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POSITIVITY PRESERVING
FINITE ELEMENT APPROXIMATION

RICARDO H. NOCHETTO AND LARS B. WAHLBIN

Abstract. We consider finite element operators defined on “rough” functions
in a bounded polyhedron Ω in RN . Insisting on preserving positivity in the
approximations, we discover an intriguing and basic difference between ap-
proximating functions which vanish on the boundary of Ω and approximating
general functions which do not. We give impossibility results for approxima-
tion of general functions to more than first order accuracy at extreme points
of Ω. We also give impossibility results about invariance of positive operators
on finite element functions. This is in striking contrast to the well-studied case
without positivity.

1. Introduction

Let Ω be a bounded polyhedral domain in RN , N ≥ 2, with simplicial edge-
to-edge partitions T with local mesh size hT = diam T for T ∈ T. For ease of
presentation in this introduction, we assume that the partitions T are shape-regular
and also quasi-uniform; i.e., there exist two constants C1 and C2 such that

For any simplex T ∈ T, the ratio of the radius of the smallest ball
containing T to that of the largest ball contained in T is bounded
above by C1;

(1.1)

and
maxT∈T hT
minT∈T hT

≤ C2.(1.2)

With standard (slight) abuse of notation, we then simply write h for the mesh size
maxT∈T hT .

Let Sk(Ω;h) be the space of continuous Lagrange finite elements of total poly-
nomial degree ≤ k, with k ≥ 1. We start with a brief review of some aspects of
approximation theory into these spaces when positivity is not required. Letting
Lk (= Lk,h) be the standard pointwise interpolation operator at the nodes (the
principal lattice points in each element), we then have that Lk is up to (k + 1)-th
order accurate in Lp(Ω); i.e.,

‖u− Lk(u)‖Lp(Ω) ≤ Chs‖u‖W s
p (Ω), for integers s ≤ k + 1,(1.3)
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1406 R. H. NOCHETTO AND L. B. WAHLBIN

provided also that N/s < p ≤ ∞ (see [1, Section 4.4] and [4, Section 16]). The
condition ps > N guarantees, via Sobolev’s inequality, that functions in W s

p (Ω)
possess point values and hence that Lk(u) is well defined.

The needs of numerical analysis of finite element methods for partial differen-
tial equations has led to the construction of approximation operators defined on
functions without point values, such as those in W s

p (Ω) for ps ≤ N (the case
p = 1, s = N is exceptional in that then point values are defined). As typical ex-
amples of such needs, in the context of second order elliptic problems, we mention
the following: the a priori error analysis in the energy norm W 1

2 (Ω) of singular
functions u ∈ W s

2 (Ω) with 1 < s < 2 [1, Section 5.8], [4, Section 18]; the basic
residual-based a posteriori error analysis in W 1

2 (Ω), which requires approximation
of functions in W 1

2 (Ω) [12, Section 1.2]; the local construction of Fortin’s operators
for mixed finite element methods, which deals with local approximation of func-
tions in H(div; Ω) [2, Section III.3]; and the analysis of pointwise errors for function
values (or gradients), which is often based on approximation of functions in W 2

1 (Ω)
(or W 1

1 (Ω)) such as regularized Green’s functions [1, Section 7.2].
Approximation operators as above necessarily involve averaging; we refer to

Clément [5], Hilbert [6], Scott and Zhang [10], and Strang [11] for details of dif-
ferent such constructions and analyses of their properties. For approximation on a
polyhedral domain, as is our present case, the Scott-Zhang operator Sk (= Sk,h)
into the Lagrange finite elements is of particular interest for later comparison when
we also demand positivity. We shall not actually define this operator, since it is
somewhat lengthy to do so and not essential for our purposes, but we record here
some of its properties [10]:

Sk satisfies (1.3) for all 1 ≤ p ≤ ∞ provided s ≥ 1 (which guaran-
tees that functions in W s

p (Ω) have well-defined traces on ∂Ω); also,
if u = 0 on ∂Ω, then Sk(u) = 0 on ∂Ω;

(1.4)

and

Sk reproduces all the Lagrange finite element functions of degree
≤ k; i.e., if u ∈ Sk(Ω;h), then Sk(u) = u.(1.5)

For the analysis of finite element methods for variational inequalities [3] it is
natural and sometimes instrumental to have approximation operators I (= Ih)
which are also positive:

u ≥ 0 implies I(u) ≥ 0.(1.6)

Of course, if u does have point values, then the piecewise linear pointwise interpola-
tion operator L1 is such a positive operator (but the general Lagrange interpolation
operator Lk is not for k ≥ 2). None of the averaging approximation operators of [5],
[6], [10], [11] is positive. Moreover, simple truncation at the nodal values of I(u)
would enforce positivity for k = 1 (not for k ≥ 2), but at the expense of linearity,
a crucial and desirable property of I. For rough functions without point values, a
linear and positive operator I : Lp(Ω)→ S̊1(Ω;h) has been introduced in Chen and
Nochetto [3] with values into the spaces S̊1(Ω;h) of piecewise linear finite elements
which vanish on ∂Ω.

For the purpose of discussing our major impossibility result, Theorem 1 below,
it will be convenient to have a brief description of this operator. Thus let B(x, r)
denote the open ball of center x and radius r, and note that the nodes xi of T are
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the vertices of the simplices in the piecewise linear situation. For nodes xi which
are interior to Ω, we define the nodal value of I as the local mean-value

I(u;xi) :=
1

meas(Bi)

∫
Bi

u,(1.7)

where Bi := B(xi, C3h(xi)) with C3 so small that it is contained in the star associ-
ated with xi (i.e., the union of closed elements containing xi). At nodes xi on ∂Ω,
we set I(u;xi) := 0; thus I(u) ∈ S̊1(Ω;h) for all u ∈ Lp(Ω).

It was shown in [3] that I satisfies (1.3) for u ∈W s
p (Ω)∩W̊ 1

p (Ω), s = 1, 2, and all
p ≥ 1. Hence, I is second order accurate in Lp(Ω) for functions on W 2

p (Ω) which
vanish on ∂Ω. The two essential ideas involved in the proof are:
• The simple averaging in (1.7) implies that all nodal values are nonnegative

for nonnegative functions, whence I satisfies (1.6);
• Due to the symmetry of the interior balls Bi with respect to xi, any locally

affine function u would be reproduced locally, i.e., I(u;xi) = u(xi).
Then standard approximation theory for finite elements based on a circle of ideas
involving local polynomial invariance (in the present case the local affine functions),
in conjunction with some extra arguments from [10] to handle vanishing boundary
values, gives (1.3) for s = 1 and 2. This circle of ideas has been pervasive in the
finite element literature for more than thirty years now; see, e.g., Brenner and Scott
[1], Brezzi and Fortin [2] and Ciarlet [4].

Let us now remark that it is not possible to ask for more than second order
accuracy in positive approximation operators, if they are also required to be linear
operators, no matter how smooth the functions to be approximated are. This
is a classical result of Korovkin [7], given by him in the context of polynomial
approximation with increasing degree on a fixed domain. His ideas translate to our
finite element context, and thus one cannot achieve (1.3) with s > 2 for positive
operators which are also linear, irrespective of the polynomial degree.

We now turn to our basic problem in this paper:

Is it possible to construct bounded and positive (linear) operators into
S1(Ω;h) also for functions which do not necessarily vanish on ∂Ω?

As already mentioned, if ps > N so that the function u has point values, we may
simply use the piecewise linear Lagrange operator L1. In order to motivate our
impossibility result, we next consider two examples.

Example 1.1 (First order approximation). Here we ask for positive operators I :
Lp(Ω) → S1(Ω;h), defined for functions without point values, which satisfy (1.3)
with s = 1 for all p ≥ 1. We construct I as follows: For interior nodes, let the nodal
values be as in (1.7). At boundary nodes xi, let Di := B(xi, C3h(xi)) ∩ Ω and

I(u;xi) :=
1

meas(Di)

∫
Di

u.

Since constant functions are locally reproduced, using standard techniques it is easy
to verify (1.3) for s = 1 and all p ≥ 1. However, at the boundary the domains Di

are not symmetric with respect to the nodes xi, affine functions are not reproduced
locally, and (1.3) is not satisfied for s = 2.

We next attempt second order approximation for a simple domain in two dimen-
sions.
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Example 1.2 (Second order approximation?). Let Ω be an L-shaped domain in
the plane and let I : W 1

p (Ω) → S1(Ω;h) be defined as follows. For interior nodes,
we again use (1.7). As for boundary nodes xi, we distinguish between three kind
of nodes: the nodes which are interior to a boundary straight segment {xSi }; the
lone node at the reentrant (nonconvex) corner xR; and the five nodes at the convex
corners {xCi }. For xSi , we let Li := B(xSi , C3h(xSi )) ∩ ∂Ω be a straight segment
which is symmetrically placed around xSi and in ∂Ω. Then we define the nodal
value at xSi as the local line integral mean-value

I(u;xSi ) :=
1

length(Li)

∫
Li

u.

This is well defined since, for s ≥ 1 and all p ≥ 1, the functions in W s
p (Ω) have

traces on ∂Ω. At xR, we may similarly place a small line-segment LR contained in
Ω̄ which is symmetric about xR and define the nodal value I(u;xR) accordingly.
Due to the symmetric placement of discs and line-segments, we have preservation of
local affine functions and thus, so far, local second order accuracy. However, at the
five convex corners xCi , this idea breaks down. A similar symmetric line-segment
would have to extend outside of Ω̄.

The problematic convex corners in Example 1.2 point to the heart of the matter.
For a general polyhedral domain in RN , we have the standard notion of extreme
points e: these are points on ∂Ω such that there is a supporting hyperplane at e;
i.e., there is an affine function ae(x) satisfying

ae(e) = 0 and ae(x) > 0 for all x ∈ Ω̄, x 6= e.(1.8)

Note that any bounded domain has extreme points.
Now we are ready to give our major impossibility result (in the simplifying

context when shape-regularity (1.1) and quasi-uniformity (1.2) are satisfied). With
a fixed p ≤ N , we are seeking linear approximation operators Ih into Sk(Ω;h) which
are positive and, as a basic minimal requirement, are also first order accurate:

‖u− Ih(u)‖Lp(Ω) ≤ Ch‖u‖W 1
p (Ω), for all u ∈ W 1

p (Ω).(1.9)

Example 1.1 shows that such Ih do exist. We now add a further demand which
involves superlinear (higher than first order) approximation but only for the affine
functions and only at an extreme point. With a0(x) = 1, an(x) = xn for 1 ≤ n ≤ N ,
we thus assume that Ih satisfies at an extreme point e, with some γ > 0,

|an(e)− Ih(an; e)| ≤ Cγh1+γ , for 0 ≤ n ≤ N.(1.10)

Theorem 1. Assume (1.1), (1.2), and let 1 ≤ p ≤ N,N ≥ 2, k ≥ 1. There do not
exist positive linear operators Ih : W 1

p (Ω) → Sk(Ω;h) which satisfy both (1.9) and
(1.10) as h tends to zero.

Note that, without the positivity requirement, the Scott-Zhang operator S sat-
isfies (1.9) and (1.10), the latter being satisfied even in the stronger sense that
S(an) = an for 0 ≤ n ≤ N .

We next present a result which complements and gives insight into the impos-
sibility result of Theorem 1. The context now does not involve any finite element
spaces but only a single operator I on the space C(Ω̄) of continuous functions in
Ω̄.
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Theorem 2. Let I : C(Ω̄) → C(Ω̄) be a linear, bounded, and positive operator.
Let I reproduce exactly all affine functions: I(an) = an for 0 ≤ n ≤ N . Then, at
any extreme point e of Ω, we have

I(u; e) = u(e), for all u ∈ C(Ω̄).(1.11)

Again, without the positivity requirement, the Scott-Zhang operator on any fixed
mesh and for any k ≥ 1 satisfies the basic assumptions of Theorem 2 but not the
conclusion (1.11).

Since second order accuracy in the finite element context is, essentially, equivalent
to (locally) preserving affine functions, Theorems 1 and 2 together uncover the
amazing and unexpected fact that, for a positive approximation operator I to be
of second order, one does indeed need point values of functions at extreme points
and I reduces to point evaluation at those points.

The impossibility result, Theorem 1, and the complementing result, Theorem
2, may be loosely described as results pertaining to (approximately) reproducing
affine functions (either locally or globally). In finite element analysis it is often
convenient if approximation operators also reduce to the identity operator when
applied to functions in the finite element space. This is the case for the Scott-
Zhang operator without the positivity requirement (see (1.5)). For the positive
Chen-Nochetto operator, the situation is drastically different as is readily seen by
applying it to a piecewise linear basis function. We refer to this new circle of
problems as pertaining to (approximately) reproducing piecewise affine functions.
We give, in the next two sections, results analogous to the impossibility result
Theorem 1 and the complementing result Theorem 2 also for this circle of problems.

We now outline the rest of the paper. It is organized in a way that does not cor-
respond to the order in which results have been discussed so far. It rather reflects a
natural grouping of results with respect to the techniques of proofs involved, and it
also reflects a natural progression of these techniques. In Section 2 we prove comple-
menting results such as Theorem 2 in the context of reproducing affine, respectively
piecewise affine, functions. In Section 3 we derive corresponding impossibility re-
sults such as Theorem 1. Finally, in Section 4 we discuss the limitation to second
order accuracy imposed by positivity in the finite element context. We have not
been able to find this extension of Korovkin’s results to piecewise polynomial ap-
proximation in the literature, but think it is of value to make it available to the
numerical analysis community. The extension is not entirely obvious.

Throughout this paper, C will denote a positive constant, not necessarily the
same at each occurrence. It will always be independent of h unless otherwise
specified.

2. Complementing results in C(Ω̄)

We consider linear positive operators I which are bounded in the space of con-
tinuous functions and reproduce affine or piecewise linear functions. The comple-
menting result in the introduction, Theorem 2, as well as other companion results
will follow from Theorem 3 below. We prove such a basic Theorem 3 in its simplest
form and comment on possible extensions in Remark 2.3.

Let C(Ω̄) be the space of continuous functions on Ω̄, and let C̊(Ω) be the subspace
of functions which vanish on ∂Ω. The support supp(u) of a function u is the closed
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1410 R. H. NOCHETTO AND L. B. WAHLBIN

subset of Ω̄ defined by

supp(u) = closure of {x ∈ Ω̄ : u(x) 6= 0}.

Note that the support may coincide with Ω̄ for a function in C̊(Ω).

Theorem 3. Let Ω̂ indicate either Ω or Ω̄ and let Ĉ(Ω̂) be C̊(Ω) or C(Ω̄), accord-
ingly. Let I : Ĉ(Ω̂)→ C(Ω̄) be a linear, bounded, and positive operator. Let x0 ∈ Ω̂
and f0, f+ ∈ Ĉ(Ω̂) satisfy

I(f0;x0) = f0(x0) = 1,(2.1)

f+(x) > 0, ∀ x ∈ Ω̂\{x0},(2.2)

I(f+;x0) = 0.(2.3)

Then I(u;x0)= u(x0) for all u ∈ Ĉ(Ω̂).

Proof. We first observe that it suffices to demonstrate the assertion for functions
which vanish at x0. In fact, let w = u − u(x0)f0 ∈ Ĉ(Ω̂) which satisfies w(x0) = 0
and I(w, x0) = I(u;x0)− u(x0) because of (2.1).

We next see by standard density (approximation) arguments that it is enough to
consider functions w whose support avoids x0 (and avoids ∂Ω in case of functions
which vanish on ∂Ω); i.e., supp(w) is a compact set in the set Ω̂\{x0}. Hypothesis
(2.2) yields the existence of a positive number α such that

f+(x) ± αw(x) ≥ 0, ∀ x ∈ Ω̂.

Using also (2.3), we then have

0 = I(f+;x0) = I(f+ ± αw;x0)∓ αI(w;x0),

where the first term on the right is nonnegative regardless of the choice of sign.
This implies that I(w;x0) = 0 and concludes the proof.

Our first corollary is Theorem 2 of the introduction.

Corollary 1. Let I : C(Ω̄)→ C(Ω̄) reproduce all affine functions and let x0 be an
extreme point of Ω̄. Then

I(u;x0) = u(x0), ∀ u ∈ C(Ω̄).

Proof. Simply take f0 = 1 and f+ = a0, the affine function of (1.8) associated with
x0, and apply Theorem 3.

Corollary 1 pertains to reproducing affine functions. Our next two applications
of Theorem 3 correspond to reproducing piecewise linear functions over T or, equiv-
alently, to invariance of I in subspaces of S1(Ω;h). We recall that if {φj}Jj=1 are the
canonical piecewise linear basis functions, i.e., φj(xi) = δij at nodes xi (including
boundary nodes), then S1(Ω;h) = span {φj}Jj=1; note that 1 ∈ S1(Ω;h).

Corollary 2. Let I : C(Ω̄)→ C(Ω̄) reproduce the functions of S1(Ω;h) and let xi,
1 ≤ i ≤ J , be any node of the partition T. Then

I(u;xi) = u(xi), ∀ u ∈ C(Ω̄).

Proof. Take f0 = φi and f+ = 1− φi, and apply Theorem 3.
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Let S̊1(Ω;h) = span {φi}Ii=1 be the subspace of piecewise linear functions of
S1(Ω;h) vanishing on ∂Ω. Now letting Ω̄0 denote the union of all closed simplices
which do not have any vertex on ∂Ω, we have

10(x) :=
I∑
i=1

φi(x) = 1, ∀ x ∈ Ω̄0.(2.4)

Corollary 3. Let I : C̊(Ω)→ C(Ω̄) reproduce the functions in S̊1(Ω;h) and let x0

be an interior node such that the support supp(φ0) of its canonical basis function
φ0 does not meet ∂Ω. Then

I(u;x0) = u(x0), ∀ u ∈ C̊(Ω).

Proof. Let f0 = φ0, and set Ξ0 = supp(φ0). Since Ξ0 does not intersect ∂Ω, we
have by (2.4) that 10(x) = 1 for all x ∈ Ξ0. Let f+ = 10 − φ0; then f+ > 0 in
Ω\{x0}. Now apply Theorem 3.

Remark 2.1. Let Ω̄ = [0, 1] and T be a uniform mesh of size h = (I + 1)−1. Let
{xi}Ii=1 be the interior vertices and {φi}Ii=1 the corresponding basis functions of
S̊1(Ω;h). Define I : C̊(Ω)→ S̊1(Ω;h) by

I(u) = 2u(h/2)φ1 +
I−1∑
i=2

u(xi)φi + 2u(1− h/2)φI .

Since this operator I reproduces S̊1(Ω;h), but does not reproduce point values at x1

and xI , we see that our condition that supp(φ0) avoids ∂Ω is necessary in Corollary
3.

Remark 2.2. Let h(x) be a piecewise linear mesh density function equivalent to the
local mesh size of T. Consider the positive and bounded linear operator I : C(Ω̄)→
C(Ω̄) given by

I(u;x) = L1(u;x) + u(x0)h(x)m,

where x0 ∈ Ω and m ≥ 1 integer. Then I approximates affine or piecewise linear
functions to any order m, but it does not reproduce them. We conclude that the
invariance assumptions of Corollaries 1–3 are necessary to deduce that I(u;x0) =
u(x0).

Remark 2.3. The function f+ of Theorem 3 need not be strictly positive in the
entire Ω̂ but rather locally. In fact, consider the case Ω̂ = Ω and assume that for
each y ∈ Ω there exists a nonnegative function f+ = f+(y, ·) ∈ C̊(Ω) satisfying
I(f+;x0) = 0 together with f+ > 0 in a closed ball B̄(y, ρ) ⊂ Ω of center y and
radius ρ = ρ(y); alternatively, for Ω̂ = Ω̄, assume f+ ∈ C(Ω̄), and f+ > 0 in
B̄(y, ρ) ∩ Ω̄. To show that the assertion of Theorem 3 still holds, one resorts to a
finite covering argument of supp(w) in conjunction with a partition of unity.

3. Impossibility results in W 1
p (Ω)

In this section we prove Theorem 1 and other impossibility results for N ≥ 2 and
1 ≤ p ≤ N . Their proofs hinge upon constructing suitable functions v in W 1

p (Ω)
and associated barriers φ0. As a motivation, we give first v and φ0 for a simple
and, we hope, illuminating situation.
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Let F (Ω) ⊂ C(Ω̄) be a finite-dimensional space of functions containing the affine
functions. Let I : W 1

p (Ω) → F (Ω) be a linear, positive and bounded operator,
which reproduces all affine functions. Let x0 = 0 be an extreme point of Ω, and let
v = vε be given in polar coordinates by v(r) =

∣∣ log ε
log r

∣∣ if r ≤ ε and 1 otherwise. A
calculation shows that v ∈ W 1

p (Ω) for all p ≤ N and that limε→0 v = 1 in W 1
p (Ω).

Since all norms are equivalent in F (Ω), we deduce that |I(u; 0)| ≤ CF ‖u‖W 1
p (Ω) and

that

I(v; 0)→ I(1; 0) = 1, as ε→ 0.

Since Ω is polyhedral and x0 is an extreme point, there exists a constant K > 0
such that the affine function a of (1.8) satisfies

a(x) ≥ K|x− x0|, ∀ x ∈ Ω̄.(3.1)

We now set φ0(x) = ε + βεa(x) and realize that 0 ≤ v ≤ φ0 in Ω provided βε is
sufficiently large. Since φ0 is affine, we arrive at the contradiction

0 ≤ I(v; 0) ≤ I(φ0; 0) = φ0(0) = ε.

Consequently, there is no such operator I.
It is our intention to exploit such an idea for operators I which are just almost-

invariant on the affine, or piecewise linear, functions (see (1.10) and (3.6) below).
We give a general construction in Theorem 4, and we then apply it to specific cases
in Corollaries 4–6.

In contrast to the introduction, we now consider quite general finite element
spaces S(Ω;h) over general meshes T with some additional properties. We first
assume that S(Ω;h) satisfy the local inverse assumption

‖u‖L∞(Ω) ≤ C‖h−N/pu‖Lp(Ω), ∀ u ∈ S(Ω;h).(3.2)

Note that finite element spaces over shape-regular triangulations satisfy (3.2).
Let x0 ∈ Ω̄ be an auxiliary point to be chosen later. We assume that for each

δ > 0 there exist a function v ∈W 1
p (Ω) and a barrier function φ0 ∈W 1

p (Ω) ∩C(Ω̄)
such that

‖h1−N/p∇(v − 1)‖Lp(Ω) + ‖h−N/p(v − 1)‖Lp(Ω) ≤ δ,(3.3)

0 ≤ v(x) ≤ φ0(x) ∀ x ∈ Ω, and φ0(x0) < 1
2 .(3.4)

Let h0 denote the mesh size at x = x0.

Theorem 4. There exists no linear, bounded, and positive operator I : W 1
p (Ω) →

S(Ω;h) which satisfies, for some γ > 0,

‖h−N/p(u− I(u))‖Lp(Ω) ≤ C‖h1−N/p(|u|+ |∇u|)‖Lp(Ω) ∀ u ∈W 1
p (Ω),(3.5) ∣∣1− I(1;x0)

∣∣+
∣∣φ0(x0)− I(φ0;x0)

∣∣ ≤ Cδhγ0 ,(3.6)

Note that (3.5) and (3.6) state that I is locally of first order in Lp(Ω) and that I

approximates both 1 and φ0 at x0, respectively. If the underlying meshes T are
quasi-uniform, then (3.5) reduces to the more standard condition (1.9).

Proof. Taking u = v−1 and applying (3.2) together with (3.5) and (3.3), we obtain∣∣I(u;x0)
∣∣ ≤ C‖h−N/pI(u)‖Lp(Ω)

≤ C‖h−N/p(I(u)− u)‖Lp(Ω) + C‖h−N/pu‖Lp(Ω)

≤ C‖h1−N/p(|u|+ |∇u|)‖Lp(Ω) + C‖h−N/pu‖Lp(Ω) ≤ Cδ.
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We now choose δ and then h0 sufficiently small and use (3.6) to deduce that∣∣I(v;x0)− 1
∣∣ ≤ ∣∣I(v − 1;x0)

∣∣+
∣∣I(1;x0)− 1

∣∣ ≤ Cδ + Cδh
γ
0 <

1
4 .

On the other hand, in view of (3.4) and (3.6), for h0 perhaps even smaller we arrive
at

0 ≤ I(v;x0) ≤ I(φ0;x0) ≤
∣∣I(φ0;x0)− φ0(x0)

∣∣+ φ0(x0) ≤ Cδhγ0 + 1
2 <

3
4 .

This is a contradiction which proves the assertion.

Remark 3.1. As is easily seen from the proof, the assumption (3.6) can be replaced
by the weaker condition∣∣1− I(1;x0)

∣∣+
∣∣φ0(x0)− I(φ0;x0)

∣∣ = o(1).(3.7)

Remark 3.2. If the function 1 in (3.3) and (3.6) is replaced by the function 10 of
(2.4), then Theorem 4 extends to the case I : W̊ 1

p (Ω)→ S(Ω;h).

We now give three applications of Theorem 4. We start with the simplest case
p < N , which reveals the main idea.

Corollary 4. Let x0 be an extreme point of Ω. There is no linear, bounded, and
positive operator I : W 1

p (Ω)→ S(Ω;h) with 1 ≤ p < N which is first order accurate
in Lp(Ω), i.e., satisfies (3.5), and is superlinear in the affine functions an at x = x0,
namely, ∣∣an(x0)− I(an;x0)

∣∣ = o(h0), 0 ≤ n ≤ N.(3.8)

Proof. Let v be radially symmetric and given in polar coordinates by v(x) = ρ(r)
with r = |x− x0| and

ρ(r) :=

{
r
ε , r ≤ ε,
1, r > ε.

(3.9)

A simple calculation yields

ε‖∇(v − 1)‖Lp(Ω) + ‖v − 1‖Lp(Ω) ≤ CεN/p,

which implies (3.3) provided ε = h0

(
δ
C

)p/(N−p); thus h0 = Cδ ε. We have

0 ≤ ρ(r) ≤ r
ε =: ϕ(r), ∀ r ≥ 0.

Let a be the affine function of (3.1) and let the barrier function φ0 be given by

φ0(x) := ϕ(a(x)
K ) = a(x)

εK .

We observe that φ0 satisfies both conditions in (3.4), the latter with φ0(x0) = 0.
To apply Theorem 4 it remains to verify (3.7) for φ0. In view of (3.8), we have∣∣I(φ0;x0)

∣∣ = 1
Kε

∣∣I(a;x0)
∣∣ ≤ h0

Kεo(1) = o(1),

which implies (3.7). We finally apply Theorem 4 to conclude the proof.

The second consequence of Theorem 4 is similar to Corollary 4 but with p = N .
We observe that for this critical case we need a function ρ different from (3.9) since
the ensuing function v does not satisfy (3.3) any longer. The rather tricky but
elementary proof proceeds along the same lines as that of Corollary 4, but requires
a property slightly stronger than (3.8).

Corollary 5. Let (3.8) be replaced by
∣∣an(x0) − I(an;x0)

∣∣ ≤ Cγh
1+γ
0 for some

γ > 0. Then the assertion of Corollary 4 is also valid for p = N .
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Proof. Let ε, L be two parameters to be chosen later, the former small and the
latter large. Let ρ be given by

ρ(r) :=

{∣∣ log ε
log r

∣∣L, r ≤ ε,
1, r > ε,

and set v(x) := ρ(|x− x0|). We split the rest of the proof into several steps.
1. We first note that an elementary calculation yields

‖v − 1‖LN(Ω) ≤ N−1/Nε ≤ ε,
‖∇(v − 1)‖LN(Ω) = Lω

1/N
0

(N(L+1)−1)1/N | log ε|1−1/N ≤ C L1−1/N

| log ε|1−1/N ,

where ω0 < π is the interior angle of Ω at x = x0 and C depends only on N .
This shows that (3.3) holds for ε ≤ h0 sufficiently small since L will be chosen
independently of ε (see (3.10) below).

2. We now construct the barrier function φ0. We have for r ≤ ε

ρ′(r) = L| log ε|L
r| log r|L+1 , ρ′′(r) = L| log ε|L

r2| log r|L+2

(
L+ 1− | log r|

)
,

whence ρ′′(r) < 0 if r < e−(L+1). Therefore, for ε small, ρ is concave and

0 ≤ ρ(r) ≤ ρ(r1) + ρ′(r1)(r − r1) =: ϕ(r)

for 0 < r1 < ε. In view of (3.1), we set

φ0(x) := ϕ(a(x)
K ).

3. With h0 sufficiently small, let ε, r1, and L be given by

ε := h0
| log h0| , r1 := ε1+γ/2, 1

(1+γ/2)L <
1
2 .(3.10)

Since v(x) ≤ φ0(x) for all x ∈ Ω, and

0 ≤ φ0(x0) = ρ(r1)− r1ρ
′(r1) <

∣∣ log ε
log r1

∣∣L = 1
(1+γ/2)L <

1
2 ,

we infer that (3.4) is valid.
4. It remains to verify (3.6) for φ0. Since

φ0(x) = φ0(x0) + ρ′(r1)
K a(x), ρ′(r1) ≤ C | log h0|γ/2

h
1+γ/2
0

,

invoking (3.8) we obtain∣∣I(φ0;x0)− φ0(x0)
∣∣ ≤ Chγ/20 | log h0|γ/2.

This shows that (3.6) holds with an exponent < γ/2. Finally, applying Theorem 4,
we conclude the proof.

Corollaries 4 and 5 yield in particular Theorem 1 of the introduction.
The above two impossibility results pertain to the topic of almost reproducing

affine functions. We now turn our attention to the issue of almost reproducing piece-
wise linear functions, or equivalently to quasi-invariance of S1(Ω;h). We note that
the Chen-Nochetto operator I does not approximate the canonical basis functions
φi with any order, namely, ∣∣1− I(φi;xi)

∣∣ ≥ C > 0.

Our last result in this section demonstrates that it is impossible to improve upon
this.
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Corollary 6. Let S(Ω;h) be a finite element space. For 1 ≤ p ≤ N there is no
linear, bounded, and positive operator I : W 1

p (Ω) → S(Ω;h) (resp. I : W̊ 1
p (Ω) →

S(Ω;h)) which satisfies (3.5), i.e., is first order accurate in Lp(Ω), along with the
local pointwise error estimate for some γ > 0∣∣1− I(10;xi)

∣∣+
∣∣1− I(φi;xi)

∣∣ ≤ Chγi .(3.11)

Here φi is the i-th canonical basis function of S1(Ω;h) for any node xi in Ω̄ and
10 is 1 (resp. xi is such that supp(φi) does not intersect ∂Ω and 10 is the function
defined in (2.4)).

Proof. We consider first the case W 1
p (Ω). Let v ∈ W 1

p (Ω) be either the auxiliary
function of Corollary 4, for p < N , or of Corollary 5, for p = N ; thus (3.3) holds.
Let x0 := xi and the affine function a(x) be replaced by the piecewise affine function
ã(x) := hi(1− φi(x)). Note that

ã(x) ≥ K|x− x0|, ∀ x ∈ N0,

where N0 is the star around x0. The barrier function is now given by φ0(x) :=
ϕ( ã(x)

K ) with ϕ as in the proof of Corollaries 4 and 5, respectively. This time φ0(x)
is constant outside N0, but so is v(x), and the domination in (3.4) still holds. We
then argue as before to check (3.6).

On the other hand, when dealing with W̊ 1
p (Ω) we simply multiply both v and

φ0 by the piecewise linear function 10 of (2.4). Since supp(φi) is interior to Ω, we
deduce that v10 is arbitrarily close to 10 in W̊ 1

p (Ω), and φ010 ∈ W̊ 1
p (Ω) is a barrier

function satisfying (3.4) and (3.6). We finally apply Theorem 4 in conjunction with
Remark 3.2 to complete the proof.

Remark 3.3. In view of Remark 3.1, (3.11) can be weakened, for 1 ≤ p < N , to∣∣1− I(10;xi)
∣∣+
∣∣1− I(φi;xi)

∣∣ = o(1).

Remark 3.4. Consider the operator I : W̊ 1
p (Ω)→ S̊1(Ω;h) given by

I(u;x) :=
(

2
h

∫ h

0

u
)
φ1(x) +

I−1∑
i=2

(
1

2h

∫ xi+1

xi−1

u
)
φi(x) +

(
2
h

∫ 1

xI

u
)
φI(x),

where we are using the notation of Remark 2.1. We see that I(φ1;x1) = I(φI ;xI) =
1 and thus (3.11) is valid at x = x1, xI . This construction extends to N ≥ 2 and
N−1 < p ≤ N as follows: if xi is a node connected to a boundary node xj through
an element edge γij , we set I(u;xi) = 2

|γij |
∫
γij
u. We deduce that the assumption

on the support of φi is necessary in Corollary 6.

4. Restriction to second order accuracy

In this section we investigate Korovkin’s classical result in the context of piece-
wise polynomial approximation on finite element spaces S(Ω;h) for general parti-
tions T of Ω. We prove, following Korovkin [7], that a linear, bounded, and positive
finite element operator I cannot be more than second order accurate in L1 provided
some additional, but natural, conditions on S(Ω;h) and I hold.

We consider the h-method; that is, we assume that there is an integer k ≥ 1
independent of T such that all shape functions of S(Ω;h) are piecewise polynomials
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of degree ≤ k: for all u ∈ S(Ω;h),

u|T ∈ Πk(T ), ∀ T ∈ T.(4.1)

We further assume that the interpolation operator I is local: there is a function
ρ(h) such that ρ(h) ↓ 0 as h = h(x) ↓ 0 and

I(u;x) depends only on the values of u in B(x, ρ(h)) ∩ Ω̄,(4.2)

where B(x, ρ) is the ball of radius ρ centered at x. As is easily seen from (1.7),
ρ(h) = C4h for the Chen-Nochetto operator.

Let χ0 ∈ C∞0 (Ω) be a nonnegative cut-off function which is 1 in a neighborhood
of Ω0, where Ω0 b Ω is a fixed region in Ω. Then for any function f ∈ L1(Ω) we
may write I(f ;x) to mean I(χ0f ;x) which, in light of (4.2), is defined only in terms
of f provided x ∈ Ω0 and the mesh size hT := ‖h‖L∞(Ω) is sufficiently small. We
also assume that

‖I(χ0)‖L∞(Ω0) ≤ C(4.3)

with C independent of T. We then have the following result.

Theorem 5. Let T be a general edge-to-edge partition of Ω, and let I : C̊(Ω) →
S̊(Ω;h) or I : C(Ω̄) → S(Ω;h) be a linear, bounded, and positive operator which
satisfies (4.1)–(4.3). Then, for hT sufficiently small, we have

C meas(Ω0) ≤ ‖h−2(|x|2 − I(|y|2;x))‖L1(Ω0)

+
N∑
n=1

‖h−2(xn − I(yn;x))‖L1(Ω0)

+ ‖h−2(1− I(1;x))‖L1(Ω0).

(4.4)

Remark 4.1. A positive operator I must thus fail to be more than second order
accurate already on one of the local polynomial functions |x|2 =

∑N
n=1 x

2
n, xn

(1 ≤ n ≤ N), or 1 (even with the error measured in L1, the weakest Lp space).

Remark 4.2. Theorem 5 does not demand any regularity of the meshes, not even a
maximum angle condition.

Theorem 5 relies on a classical result of Korovkin for polynomial approximation,
Lemma 4.3 below [7, Theorem 17, p.128 and p.132]. For the reader’s convenience,
we give a proof following Lorentz [8, Theorem 3, p.94], for which we need two
preliminary results. A positive operator satisfies

|I(f ;x)| ≤ I(|f |;x), ∀ x ∈ Ω(4.5)

together with the Cauchy-Schwarz inequality

|I(fg;x)|2 ≤ I(f2;x)I(g2;x), ∀ x ∈ Ω.(4.6)

The inequality (4.5) results from applying I to |f |±f ≥ 0, and (4.6) is a consequence
of the following nonnegative quadratic expression in λ ∈ R:

0 ≤ I((f + λg)2;x) = I(f2;x) + 2λI(fg;x) + λ2
I(g2;x).

For notational convenience we introduce the following error functions:

e0(x) = I(1;x)− 1, e1,n(x) = I(yn;x) − xn, e2(x) = I(|y|2;x)− |x|2,
where 1 ≤ n ≤ N . Korovkin’s result is now the following.
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Lemma 4.3. Let I be a positive linear operator, and let t ∈ Ω be arbitrary. Then∣∣I(|y − t|;x)− |x− t|
∣∣ ≤ |x− t||e0(x)|

+ I(1;x)1/2
(
e2(x)− 2

N∑
n=1

xne1,n(x) + |x|2e0(x)
)1/2

.
(4.7)

Proof. We have, by the triangle inequality,∣∣|y − t| − |x− t|∣∣ ≤ |y − x|.
Since |x− t| acts as a constant for I, we can write

I(|y − t|;x) = I(|y − t| − |x− t|;x) + |x− t|I(1;x),

whence, using that I is positive together with (4.5), we get∣∣I(|y − t|;x)− |x− t|
∣∣ ≤ |x− t|∣∣I(1;x)− 1

∣∣+ I(|y − x|;x).

In view of (4.6), we then obtain

I2(|y − x|;x) ≤ I(1;x)I(|y − x|2;x)

= I(1;x)
(
I(|y|2 − 2y · x+ |x|2;x)− |x|2 + 2x · x− |x|2

)
= I(1;x)

((
I(|y|2;x)− |x|2

)
− 2

N∑
n=1

xn
(
I(yn;x)− xn

)
+ |x|2

(
I(1;x)− 1

))
.

This proves the assertion.

The following three lemmas will enable us to prove Theorem 5 without any shape
regularity assumption on the mesh T.

Lemma 4.4. For any simplex T in RN let P be a parallelipiped with a vertex at
a vertex V of T and edges given by 1/N times the edges of T meeting at V . Then
P ⊂ T .

Proof. This is clear using barycentric coordinates.

Lemma 4.5. Let Πk(−d, d) be the set of polynomials of degree ≤ k on the interval
(−d, d). There exists a constant C, depending only on k and N , such that

min
ϕ∈Πk(−d,d)

∫ d

−d

∣∣|r| − ϕ(r)
∣∣2rN−1dr ≥ Cd2+N .

Proof. Scaling to (−1, 1), with ϕ(r)∈Πk(−d, d) corresponding to φ(ρ)=d−1ϕ(dρ) ∈
Πk(−1, 1), we obtain∫ d

−d

∣∣|r| − ϕ(r)
∣∣2|r|N−1dr = d2+N

∫ 1

−1

∣∣|ρ| − φ(ρ)
∣∣2|ρ|N−1dρ.

Since Πk(−1, 1) is finite dimensional and |ρ| /∈ Πk(−1, 1), the assertion follows.

Lemma 4.6. Let T and P be as in Lemma 4.4 with one edge of P on one of the
longest edges of T , and let t be the center of gravity of P . There exists a constant
C > 0, solely depending on k and N , such that

min
ϕ∈Πk(T )

‖| · −t| − ϕ‖L2(T ) ≥ Ch(t) meas(T )1/2.
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Proof. We may assume for ease of notation that t = 0. One edge of P is on one
of the longest edges of T , of size h(t); we let S1 and S2 be two parallel faces of P
separated by h(t)/N . Let P1 and P2 denote the two pyramids formed by S1 and
t, and S2 and t, respectively. Then meas(P1 ∪ P2) is a fixed fraction of meas(T ),
depending only on N , namely,

meas(P1 ∪ P2) =
N !

2NN
meas(T ).

Introducing polar coordinates on P1 ∪ P2, we can write∫
P1∪P2

∣∣|x| − ϕ(x)
∣∣2dx =

∫
Θ

∫ d(θ)

−d(θ)

∣∣|r| − ϕ(r, θ)
∣∣2rN−1drdω(θ),

where the integration in θ extends over the appropriate set of polar angles Θ. Since
by construction d(θ) is comparable to h(t), Lemma 4.5 gives∫

P1∪P2

∣∣|x| − ϕ(x)
∣∣2dx ≥ Ch2+N

∫
Θ

dω(θ)

≥ Ch2

∫
Θ

∫ d(θ)

−d(θ)

rN−1drdω(θ) = Ch2meas(T ).

This proves the lemma.

Proof of Theorem 5. We recall that χ0 is a cut-off function which is 1 in a neighbor-
hood of Ω0, and that we write I(f ;x) for x ∈ Ω0 to mean I(χ0f ;x). Since I is a local
operator, that is, I satisfies (4.2), we infer that the definitions of I(|y|2;x), I(yn;x)
and I(1;x) are unaffected by the choice of χ0 if x ∈ Ω0 for hT sufficiently small.
We thus conclude that (4.7) is valid provided both x, t ∈ Ω0. Let T be a simplex
in T contained in Ω0, and let t be as in Lemma 4.6. Since Ω is bounded, using
Lemmas 4.6 and 4.3, we see that

Ch(t)2meas(T ) ≤
∫
T

(
|x− t||e0(x)|

+I1/2(χ0;x)
(
|e2(x)|+2

N∑
n=1

|e1,n(x)||xn|+|x|2|e0(x)|
)
1/2
)
2

≤ C
(
h2(t)‖e2

0‖L1(T ) + ‖e2‖L1(T ) +
N∑
n=1

‖e1,n‖L1(T ) + ‖e0‖L1(T )

)
≤ C

(
‖e2‖L1(T ) +

N∑
n=1

‖e1,n‖L1(T ) + ‖e0‖L1(T )

)
,

where we also used (4.3) in the last two steps. Equivalently, we have

Cmeas(T ) ≤ C
(
‖h−2e2‖L1(T ) +

N∑
n=1

‖h−2e1,n‖L1(T ) + ‖h−2e0‖L1(T )

)
.

Let Ω̃0 be the union of all simplices of T contained in Ω0. Then

Cmeas(Ω̃0) ≤
(
‖h−2e2‖L1(Ω0) +

N∑
n=1

‖h−2e1,n‖L1(Ω0) + ‖h−2e0‖L1(Ω0)

)
.

For hT sufficiently small, meas(Ω̃0) is comparable with meas(Ω0), which gives the
desired lower bound. The proof of Theorem 5 is thus complete.
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Remark 4.7. Even though it does not pay to enlarge the range of I beyond S1(Ω;h)
to increase the rate of convergence, one may wonder about positive interpolation
operators I with larger range. As a simple example, consider the following con-
struction for N = 1: let S2(Ω;h) be the space of continuous piecewise quadratics
over T, and, on the master interval (0, 1), set

I(u;x) = u(0)(1− x) + u(1)x+
(
2u(1/2)− (u(0) + u(1))

)
x(1− x).

The range of I is all the piecewise quadratics, I reproduces the piecewise linears,
and I is positive since

I(u;x) = u(0)(1− x)2 + u(1)x2 + 2u(1/2)x(1− x).

Obviously, such an operator cannot also preserve quadratics locally as this would
violate Theorem 5. In fact, x2 is not preserved in this example.
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