 
Livingston in [l], A slight generalization of their definition follows. 

DEFINITION. A mapping T from a normed linear space E to its con
jugate E* is called a duality mapping if the following two conditions are 
satisfied. 

(1) The direction of T(x) is conjugate to that of x for all x in E, i.e. 

<r(*),*>-||r(*)|||M|. 
(2) There exists an increasing function <f> from i?4" to i?+ such that 

*dNI-o)g||r(*)|| s*(MI+o)> 
defining <j>( — 0) =0. 

The main theorem of [l] is given below as Theorem 3, with a short, 
nonconstructive proof. In [2], [3], F. E. Browder has derived the 
Beurling-Livingstone theorem as a special case of a theorem on mono
tone operators, i.e. mappings T from E into E* that satisfy the relation 

(n) ]C (T(%k)9 %k — «fc-i) è 0 for all (xh • • • , xn) G En for n ~ 2. 
kezn 

Duality mappings are monotone, in fact, they satisfy relation (n) for 
all natural numbers n. We will call such mappings positive symmetric. 
R. T. Rockafellar has proved in [4] that a mapping T is positive sym
metric if and only if it is the subgradient of some convex function G 
defined on E, i.e. if 

G(y) è G(x) + (T(x), y - x) for all x, y G E. 

The primitive $ of 0, defined by 

HO = f *(«) du for all tin R+ = R+ VJ {o} 

is convex, positive, and increasing. The following theorem thus shows 
that duality mappings are positive symmetric. 

THEOREM 1. A mapping T: E—+E* is a duality mapping if and only if 
for all x in E, T(x) is a subgradient at x of the convex f unction 3>(||#||), 
i.e. 

(3) *( \\y ||)è*(|MI) + <r(*), y - *> M all y in E. 
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PROOF. Suppose that T satisfies (3). Let y vary subject to the re
striction 11̂ )1 ==|U||. This yields 

(T(x),x)z ||r<*)||||*||. 
Hence T satisfies (1). Use this in (3) with y = tz, x~sz> \\z\\ = 1 , and 
with t and s in R+. 

Ht)^Hs)+\\T(sz)\\(t~-s). 

This proves (2) on the ray from 0 through z. Conversely, suppose that 
T is a duality mapping. Then by (1), 

#01*11) + <r(«), y - x) £ $(||*||) + ||n*)ll(IHI - INI) 
whereas by (2), 

*dNI) + l|r(*)ll(IWI-NI)â*(||y||) 
so that (3) holds, as claimed. 

The next theorem, which is the main result of this note, is a partial 
converse of Theorem 1. 

THEOREM 2. If <K+0)=0 , then a mapping T:E~>E* that satisfies 
(2) is a duality mapping if and only if it is positive symmetric. 

PROOF. We have already seen that the condition is necessary. Sup
pose, then, tha t T is positive symmetric. Let G be the real valued 
convex function on E of which Tis pointwise the subgradient. We call 
G the potential of T and we may suppose that G is nonnegative and 
that G(0) = 0. In fact, if z is an arbitrary element of norm one in Et 

we may define G by 

G(tz) = I (T(uz), z)du for all t è 0. 

Because of (2), we know that the f unction ƒ defined on R+ by 

f{t) = m - G(tz) 

is nonnegative and nondecreasing. Now let y be another element of 
norm one in E and apply the subgradient relation for G&ttz: 

$(/) à G(ty) è G(tz) + (T(tz), ty - tz). 

We take the supremum of the right-hand side, as y varies, and we ob
tain 

f(t)^t\\T(tz)\\-i(T(tz),z). 
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Integrating this inequality over t from 0 to x and doing one partial 
integration on the right-hand side, we finally arrive a t the inequality 

2 f *f(f) dt à xf(x) for all x in R+. 

For an arbitrary €>0 , define/, by ft(x) =f(x) — €X. Then 

(4) 2 f ƒ,(/)<» â *ƒ«(*) for all x in £+ 
Jo 

holds also. However, the condition # ( + 0 ) = 0 implies that ƒ« is strictly 
negative in some open interval with left end point zero. Because of 
(4), this interval must be JR+. But ƒ is nonnegative, so it must vanish 
identically, which proves that G(y) = *(||:y||) for all elements y in E, 
hence by Theorem 1 that T is a duality mapping, as asserted. 

REMARK 1. Some condition like $ ( + 0 ) = 0 is needed. To see this, 
take for <j> the function which is identically equal to one, take an 
element y of unit norm in E* and define T by 

T(x) = y if {y, x) è 0 

= — y if (y, x) < 0. 

Then T is positive symmetric and satisfies (2), but it is not a duality 
mapping if dim E > 1. 

REMARK 2. In finite dimensions, Theorem 1 can be interpreted as 
a theorem on the uniqueness of convex solutions of certain differential 
equations. As an example, let E be euclidean and <t> the identity func
tion. Then the only convex solution ƒ of the differential equation 

(5) t(f)'-±i 
is (up to an additive constant) 

1 n 
2 

Xk. 

There are, of course, several nonconvex solutions of (5). 
REMARK 3. Monotonicity of T together with (2) does not imply that 

T is a duality mapping. For, if E is a Hilbert space and </> is the iden
ti ty function, then all linear orthogonal mappings on E with spectrum 
in the right half plane are monotone and satisfy (2), but the only 
duality mapping among these is the identity. 

The last remark shows how much more general Browder's theorems 
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on monotone operators in [2], [3] are than the theorem by Beurling 
and Livingston to which it specializes in the duality case: 

THEOREM 3 (BEURLING-LIVINGSTON). Suppose that l i m ^ ^ ) = oo 
and that F is a reflexive subspace of E. Let Fx be the annihilator of F in 
E, v an element of E, and w an element of E*. Then there exists a duality 
mapping T such that T(x+v) is in F±+wfor some x in F. 

PROOF. Consider the convex function f(x) = 4>(|jx+HI)"~(w» x) re~ 
stricted to the reflexive space F. Since the function is weakly lower 
semicontinuous and tends to infinity as ||̂ Ĥ —> °° » uniformly in all 
directions, it assumes its minimum on F a t some point x in F. By 
the Hahn-Banach theorem, ƒ considered as a function on all of E has 
at x some subgradient in FL. By Theorem 1, then, there exists a dual
ity mapping satisfying the conditions of the theorem. 
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