
Communications in
Commun. Math. Phys. 127, 607-615 (1990) Mathematical

Physics
© Springer-Verlag 1990

Positivity of Wightman Functionals
and the Existence of Local Nets

H. J. Borchers1 and J. Yngvason2

1 Institut fur Theoretische Physik, Universitat Gόttingen
2 Department of Physics, University of Iceland

Abstract. The paper is concerned with the existence of a local net of von
Neumann algebras associated with a given Wightman field. For fields
satisfying a generalized H-bound the existence of such a net is shown to be
equivalent to a certain positivity property of the Wightman distributions.

1. Introduction

The connection of Wightman quantum field theory [25,20] with the theory of
local nets of C*- or von Neumann algebras [19, 2, 3] has been the subject of a
number of investigations during the past 25 years, cf. e.g. [11,17,15,4,5,13,16,23,
28, 14, 26, 1, 29, 12, 30]. The present note is concerned with one aspect of this
problem, viz. to formulate conditions on the Wightman distributions that ensure
the existence of a corresponding local net of von Neumann algebras on the Hubert
space of the field.

Before we proceed it is necessary to make precise what it means to associate a
Wightman field to a local net of von Neumann algebras. For notational simplicity
we shall here only deal with the case of a single, hermitian, scalar field Φ. By a local
net of von Neumann algebras we mean an assignment R f—• jtf(R) of regions R in
Minkowski space Rd to von Neumann algebras s/(R) on the Hubert space of the
field such that the usual conditions of isotony, locality and covariance are fulfilled
[2,3,19]. It is convenient and for most purposes sufficient to restrict the choice of
regions R to the following types: Closed double cones K, wedge domains W
(bounded by two light-like hyperplanes), and causal complements, Kc and Wc of
such domains.

A field can be associated to a net in different ways, cf. [14]. We shall use the
following simple notion:

1.1. Definition. A Wightman field Φ is associated to a local net si of von Neumann
algebras if each field operator Φ(f) has an extension to a closed operator, Φ(f)e

C Φ(/*)*, that is affiliated with the von Neumann algebra <stf(R) if the support of
the test function / is contained in the interior of R.
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In the simplest case the field operators Φ(f) are essentially self adjoint for / real
valued, and bounded functions of Φ(f)** and Φ(g)** commute if the test functions
/ and g have space-like separated supports. In particular this holds if certain
growth conditions on the Wightman functions [11,17] or the Schwinger functions
[13,18] are fulfilled. The von Neumann algebra stf(R) can then be defined as the
algebra generated by bounded functions of Φ(/)** with supp/c R. This is a special
case of the definition above, for if Φ(/)** is self-adjoint for all real valued test
functions /, then the closed operator Φ(g)** c Φ(g*)* is for all g affiliated with the
von Neumann algebra generated by Φ(Reg)**. In general self adjointness of the
field operators cannot be expected, however. (Counterexamples are provided by
Wick polynomials of free fields.)

As a preparation for our discussion we now recall some results of Bisogniano
and Wichman [4,5] and Driessler, Summers, and Wichmann [14]. The first
concerns the relation between extensions of operator families and their weak
commutants.

Let & be a family of operators with a common dense domain of definition 3) in
a Hubert space Jf, such that if I e ^ , then also X*\@=:χie0>. The weak
commutant, &w, of & is defined as the set of all bounded operators C on #P such
that (φ,CXψ) = <X*φ,Cψy for all φ,ψe®.

1.2. Lemma. Let 0> be as above and stf a von Neumann algebra. The following are
equivalent:
1. Every Xeέ? has a closed extension, Xe9 affiliated with stf and such that

Xe

2.

For a proof see [5, Lemma 10]. We remark also that the extension of operator
families ψith the aid of weak commutants is a basic ingredient of a decomposition
theory for states on algebras of unbounded operators [8,9].

As a simple consequence of Lemma 1.2 we note that if the domain 3) is
invariant under the operator family ^ , then we may just as well assume that 9 is an
algebra, because the weak commutant of ^ and of the algebra generated by 9 are
identical.

Now suppose Φ is a Wightman field with a cyclic vacuum Ω. Denote by £P{R)
the algebra generated by the field operators Φ(f) with suppfcR and domain
S>0: = ^>(JRd)Ω. The weak commutant έP(R)w is a weakly closed, *-invariant
subspace of bounded operators on the Hubert space of Φ, but in general it is not a
von Neumann algebra. The problem of associating Φ to a local net simplifies
considerably if it is known that &(K)W is an algebra for all double cones K. In this
case it follows from Lemma 1.2 that every operator in ^(K) has a closed extension
affiliated with the von Neumann algebra jtfm{n(K): = (8P(K)W)'. The question is then
whether this "minimal net" j / m i n is a local net. A criterium for this is due to
Bisogniano and Wichman:

1.3. Theorem. Suppose gP(K)w is an algebra for all double cones K. The following are
equivalent:
1. There exists a local net to which the field is associated in the sense of the
definition above.
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2. The linear span of v{έP(Kc)wΩ | K double cone} is dense in the Hilbert space.
3. 0>(Kcγ& is dense for all double cones K.

This result can be extracted from [4, Theorem 6], cf. [12] and [28]. An essential
part of the proof is the identification of the PCT-operator, combined with a
rotation and possibly a translation, as the modular operator of a wedge algebra

In view of this result it is gratifying that a mild regularity condition on the field
ensures that 0>{K)W is an algebra [14]:

1.4. Definition. Let Φ be a Wightman field and let H denote its Hamiltonian. The
field satisfies a generalized H-bound if there exists a nonnegative number α < 1, such
that Φ(/)**e~H α is a bounded operator for all /

1.5. Lemma [14, Lemma 3.4]. // Φ satisfies a generalized H-bound, then ^(K)w is a
von Neumann algebra for all double cones K.

We remark that ^(K)w is also known to be an algebra if the operator family
is essentially self adjoint in the sense of [21], i.e.

n{D(A*) \A e 0>(K)} = n{D(A**) \A e 0>(K)},

cf. [21, Lemma 4.6].
In [12] Buchholz uses the Wightman distributions to define a certain semi-

norm on the Hilbert space of the field and show that condition (2) of Theorem 1.3
is fulfilled if and only if this seminorm is a norm. In the sequel we propose an
alternative criterion, stated in terms of a positivity property of the Wightman
distributions. The idea can be described briefly as follows: By the Reeh-Schlieder
theorem we know that ^(K)Ω is dense in #? for all double cones K. Now the alge-
bra 3P(K) belongs to the unbounded commutant oϊέ?(Kc) so it seems natural to try
to approximate the elements of ^(K) by bounded operators in ^(Kc)w. A suffi-
cient condition for this to work is that the field operators Φ(f) with supp/ C K
have self adjoint extensions Φ(f) such that the bounded functions of Φ(f) commute
with £P{KC). It should be noted that extensions leading out of the Hilbert space of
the field are also admitted. In fact, one is looking for operators that commute
weakly with £P(KC\ and such operators can be obtained by combining bounded
functions of Φ(f) with the projector on the Hilbert space of the field. Extending
Φ(f) to a self adjoint operator with the required commutation properties is a
special case of a noncommutative moment problem. General formalisms for dealing
with such problems have been developed in [15,23,1,29,10]. For the special case
at hand a simple criterion due to Powers [22] applies after a suitable modification.

2. Centrally Positive States

In this section we adapt Powers' result [22, Sect. V] to our needs.

2.1. Definition. Let 91 be a *-algebra with unit and Ao a hermitian element in 9Ϊ. If
ω is a state on 91, we say that ω is centrally positive with respect to Ao if ω is positive
on all elements of the form ΣΛo^ A,e2I such that YJλ

nAneSΆ+ for all ΛeR.
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2.2. Remark. Powers defines in [22] the concept of a centrally positive operator. In
the cyclic case considered here, however, it seems more natural to think of central
positivity as a property of the state; anyway ω is centrally positive with respect to
Ao in the sense of Definition 2.1 if and only if nω(A0) is a centrally positive operator
in the sense of [22]. Here π ω denotes the GNS-representation of 91 defined by ω on
the cyclic domain 3)ω.

The connection of central positivity with self adjoint extensions is established
in the next proposition. We recall the meaning of an extension leading out of the
original Hubert space: Suppose X is a hermitian linear operator on a dense
domain 3) in a Hubert space Jf. An operator X with domain 2) in a Hubert space
Jf is an extension of X if 2tf is isometrically embedded in J f as a subspace with
2 C @n Jt and X\S) = X.A bounded operator C on $ is said to commute weakly
on 3f with an (unbounded) operator Y\9)^>#e, if ®CD(Y*) and (φ,CYψ)
= < Y*φ9 Cψ} for all φ,ψe$. Note that this implies that ρ(C): = EC\Jf9 with E the
projector Jft^Jf commutes weakly with Y on Sf,

2.3. Proposition. Suppose ω is a state on 21 and Aoetyh. The following are
equivalent:
1. nω(A0) has a self adjoint extension πω(A0), evbntually in an extended Hilbert
space Jf, such that all bounded functions of nω(A0) commute weakly with πω(9I) on

2. ω is centrally positive with respect to Ao.

Proof We first that (1) implies (2). In fact, if (1) holds, we can by the spectral
theorem approximate

by

(

where the Et are spectral projectors of πω(A0) and A^GR. Moreover, the Et

commute weakly with πω(9I) on @9 so if £/ί";4ne2ϊ+ for all i, this is obviously
nonnegative. n

To prove that (2) implies (1) we use the same method as Powers [22,
Theorem 5.3]. First, we claim that if ω is centrally positive with respect to Ao, then
πω(A0) is in the centre of πω(2I), i.e. ω(B*A0AB} = ω(B*AA0B) for all Λ, JBeSl. It
suffices to prove this for hermitian A. We have in any case

ω{B*A0AB) = ω{B*AA0B)*,

so we have only to show that ω(B*A0AB) is a real number. But

B*A0AB=i{B*(Al + 2A0A + A2)B- B*{A2

0 - 2A0A + A2)B},

and

by central positivity.
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Next we define % as the algebra of all mappings R-*2I of the form
λ\-*Σ Fn(λ)An with An e 21 and Fn polynomially bounded continuous functions on

n

IR. By ^ we denote the subalgebra of all such mappings where the functions Fn are
polynomials. Both g and ^ are *-algebras in an obvious way. The hermitian part
of g respectively 9β is denoted by $h respectively tyh. We define % + C %h as the cone
of the mappings such that

for all λ e R .

The centrally positive linear functionals on 21 are in a one-to-one corre-
spondence with the linear functionals on 9β that are positive on ^βng + . In fact, if ω
is centrally positive on 21, then

' • )

defines a positive functional ω' on ty. Using that πω(Λ0) commutes with πω(2I) it is
straightforward to check that the map ω i—• ω' is a bijection between centrally
positive functionals on 21 and positive functionals on Sβ with respect to the cone
^ n g * . In the following we identify ω with ω'.

We now appeal to a variant of the Hahn-Banach theorem [24, Corollary 2.8,
p. 82] and extend ω to a positive linear functional ώ on Qr This is possible because
9βh is cofinal in gΛ with respect to the cone 5 + : If Fn is for n = 1,2,... a real valued
continuous function with | F J ^ P M , Pn polynomial, and v4Mc2IΛ, then

in the order defined by g + .
The functional ώ defines via GNS-construction a representation πω of g, that

extends the representation π ω of 9β. In this representation πω(^40) ± i has an inverse
on 3fώi namely πω(( + i) ~ι). Here ( + ϊ) ~ι e % denotes the function λ i—• (A ± i) ~1.
Hence πω(^40) is essentially self adjoint on Θώ. Moreover, since ( ± i) ~ι commutes
with φ, we have also that all polynomially bounded functions of nω(Λ0) commute
strongly with πω(ψ) on Sfώ9 and hence weakly on Sfω. Π

2.4. Remark. Using the formalism of [10] it can be shown that for centrally
positive states not only the operator πω(^40)» but all the operators πω(A)9 AeSΆh

have self adjoint extensions in an enlarged Hubert space, such that bounded
functions of πω(A0) commute with bounded functions of πω(A) for all A e 2IΛ. We
shall not need this strengthening of Proposition 2.1 here, however.

3. Central Positivity and the Existence of Local Nets

The sequence of Wightman distributions Wn of the field Φ defines a positive linear
functional Ψ* (Wightman functional) on the tensor algebra built over the space of
test functions for the field operators [7]. The choice of test function space is largely
irrelevant, but for defϊniteness we shall take Schwartz' space y = e9

?(Rd). The
tensor algebra is denoted by if- Its elements are (finite) sequences / = ( / 0 , / i , •••)
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with /oe<C, / π e ^ ( R π d ) for n ^ l . With the natural algebraic operations <f is a

*-algebra [7]. The Wightman functional if is defined by if(f) = Σ Wn{fo.
n

We can now state our main result:

3.1. Theorem. Let Φ be a Wightman field such that gP(K)w is an algebra for all
double cones K. (This holds in particular if the field satisfies a generalized
H-bound.) Let if denote the corresponding Wightman state on^. The following are
equivalent:
1. The field is associated with a local net in the sense of Definition 1.1.
2. For any real valued test function f with support in the interior of a double cone K,
the state if is centrally positive with respect to f when restricted to the subalgebra
of ¥ generated by f and the test functions with support in Kc.
3. There exists a test function f with a strictly nonvanishing Fourier transform
and support in the interior of a wedge W such that if is centrally positive with
respect to f when restricted to the subalgebra of 9* generated by f and test functions
with support in Wc.

Proof. If (1) holds, then Φ(f) has a closed, symmetric extension Φ(f)e affiliated with
a local von Neumann algebra stf{K)C0>{Kc)w. Let E1 and E2 denote the projectors
on a basis in C 2 and consider the operator Φ(f) = Φ(f)e®(E1 — E2) on
D(Φ(f)e)®<L2 C ^f(χ)C2. This operator has symmetric defect indices, and the defect
projectors are equivalent modulo jtf(K)®M2(<£). Hence Φ(f) has a self adjoint
extension affiliated with

st{K)® M2{<£) C ̂ ( K T ® M2(C) C {3P{Kc)®\y.

Statement (2) then follows immediately from Proposition 2.3. The implication
(2) => (3) is obvious.

We now come to (3) => (1). Translational in variance implies that, for all a in a
neighbourhood & of OeKΛ if is centrally positive with respect to the translated
test function fa in the algebra generated by fa and test functions with support in
(W+Θ)c. The domain W+Θ can be included in a wedge domain which we shall
again denote by W for convenience. Hence we can assume that if is centrally
positive with respect to fa in the algebra generated by fa and test functions with
support in Wc.

By [14, Lemma 4.7] we have that vectors of the form

with a{eΘ span a dense set in J f. By Theorem 1.3 and Lemma 1.4 it suffices to
show that all such vectors belong to the closure of ^(WC)Ω. Now since if is
centrally positive with respect to fa. for / = 1,..., n it follows from Proposition 2.3
that for each / the operator Φ(fa) has a self adjoint extension Φ(fa) in a Hubert
space &i such that bounded functions of Φ(fa) commute weakly with ^ ( Wc) on ^ 0 .
Denoting the projector J ^ -• Jf7 by Et it follows that for all bounded functions Ft

the bounded operator
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belongs to ^(Wc)w. Since the vector Φ(fa2)... Φ(faJΩ belongs to the domain of
#(/«<), we can approximate Φ(faι)... Φ(faJΩ by

Q,{F1{Φ{faι))Φ{fa2)...Φ{fan)Ω

with a suitable bounded function Fv Now £iCFi(Φ(/fll)) is a bounded operator so
we can iterate this procedure. Thus we can for every ε>0 find bounded functions
Fί9...,Fn such that

\\Φ(fai).- ΦWJΩ-QdF^ΦifJ)... ρw(^(Φ(/αn))Ω|| £β.

Since ^(PFT is an algebra by Lemma 1.4 it follows that 0>(Wc)wΩ is dense in 3^.

3.2. Remark. Condition (3) can be replaced by the apparently weaker condition:
(3') There exists a test function / with a strictly nonvanishing Fourier

transform and support in the interior of a wedge W such that # " is centrally
positive with respect to / when restricted to the subalgebra generated by / and the
test functions fL, where L denotes a Poincare transformation such that

The equivalence of (3') and (3) follows from the transitivity of relative locality
[6]: The net

R ι-> @(R): = {Φ(fL) \L Poincare transformation, supp/LCi?c}w

is relatively local to the (unbounded) net generated by the operators Φ(fL). This net
in turn has Ω as a cyclic vector and is relatively local to the unbounded net
generated by all field operators. It follows that the net J* is relatively local to the
field; in particular we have

and hence

{Φ(/L) isupp A cwγ=

Condition (3') should be compared with Theorems 5.5 and 5.6 in [14]; from the
point of view of [14] we have shown that Φ(f) is "intrinsically local" if and only if
the positivity condition stated in (3') is fulfilled.

4. Conclusions

We have shown that a fairly simple positivity property of the Wightman functions
is a necessary and sufficient condition for the existence of an associated local net of
von Neumann algebras on the Hubert space of the field, provided the weak
commutants ^(K)w are known to be algebras. In particular the criterion applies if
the field satisfy a generalized //-bound, or if 0>(K) is an essentially self adjoint
operator family in the sense of [21]. The main role of the condition on the weak
commutants is to guarantee that the local von Neumann algebras operate on the
original Hubert space of the field. In fact, if one takes the point of view that the
construction of local nets from fields is a noncommutative moment problem, it is
natural to generalize Definition 1.1 and allow extensions of the field operators that
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lead out of the Hubert space. If 8P{Ky is an algebra for all K, however, this is only
an apparent generalization: As in the proof of Theorem 3.1, the existence of local
self adjoint extensions Φ(f) of the field operators implies that έ?(Kc)wΩ is dense in
the original Hubert space, even if Φ(f) operates in a larger space. By Theorem 1.3
this implies the existence of a local net in the sense of Definition 1.1.

It is obvious from the proof of Theorem 3.1 that condition (2) is fulfilled if the
field operators have local self adjoint extensions, regardless whether the extensions
operate in the original Hubert space or not. It is not clear, however, that this
condition is sufficient for such extensions if the weak commutants £P(K)W are not
algebras. There exist stronger positivity conditions [1,10,29] that are sufficient in
all cases, but their precise relation to Theorem 3.1 has still to be worked out.

As a final remark we point out that positivity conditions as in Theorem 3.1
have the nice feature of being stable under limits. It is for example easy to see in this
way that all Wick polynomials of free fields satisfy condition (3) of Theorem 3.1: If
Φ= :P(Φ0): with P a polynomial and Φo a free field, one can for every real test
function / approximate Φ(f) by a hermitian polynomial in Φ0(/i)> •••>̂o(/«)>
where the supports of the test functions / l 5 ...,/„ are close to the support of/. Such
hermitian polynomials in free field operators can by [14, Theorem 3.3] be
extended to self adjoint operators without significantly enlarging the localization
domain. Hence the positivity condition is fulfilled for the approximating
operators, and passing to the limit one obtains it for the field Φ.
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