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PEPT-ML

Positron Emission Particle Tracking using Machine Learning
A. L. Nicuşan1 and C. R. K. Windows-Yule1, a)

School of Chemical Engineering, the University of Birmingham, Edgbaston, Birmingham, UK,

B15 2TT

(Dated: 16 January 2020)

We introduce a new approach to positron emission particle tracking (PEPT) based on ma-
chine learning algorithms, demonstrating novel methods for particle location, tracking and
trajectory separation. The method allows radioactively-labelled particles to be located, in
three-dimensional space, with high temporal and spatial resolution, requiring no prior knowl-
edge of the number of tracers within the system, and can successfully distinguish multiple
particles separated by distances as small as 2 mm. The technique’s spatial resolution is ob-
served to be invariant with the number of tracers used, allowing large numbers of particles
to be tracked simultaneously, with no loss of data quality.

I. INTRODUCTION

A. Positron Emission Particle Tracking

Positron emission particle tracking (PEPT) is a tech-
nique, developed at the University of Birmingham, with
which one may non-invasively track the fully three-
dimensional motion of a particle, with high temporal and
spatial resolution, even in the interior of dense, optically-
opaque systems1–3. Due to its great versatility both in
terms of the scales and materials of particles which can be
tracked4,5, and the sizes and geometries of the systems
which can be imaged6, the technique has wide-ranging
applicability in diverse scientific, industrial and biomed-
ical applications7.
PEPT is performed by radioactively labelling4,5 a

particle with a positron-emitting radioisotope such as
fluorine-18 (18F) or gallium-66 (66Ga), and using the
back-to-back gamma rays produced by electron-positron
annihilation events in and around the tracer to triangu-
late its spatial position. Figure 1 provides a simplified
representation of this process: when two gamma photons
produced by an annihilation event are detected, their
trajectory can be reconstructed8 to give a single line of

response (LoR). Due to the short path lengths of β+

particles, it can be assumed that all pairs of gamma pho-
tons are emitted either within or near the tracer particle
– i.e. all LoRs should pass through or close to said tracer.
Thus, with a suitably large number of LoRs, one can al-
gorithmically determine the tracer’s spatial position.
Of course, the picture presented in Fig. 1 is over-

simplified. In reality, one will also typically encounter sig-
nificant numbers of false LoRs due to ‘false coincidence’
events, where random secondary or background photons
happen to interact with opposing detectors within the
resolution time of the camera3. As such, any algorithm
used to locate and track a particle must also be able to
remove or ignore this noise.
There exist several distinct algorithms developed for

the above-described process. In the following section, we
provide a brief overview of each.

a)Electronic mail: c.r.windows-yule@bham.ac.uk

B. Current Methods

1. The Birmingham Method

The Birmingham method is the original, and still most
widely-used, PEPT algorithm. In order to track a sin-
gle particle, the Birmingham algorithm works as follows1:
for a chosen number, N , of events, the algorithm first de-
termines the minimum distance point (MDP) which min-
imises the distance to all LoRs, before discarding those
LoRs lying furthest from this point. This process is then
repeated until a pre-determined fraction, f , of the orig-
inal events remains. The MDP of the remaining (fN)
LoRs is then taken as the tracer’s position.
In 2006, the algorithm was adapted to track multiple

particles9. The multiple-particle case begins in the same
manner as the single-particle case, with the determina-
tion of an MDP, followed by the elimination of a number
of outlier particles and so on until a single location is de-
termined. The process is then repeated, this time using
only the events that were discarded from the first loca-
tion process. The process is then repeated again until all
tracers are found. While the original multiple-particle
tracking method developed by Yang et al.9 required a
fixed separation between particles – allowing, for exam-
ple, the rotation of a solid body to be tracked by ap-
plying 3 tracers to its surface – this constraint was later
relaxed10, allowing the tracking of multiple freely-moving

tracers.
In the above process, the first particle to be detected

will be that with the highest data logging rate, thus po-
tentially allowing particles with differing activities to be
distinguished from one another11, and hence individually
tracked. However, as the data logging rate is affected by
both particle activity and the position of particles rela-
tive to the system’s detectors, in order for the trajectories
of two particles to be separated based on their activities
alone, a significant difference between the two is neces-
sary. In practice, an activity ratio & 2 is typically used.
An issue with this method of trajectory separation, there-
fore, is that as the number of tracers increases, the total
activity required increases exponentially, meaning that
the detector used may rapidly become saturated. An ad-
ditional limitation of this method is that, as data is dis-
carded for each iteration of the particle-finding routine,
the accuracy of location decreases with each additional

mailto:c.r.windows-yule@bham.ac.uk
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FIG. 1. Simple schematic diagram illustrating the manner in which PEPT can be used to locate a single tracer particle in a
granular bed. If an active tracer particle (highlighted red for clarity, though in reality identical to all others of its species) emits
a pair of back-to-back γ photons (panel (a)) that are both simultaneously recorded by the detectors of the positron camera,
their trajectory can be reconstructed algorithmically (panel (b)). By finding the point of intersection of several such lines of
response (panel (c)), the position of the tracer’s centre may be determined algorithmically.

particle present.
Despite the above issues, the Birmingham multiple

particle method has been shown to successfully locate
and track up to 4 particles separated by twice the spatial
resolution of the camera (approximately 12 mm).
Further details regarding the Birmingham method may

be found in Parker et al. 1 , Parker 3 .

2. The Line-Density Method

The line-density method subdivides the experimental
volume into a mesh of voxels recording, for each voxel, the
number of LoRs passing through its volume. It is then
possible to locate voxel(s) corresponding to the maximum
(or, in the case of multiple particles, local maxima) in line
density. The particle location is determined by spatially
averaging the voxellated data to produce one-dimensional
histograms in the neighbourhoods of these maxima – one
each for the x, y and z directions – and fitting Gaussians
to determine the centroid position. This approach has
been successfully used to track up to 8 particles simulta-
neously. More details regarding the line-density method
may be found in Bickell et al. 12 .

3. Multiple Location-Allocation Algorithm (MLAA)

The multiple location-allocation algorithm (MLAA)13

was traditionally used in social sciences to find the lo-
cation of m sources of products that minimise the cost
of supplying these goods to n destinations, taking into
account both the distance and demand for the product.
This is achieved by iteratively minimising the weighted
sum of distances from the sources to the destinations,
where each weight is a representation of the demand.
A variant of the multiple location-allocation algorithm

was used by Gundogdu and Tarcan 14 in conjunction with
the K-Medoids15 algorithm to track between two and four
particles. The method subdivides the experimental vol-
ume into voxels, assigning each of them a value corre-
sponding to the number of LoRs passing through them.

The voxel values are then smoothed using a thresholding
method. The K-Medoids algorithm is used to calculate
the starting guess for the multiple location-allocation al-
gorithm, which uses the voxel values as the weights as-
sociated with the distances from the sources (the tracers
locations) to the destinations (the non-zero voxels). The
authors successfully tracked two particles separated by
30 mm in the z-direction using MWPC PET cameras.

4. K-Medoids

An algorithm developed by Gundogdu 16 computes the
“midpoints”, the points that minimise the distances be-
tween every pair of LoRs, removing the ones which have
the nearest neighbour further than 2.479 mm. A vari-
ant of the K-Medoids algorithm15 is used along with a
method for validating the number of clusters based on the
Silhouette Coefficient (SC). The author used 200 LoRs
to compute one frame and noted that the clustering de-
grades with increasing number of LoRs. It successfully
located two tracers separated by 30 mm in the z-direction
using an MWPC PET camera, with the author mention-
ing the possibility to track up to four particles in some
applications.
5. Clustering Methods

The clustering method of Wiggins, Santos, and Rug-
gles 17 uses as its starting point a three-dimensional mesh
such as that used in the line-density method described
above.

The method then uses Gaussian-means (G-means)
clustering18 – an adaptation of the well-known k-means
algorithm19 – to identify the centroid of the particle(s)
to be located. The approach utilises principal component
analysis and goodness-of-fit testing to determine, with-
out a priori knowledge, the number (k) of clusters in a
data set and determine their positions.

The algorithm begins by assuming a value k = 1 to cal-
culate a global centroid. The algorithm then determines
whether to ‘accept’ or ‘split’ the corresponding cluster
dependent on its adherence to a Gaussian fit: if the data
is well described by a Gaussian, it is accepted as a single
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cluster; if not, it is split into two separate clusters and
the process repeated for k = 2. The splitting process
continues until all clusters are found20, and the centroids
of these clusters are taken as the tracer locations.
Further details regarding this method – including full

details of the method used to determine the quality of
the Gaussian fit used and hence choose whether to ac-
cept/split particles – may be found in Wiggins, Santos,
and Ruggles 17 .

6. The Feature Point Identification (FPI) Method

The feature point identification method again begins
with the consideration of a 3D array of line-densities21.
Using this method, the line density values belonging to
the various voxels are treated as grey values, and conven-
tional (optical) image analysis techniques, namely feature
point identification22,23 are applied to the PEPT data.
This technique has been shown to be capable of locating
up to 100 particles, though the accuracy of location is
shown to decrease with the increasing number of trac-
ers used. Specifically, the location error is found to scale
approximately as

√
Ntracer.

7. The Odo Triangulation Method

The method detailed in the work of Odo et al.24 oper-
ates, at a fundamental level, like the original Birmingham
method, iteratively discarding erroneous LoRs until, the-
oretically, only ‘true’ (i.e. non-corrupted) LoRs remain,
from which an accurate particle position may be deter-
mined. The method of Odo et al.24 differs significantly
from the original work of Parker et al. 1 in that, rather
than simply discarding those LoRs falling furthest from
the current minimum distance point, a series of heuristic
conditions are instead applied to determine, for a given
sample, which LoRs are corrupted and hence should be
discarded. Notably, the algorithm utilises known infor-
mation regarding the size of the tracer – and hence the
likely volume from which ‘true’ LoRs are likely to em-
anate – to refine the location of the tracer’s centre au-
tonomously, without requiring the user to stipulate a spe-
cific fraction of LoRs to discard. While this method is
yet to be directly tested for the case of multiple particle
tracking, the authors suggest that – unlike the Birming-
ham algorithm – it should be possible to use the a priori

information provided to the algorithm to separate the
trajectories of particles without the necessity of labelling
them with differing activity levels.

8. Voronoi-based Multiple Particle Tracking (VMPT)

The VMPT method of Blakemore et al.25 represents
the most recently-published PEPT algorithm to date
(though the algorithm itself was originally described in
the Master’s thesis of the lead author26). The method
begins by discretising the LoRs emitted by a tracer, typ-
ically into a set of points separated in space by a distance

equivalent to the particle diameter. These discrete points
are then used as seed points27 to produce a Voronoi tes-
selation. Naturally, as we approach the location of the
tracer, the density of seed points will increase, and the
size of the local Voronoi regions will correspondingly de-
crease. The data produced through the above process
are then filtered so as to remove outliers, and any re-
maining points corresponding to Voronoi cells with areas
significantly larger than the mean are discarded (full de-
tails of this filtering process may be found in Blakemore
et al. 25). The remaining data points are then clustered,
and the geometric centre of these clusters taken as the
tracer location. The VMPT method can track at least 20
particles, requires no a priori knowledge of the number
of tracers in the system, and allows for tracers leaving
and entering the field of view.
C. PEPT-ML

Though all reliable and effective, the methods de-
scribed in the previous section all carry certain weak-
nesses. For example the Birmingham algorithm, while
highly effective and computationally efficient in the
single-particle case, is only proven in the multiple-particle
case for only a small number of tracers, requires the use
of tracers with differing activities to perform trajectory
separation, and necessitates an a priori knowledge of the
number of particles in the system (an issue shared by the
line-density method) for particle location. This may be
a significant issue, for instance in systems where tracers
leave and re-enter the field of view.
The MLAA-based method is very computationally ex-

pensive due to the complexity of the algorithms involved.
The K-Medoids approach, while more robust than the
MLAA algorithm, also proved to have difficulty distin-
guishing more than two particles. Both algorithms were
able to track particles separated by more than 30 mm
in the z-direction, albeit using a lower-resolution camera
than in this present study.
The line-density, clustering, MLAA, FPI and VMPT

methods, meanwhile, are all mesh-based, meaning their
results are inherently grid-size dependent and, with the
exception of the VMPT method, carry potential issues
in terms of pixelisation17.
The Odo triangulation method shows great promise,

but is yet to be tested for the multiple-particle case,
and at present relies on the assumption of a spherically-
symmetric tracer, and requires a known distribution of
positron-emitting-radioisotope on or in the tracer.
In this article, we introduce a new, machine-learning-

based method which is mesh-free, requires no prior
knowledge of particle number, and whose accuracy and
acquisition rate are scalable with particle number.

II. ALGORITHM DETAILS

PEPT-ML is novel, machine-learning-based algorithm
for tracking the trajectories of multiple particles in Eu-
clidian space based on their lines of response. As dis-
cussed in section IA, for any given set of LoRs, the main
problem is finding the regions in space (representing the
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tracers) from which the lines stem. The trajectory of
each tracer can then be constructed based on the indi-
vidual positions found. The main steps underlying the
PEPT-ML algorithm are as follows:

1. Split the data into a series of individual ‘samples’,
each containing a given number of LoRs28.

2. For every sample of LoRs, compute the points (‘cut-
points’) in space that minimise the distance be-
tween every pair of lines.

3. Cluster every sample of cutpoints using a Hierar-
chical Density-Based Spatial Clustering of Appli-
cations with Noise (HDBSCAN) algorithm29 and
extract the centres of the clusters (‘1-pass cluster-

ing ’).

4. Split the centres into samples of a given size.

5. Cluster every sample of centres using the HDB-
SCAN algorithm and extract the centres of the
clusters (‘2-pass clustering ’).

6. Construct the trajectory of every particle using the
centres from the previous step.

Each LoR is essentially a line in a three-dimensional
Cartesian space, defined by two points. In this sense,
the algorithm is agnostic to the arrangement of the de-
tectors, as virtually any geometry can be used if the 3D
coordinates of the points are supplied. For any ‘real’
data set, the time at which the LoR was recorded is also
included.
In order to capture the movement of particles in space,

the dataset is split into samples of a given number of
LoRs. A given sample will be used to compute one
pseudo-instantaneous position for each tracer present in
the system. As such, the sample size (ie. the number of
LoRs per sample) should be large enough that these po-
sitions may be accurately determined, but small enough
that the tracer does not move significantly during the
sample’s duration. The use of a smaller sample size also
increases the temporal resolution of the PEPT data pro-
duced. In reality, this temporal resolution is a function of
the velocity and activity (i.e. number of gamma-ray pairs
emitted per unit time) of the tracer, and the properties
of the detector system used.

A. Space transformation

Most clustering algorithms, including that employed in
our present work, operate using points, rather than lines.
As such, in order to apply the algorithm to PEPT data,
we must find a suitable means through which to convert
the line of response (LoR) data provided by our detector
system into point data. In order to capture the position
of multiple tracers, every pair of lines must be considered.
For every pair of lines (LA, LB), each defined by two
points A1, A2 and B1, B2 respectively, the cutpoint M is
defined as the point which minimises the distances to the
two lines. Assuming the two lines are not parallel, this
point corresponds to the middle of the unique segment

that is perpendicular to both lines. Writing the lines in
terms of position and direction vectors yields:

{

LA : A(s) = P + sU, where P,U ∈ R
3, s ∈ R

LB : B(t) = Q+ tR, where Q,R ∈ R
3, t ∈ R

(1)

with the additional condition that U 6= R. Based on
the definition of the two lines, the position and direction
vectors can be defined as P = A1, U = A2 − A1 and
Q = B1, R = B2 − B1. The unique segment that is
perpendicular to both lines is defined by two endpoints
A(s0), B(t0), with the property:

(A(s0)−B(t0)) ⊥ U,R ⇐⇒
{

(P + s0U −Q− t0R) · U = 0

(P + s0U −Q− t0R) ·R = 0

(2)

This system of equations can be solved to find s0 and t0
and hence the cutpoint M :

M =
A(s0) +B(t0)

2
(3)

In order to minimise crosstalk between lines that stem
from different regions in space, only the cutpoints of seg-
ments smaller than a certain maximum length should be
considered. The cutpoints corresponding to 400 LoRs
from two real tracers and a maximum length of 0.05 mm
are depicted in panel a) of Fig. 2. The image depicts
the inherent characteristics of PEPT data: high-density
clouds of cutpoints around the two tracers, a significant
amount of noise and crosstalk between the particles.

B. Clustering Cutpoints

As noted above, PEPT-ML locates particles by clus-
tering the cutpoints computed as described in the preced-
ing section. This method works on the assumption that
the cutpoints will be centred around the tracers from
which the lines originate. However, tracers which are
more active than others will yield more LoRs, and hence
there will exist a higher density of cutpoints around them.
Therefore, a density-based clustering method which can
handle varying levels of density and noise in the data
should be employed. The HDBSCAN29 (Hierarchical
Density-Based Spatial Clustering of Applications with
Noise) algorithm was chosen due to its versatility, and
the availability of a high-performance implementation30.
The HDBSCAN algorithm in essence leverages a se-

ries of machine-learning techniques: defining a new met-
ric that “pushes” low-density points away from higher-
density regions, constructing the minimum spanning tree
using this metric, performing hierarchical clustering us-
ing the single-linkage method and extracting optimal
clusters from this hierarchy. These steps are illustrated
on real PEPT data in Fig. 2.
As single-linkage hierarchical clustering is very sensi-

tive to sparse points connecting higher-density regions,
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FIG. 2. Visualisation of the HDBSCAN algorithm’s steps us-
ing real PEPT data. The experiment used two static 0.6 mm
diameter particles, separated by 32 mm in the z-direction.
Panel a) depicts cutpoints of a 400-LoR sample from a top-
down view of the PEPT scanner. Panel b) shows the minimum
spanning tree based on the mutual reachability distance of
the cutpoints, colour-coded for increasing dmreach from pur-
ple to yellow, and finally black for dmreach larger than twice
the mean of the distances. Panel c) illustrates a dendrogram
built from the hierarchy of connected components of the min-
imum spanning tree. Panel d) shows the two clusters found
(green and purple circles), along with the cutpoints classified
as noise (black crosses). Note that there are two additional
steps (omitted for brevity) between c) and d): condensing
the dendrogram and extracting clusters of high stability and
possibly differing density levels.

an initial step is required to prepare the data for robust
clustering. For a given point a and a set parameter k,
the core distance, denoted corek(a) is defined as the Eu-
clidian distance between the point a and its k-th nearest
neighbour. Using this concept, the mutual reachability

distance between any two points a and b is defined as:

dmreach−k(a, b) = max (corek(a), corek(b), d(a, b)) (4)

If both points a and b are within high-density regions in
space, then the Euclidian distance d(a, b) between them
is going to be approximately the same as their core dis-
tances. However, if, for example, a is an isolated point
(being part of a sparse region in space), which does not
have many close neighbours, the k-th nearest neighbour is
going to be much farther away than point b. Therefore,
the mutual reachability distance is a metric which has
effectively the same value as the Euclidian distance for
points in high-density regions, while being much larger
for sparse points. This effectively ‘pushes’ sparse points
away from higher-density regions, ensuring that neigh-
bouring clusters are not inaccurately treated as a single
particle due to the presence of sparse points in between
them.

Using the mutual reachability distance as the metric
for the points in the dataset, the minimum spanning tree

can be constructed. This is a weighted graph containing
a set of vertices (in this case, 3D points) and a set of
edges connecting them, where the weight of each edge is
the mutual reachability distance between the points that
the edge connects. The most important property of a
minimum spanning tree is that it has the minimum sum
of weights of any graph that can be constructed from
the given data. Therefore, the minimum spanning tree
is essentially the shortest “path” which connects all the
points. For a set of cutpoints corresponding to 400 LoRs
of two real tracers, the minimum spanning tree is illus-
trated in panel b) of Fig. 2, where the edges are colour-
coded according to their mutual reachability distances.
Note that the edges connecting sparse points around the
tracers have very large values due to the mutual reacha-
bility distance being much larger than the Euclidian dis-
tance.

A dendrogram can be constructed, depicting the dis-
tance between any two connected subgraphs (correspond-
ing to any two clusters) in the minimum spanning tree.
Sorting all the edges in the minimum spanning tree and
starting from the smallest edge, a hierarchical tree struc-
ture can be constructed where the height of any split cor-
responds to the weight (mutual reachability distance) of
the edge connecting the two subgraphs. Panel c) in Fig.
2 depicts the dendrogram constructed for the cutpoints
of real PEPT data.

At this point, the dendrogram can be ‘cut’ at a cer-
tain height, and the remaining subgraphs would be clas-
sified as the persistent clusters. However, this approach
would only yield clusters of the same density. Therefore,
the dendrogram will be condensed to include a notion of
“cluster stability”. The tree can be traversed from the
bottom up, condensing any split that has fewer vertices
than a defined minimum cluster size, keeping track of
the height at which the splits occurred. A stable cluster
will have points gradually ‘falling out’ of it, rather than
having large differences between the heights at which the
splits occur. Hence a measure of the stability of a clus-
ter is simply how small the differences are between the
heights at which the splits happen. The final step of ex-
tracting the clusters from the condensed dendrogram is
a comparison between the stability of the nodes. The
extracted clusters are shown in panel d) of Fig. 2.

C. Particle Location

In the previous section, we have discussed how the
PEPT-ML algorithm determines which cutpoints within
a given sample of data belong to a given tracer. The al-
gorithm then assigns a position to this tracer, for the cur-
rent sample, by determining the geometric centre of this
cluster. This is done simply by averaging the x-, y- and
z-positions belonging to all the cutpoints currently as-
signed to said tracer by the HDBSCAN algorithm. This
‘centre of cutpoints ’ can then either be simply taken as
the current particle’s location (‘one-pass clustering ’) or
used to calculate a still more accurate position (‘two-pass
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clustering ’).
Two-pass clustering is performed by taking the ‘centres

of cutpoints’ from several samples of data (either over-
lapping or contiguous), and then re-applying the HDB-
SCAN algorithm – following the same methodology as
described in section II B – to cluster the centres them-
selves and, as above, calculating the geometric midpoint
of these clustered points (the ‘centre of centres’). For a
suitably-chosen number of samples, this centre of centres
will typically represent a significantly more accurate esti-
mation of the tracer’s position. In section IVA we show
examples in which this ‘reclustering’ method achieves a
five-fold increase in accuracy.
The application of the re-clustering algorithm will –

due to its use of multiple individual samples, and hence
a larger number of LoRs than for single-pass clustering –
reduce the temporal resolution with which data are ac-
quired. However, this effect may be reduced by utilising
a ‘windowing’ technique – i.e. applying two-pass cluster-
ing to overlapping samples. In fact, with a large enough
overlap, the decrease in temporal resolution can be effec-
tively eliminated. The use of overlapping samples will,
however, act to smooth the data obtained, a factor which
– dependent on the specific application for which PEPT
is applied, be undesirable.
As is clear from the above, the balance of temporal and

spatial resolution, and the degree of smoothing achieved
on data, can be altered by the choice of overlap, and in-
deed the decision of whether or not to apply two-pass
clustering at all, as well as the sizes of samples used for
both clustering and reclustering, affording the user a sig-
nificant degree of control over the optimisation of the
data output. For example, in applications tracking fast-
moving particles and requiring extremely high temporal
resolution, one may apply only first-pass clustering, util-
ising a minimal sample size. Conversely, if one wishes
to track slow-moving particles with high precision, one
may apply two-pass clustering, using both large samples
of cutpoints and large samples of centres.

D. Particle Identification and Tracking

After clustering all samples of cutpoints (one-pass clus-
tering) and then, if desired, all samples of centres (two-
pass clustering), the particle trajectories have to be re-
constructed based on the located clusters’ centres. How-
ever, there are cases when tracers’ trajectories may in-
tersect or collide, briefly losing each particle’s identity
as they are too close in space to be differentiated (as
illustrated in Fig. 3). Therefore, besides tracers’ loca-
tions, a new discriminating factor must be introduced
such that, even following an intersection or collision, indi-
vidual particles can be ‘recognised’ and their trajectories
distinguished.
There is a strong correlation between a tracer’s activity

level and the number of LoRs originating from it. Given n
LoRs in a sample, there are a maximum of 1

2 (n
2−n) cut-

points to be considered. Even though the cutpoints as-
sociated with lines farther than a set maximum distance
are ignored, the number of cutpoints can be expected to

scale quadratically with the number of LoRs. Therefore,
differences in the activity level of different tracers will
be amplified when computing the cutpoints (i.e. if one
tracer is twice as active as another, the former will have
four times more cutpoints around it than the latter).
When computing the centres of every cluster of cut-

points, it is possible to keep track of the number of cut-
points included in the aforementioned cluster. This way,
we exploit the stored number of cutpoints to provide our
particles with distinct ‘signatures’.
Using the cluster size as the signature of the tracers,

their trajectories can be correctly reconstructed even af-
ter an intersection or collision (see Fig. 3).

E. Implementation Notes

The algorithms described in this section were imple-
mented as a series of modules in the Python program-
ming language, using C extensions for compute-intensive
tasks such as cutpoint-finding. The modules are included
as part of pept, a Python library that integrates all the
tools necessary to perform research using PEPT, includ-
ing tracking, simulation, data analysis and visualisation
tools. The open-source package, which also includes func-
tionality to run the traditional Birmingham algorithm,
can be found here. Using a PC with 8 GB RAM and a
2.6 GHz Intel Core i7 quad-core processor, a 4-particle
data set with 1,000,000 LoRs requires approximately 13
seconds (real elapsed time) to initialise, 9 seconds to find
determine the cutpoints, 10 seconds for the first pass of
clustering and one second for the second pass of cluster-
ing.
The PEPT-ML algorithm is written such that it may

be operated in two distinct ‘modes’ by setting the
allow single particle flag to true or false. Setting
the flag to false allows multiple particles to be distin-
guished at a smaller separation, but will not work for
systems containing only a single particle. Conversely,
if set to true, the algorithm can detect a single parti-
cle in isolation, but may falsely interpret two or more
nearby particles as a single cluster. While the choice
of a suitable mode is typically obvious, for systems in
which tracers may move in and out of the field of view,
users must choose either to ensure that all particles are
tracked at all times but increase the minimum separation
above which two or more particles may be distinguished
(allow single particle = true), or risk occasionally
‘missing’ particles when only one is present in the sys-
tem, but being able to better resolve individual particles
in close proximity (allow single particle = false).

III. EQUIPMENT AND SIMULATION METHOD

A. ADAC Forté Dual-Headed Positron Camera

Experimental tests of the PEPT-ML algorithm are
conducted using the University of Birmingham’s ADAC
Forté dual-headed positron camera. The camera con-
sists of two parallel, planar detector heads, each com-

https://github.com/uob-positron-imaging-centre/pept
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FIG. 3. Visualising the intersection [panels a), b)] and collision [panels c), d)] of two simulated tracers (see Section III B), in
which one tracer is twice as active as the other. The left-hand panels [a), c)] show the clustered cutpoints (coloured small circles)
and noise (black small circles) after one pass of clustering, along with the centres of the clusters (large circles). The cluster
size of every centre has been colour-coded, with colours toward the orange (purple) end of the spectrum representing clusters
containing more (fewer) cutpoints. The right-hand panels [panels b), d)] show the separated trajectories after the second pass
of clustering. Note that as particles come very close, all cutpoints are classified as noise, as the HDBSCAN algorithm has, in
this instance, been implemented so as to specifically reject single clusters, which acts to increase the spatial resolution achieved.

prising a single, 590× 470mm2 sodium iodide scintillator
crystal coupled to an array of 55 photomultiplier tubes.
The camera has an intrinsic spatial resolution of approx-
imately 6mm and facilitates a maximum data rate of the
order of 100kHz. Further details of the system may be
found in Parker et al. 2 .
The camera described is the same as that used by

Yang et al. 9,10 in their work testing the Birmingham
multiple-particle tracking algorithm, allowing us to draw
direct, quantitative comparison between this method and
PEPT-ML.
The work of Bickell et al. 12 and Wiggins, Santos, and

Ruggles 17 , however, used cameras with significantly dif-
fering resolutions, data rates and geometries. While these
differences preclude a full, quantitative comparison be-
tween the methods, it is nonetheless possible to compare
certain key features and trends relating to the various
methods.

B. Simulations

In order to extend the analysis of the tracking algo-
rithm beyond what is reasonably achievable in a lab set-
ting, a ‘PEPT simulator ’ was developed. This creates
the possibility to track hundreds of particles at the same
time, far exceeding the maximum event rate of the PEPT
scanner available to the authors. In addition, tracer po-
sitions can be known analytically before creating and
analysing the corresponding PEPT data, allowing the
true accuracy of the tracked positions to be computed.

In order to accurately simulate PEPT data, one must
recreate the various noise- and error-sources inherent to
‘real’, experimental detector systems. To this end, the
PEPT simulator developed takes into account the fol-
lowing crucial features:

• Tracers activity (including the random nature of
β+ decay).

• Positron movement from the point of generation to
the point of annihilation and γ-ray emission, in-
cluding the relevant dependence on the tracer ma-
terial and surrounding environment.

• Area, depth of the detector crystals, and inherent
resolution of the detector system.

• Random noise.

The PEPT simulator receives a trajectory composed of
np discrete points in space, each representing the centre
of a simulated object. Because particle decay is a ran-
dom event, the time values associated with every position
along the trajectory are taken from a sorted random uni-
form distribution. A second parameter, ‘sampling times’
– another sorted random uniform distribution – repre-
sents the times at which one positron is emitted. The
location from which this happens is taken as the particle
position in the trajectory that has the closest time value
to the given sampling time. Note that multiple particles’
paths can be included in the trajectory received by the
PEPT simulator, as long as the times of the positions
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in space are sorted. This creates the possibility of hav-
ing multiple particles of different relative activities in the
same trajectory. For example, let the path of particle A
be defined by 1000 points in space, and let the path of
particle B be defined by 2000 points in space. The paths
of A and B both span the same time interval. Because
the sampling times (the times representing positron emis-
sion) are taken from a random uniform distribution, the
chance of the decay event having the location of particle
B is twice as large as for particle A. Hence, particle B
will have twice as many LoRs as particle A, accurately
simulating their differing activities.
For every sampling time and particle position in space,

the β+ decay is simulated. The particle position repre-
sents the centre of the simulated object in space. This
object can have any defined shape, as a “shape function”
returns a random point inside the object relative to its
centre, representing the point of decay (and positron gen-
eration). However, the positron travels a distance from
its point of emission before hitting an electron, annihi-
lation and so emitting the γ-ray. This positron range is
a function of the kinetic energy of the positron, which is
itself a function of the radioactive material.
For any given tracer material that undergoes β+ decay,

the decay energy (equal to the energy difference between
the parent and daughter nuclei) is imparted as kinetic
energy to the positron and neutrino formed. This ki-
netic energy is not divided equally, resulting in a beta

energy spectrum, a distribution representing the frac-
tion of the total decay energy that is carried by the
positron. This distribution can be found analytically
from the Fermi theory of beta decay, resulting in a rela-
tively skewed normal distribution. Therefore, a Gaussian
distribution is fitted to the beta energy spectrum as an
approximation, centred at half of the particle decay en-
ergy. The standard deviation is set to one third of the
mean, such that 99.7% of the data will lie between 0
and the particle decay energy. Once the kinetic energy
of the positron is taken from the beta energy spectrum
approximation, the positron range is calculated from the
following correlation31:

Rex(Ei) ≈
b1E

2
i

b2 + Ei

b1 =
4.569A

Z1.209

b2 =
1

2.873− 0.02309Z

(5)

where Ei is the initial energy of the positron, Rex is
the ‘extrapolated range’ and A and Z are the effective
atomic weight and number of the material surrounding
the tracer. The extrapolated range Rex relates the ki-
netic energy of the positron and the distance travelled
before annihilation by fitting a Gaussian distribution in
each of the three dimensions, each centred at zero. The
standard deviation given is:

σ(Ei) ≈
Rex(Ei)

2
(6)

Once a travelled distance has been computed from this
distribution in the x-, y- and z-dimensions, this is added
to the emission location, finally resulting in the point
from which the LoR is emitted. An LoR angle is taken
from a random uniform distribution, finally calculating
the x and y positions on the detector screens, simulat-
ing the location error due to the positron range, tracer
material and surrounding environment.
However, the detector crystals are discrete elements

and hence introduce another set of errors by approxi-
mating the spot the LoR hit to the centre of the detec-
tor. First, the γ-ray enters the detector head at an an-
gle, travelling a certain distance before being captured.
This ‘angular error’ is modelled by taking a random dis-
tance between zero and the depth of the detector crystal
(16 mm for the detector system modelled here), multi-
plying it by the tangent of the ray’s incident angle and
adding the result to the original position on the detector
screen. This is done in both x- and y-dimensions, for
both screens. However, the γ-ray can travel through the
initial detector crystal, then pass into the one adjacent
to it before being captured. This “positional error” is
modelled by adding a random value between [−w,w] to
the LoR point on the screen, where w is the width of the
active area of the detector (4 mm for our PEPT scanner).
This way, the area and depth of the detector crystals are
simulated.
The final step is to add random noise to the simulated

PEPT data, representing the false coincidence events.
This is done by adding 30% of the total number of LoRs
extra random points on the detector screens, at random
positions in the data.
Though, due to the simplifying assumptions described

above, our model cannot be expected to reproduce exper-
imental data with 100% accuracy it is nonetheless found
to produce a pleasingly close representation thereof, as
illustrated in Fig. 4. The standard deviation of the ex-
perimental data – i.e. the ‘spread’ of cutpoints – is 15.33
mm in the x-dimension and 41.41 mm in the z-dimension,
while for the simulated data it is 16.36 mm in the x-
dimension and 38.05 mm in the z-dimension. Note that
while the z-dimension exhibits large scattering due to the
2 parallel screen configuration of the scanner (see Sect.
IVA), the x and y directions show similar, smaller scat-
tering. Therefore, the 2D histograms (panels a) and b) in
Fig. 4) computed for the xz-plane projection of the cut-
points is also representative of the yz-plane projection,
covering the full three-dimensional space.

IV. TESTING THE ALGORITHM

A. Spatial Resolution

Fig. 5 shows PEPT data corresponding to a pair of
particles following a known, circular trajectory, processed
using both PEPT-ML (panels b), c)) and the Birming-
ham algorithm (panel d)). From these data, it is possible
to extract a quantitative measure of the spatial accuracy
achieved by the two algorithms. Specifically, we quantify
the positional error, ∆χ (χ = x, y, z), as the mean devia-
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FIG. 4. Comparison between experimental and simulated
PEPT data, based on two 0.6 mm diameter tracers separated
in the z-dimension by 64 mm. The two top panels – with
panel a) showing experimental data and b) simulated data
– depict 19,000-cutpoint clouds as black circles from a top-
down perspective (the xz-plane) along with 2D histograms
colour-coding the density of the cutpoints, where the yellow
(purple) end of the spectrum represents a lower (higher) den-
sity. The bottom panel shows the superimposed histograms
of the cutpoints for the experimental (orange lines) and sim-
ulated (blue lines) PEPT data in the z-dimension. The bin
sizes used are 15 mm for the 2D Histograms and 2 mm for
the 1D Histogram.

tion of the measured points, χm from the corresponding
‘real’, analytically known values, χr, in each of the three
Cartesian coordinates, i.e.

∆χ =
1

NP

NP
∑

i

|χm − χr|, χ = x, y, z (7)

where NP is the number of data points used.

Using the Birmingham method, we obtain mean errors
∆x = 0.50 and ∆y = 0.43 in the horizontal and vertical
directions parallel to the detector face, and ∆z = 2.10
for the perpendicular direction. As expected, data in the
z-direction show significantly higher errors than the x-
or y-directions due to the geometry of the camera.

For PEPT-ML, after a single pass, these values are
∆x = 0.35, ∆y = 0.34 and ∆z = 2.07. In all cases,
PEPT-ML – even before reclustering – demonstrates an
improved accuracy, though the difference is less pro-
nounced in the z-dimension. It should be noted, how-
ever, that – as we will see in section IVD – the differ-
ence in accuracy between PEPT-ML and the Birming-
ham algorithm becomes more pronounced as the number
of particles tracked increased. After the implementation
of 2-pass clustering, the errors obtained using the new
algorithm reduce dramatically to ∆x = 0.18, ∆y = 0.17
and ∆z = 0.41.

B. Temporal Resolution

The dimensional temporal resolution (i.e. the number
of locations per second) of a PEPTmeasurement is highly
dependent on a variety of factors, for example tracer ac-
tivity and detector efficiency. As such, we explore here
instead a more easily-generalisable dimensionless proxy
measurement – the number of lines of response required
to successfully locate a particle – from which one can eas-
ily estimate the temporal resolution for any given tracer
activity and detector set-up.

In order to test the temporal resolution, we simulate a
pair of particles separated by a distance of 170mm and
use PEPT-ML to detect their positions using a varying
number of lines of response, NL (see, as an example, Fig.
6). For each value of NL, the particle centroids are deter-
mined 1,000 times using 1,000 distinct simulated samples,
and the mean deviation of the measured positions from
the true positions computed as per equation 7.

Our analysis shows that PEPT-ML is capable of locat-
ing a tracer to within 3.5mm using as few as 25 lines of
response; for Birmingham’s ADAC camera operating at
its maximal acquisition rate of 100kHz, this value cor-
responds to a temporal resolution of 0.25ms. For more
modern systems, such as the ECAT EXACT3D scanner
used in the PEPT Cape Town facility which operates at
coincidence rates of up to 4 × 106s−1, one may there-
fore anticipate temporal resolution of the order of 6.25µs
using PEPT-ML.

The ability to successfully track particles using so few
lines of response carries considerable benefits not just in
terms of the potential speed with which particles may be
tracked, but also in term of the sizes of particles which
can be successfully imaged. As the amount of β+ activ-
ity a particle can potentially hold – i.e. the rate at which
it can produce gamma-ray pairs – decreases as d−3, the
ability to track particles using fewer LoRs allows the pos-
sibility of tracking smaller particles. The miniaturisation
of PEPT tracers is a significant aim in the field, with
the ultimate goal of extending the PEPT technique into
the biomedical field, where it may prove invaluable, for
example, in tracking and mapping blood flow or gastroin-
testinal circulation.

Of course, by using more than 25 lines of response
and/or by applying reclustering, the spatial resolution
with which particles are located may be significantly
increased, as illustrated in Fig. 7. In the x- and y-
coordinates, as one may intuitively expect, the spatial
resolution is observed to increase monotonically (i.e. the
error of location to decrease monotonically) with increas-
ing NL, and to improve further when reclustering is ap-
plied. For the z-coordinate, the situation is somewhat
more complex. For one-pass clustering, the results again
vary monotonically with NL. For the two-pass case, how-
ever, the accuracy of location is notably improved for
NL . 100, but offers no statistically-significant improve-
ment over the one-pass case for larger values of NL. The
origin of this behaviour is thought to be related to the
inherent asymmetry of the cut-point clouds generated by
the two-detector geometry, which creates a ‘tear-drop’-
shaped cluster, with a higher density of points lying to
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FIG. 5. Tracking two particles rotating at 42 RPM, each describing one full circle. Plot a) depicts all the cutpoints after
one pass of clustering using PEPT-ML: in colour are cutpoints which were clustered; in black are the cutpoints deemed as
noise. Plot b) shows the centres of the clusters from the previous plot: the number of points in the cluster (“cluster size”) is
colour-coded from purple to yellow. Here, purple represents a smaller cluster size, corresponding to less tracer activity, while
yellow represents a larger cluster size, corresponding to more tracer activity. Plot c) depicts the cluster centres after the second
pass of clustering using PEPT-ML (see section II C), after trajectory separation has been applied in the post-processing step
(see section IID). Plot d) depicts the trajectories found using the Birmingham algorithm. In both images c) and d), the solid
lines shown correspond to the ‘real’, analytically-determined circular path followed by the tracers.

FIG. 6. Visualising the manner in which the clustered cutpoints (blue dots) vary with the number of lines in one sample,
for a simulated data set showing two particles separated by a distance of 170mm (note that, for clarity, only one of the two
particles is shown). The actual particle position is depicted with a green cross, while the found particle position (the mean
of the cutpoints) is shown with an orange square. Plot a) depicts 250 lines per particle per sample, plot b) shows 140 lines
per particle per sample, while plot c) illustrates 25 lines per particle per sample. Note that the number of cutpoints scales
quadratically with the number of lines of response.

the side of the particle further from the nearest detector
head, and a lower density on the side closer to it (see Fig.
6)32.

For smallNL values, the sparsity of points increases the
first-pass error of location, but also increases the likeli-
hood that the first-pass clusters will include all points in
the tear-drop, and hence may appear at any point within
its volume. As such, when re-clustered, these data give
a reasonable approximation of the particle’s true centre.

For overly-large NL values, however, first-pass clusters,
despite individually possessing a reduced error compared

to the low-NL case, will tend to exclude points in the
more sparsely-populated region of the cutpoint cloud,
hence all falling nearer the ‘bulb’ of the tear-drop. This
leads in essence to a systematic error, which is reflected
in the relatively increased ∆z for the two-pass case. In
other words – unlike for prior PEPT algorithms where
accuracy always correlates positively with sample size –
the use of a smaller sample size may, in some cases, not
only improve temporal but also spatial resolution.
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FIG. 7. Mean location error, ∆x, ∆y, ∆z, of the PEPT-ML
algorithm as a function of the number of lines of response per
tracer, NL, used to determine the centroids of a simulated pair
of particles separated by a distance of 170mm. For clarity,
values for the x and y directions are shown in panel a), while
those corresponding to the z direction are shown in panel b).

C. Minimum Separation of Multiple Particles

In addition to the ability to accurately locate a given
particle in space, another key property of any multiple-
particle tracking algorithm is its capacity to separately
resolve two particles in close proximity.

Fig. 8 shows examples of (experimental) cutpoint
clouds and located centres for a pair of particles sepa-
rated by 64, 16 and 4 millimetres. The first, and most
notable, observation to be drawn from this figure is that,
unlike the Birmingham algorithm, which can only suc-
cessfully locate pairs of particles for distances & 12mm,
PEPT-ML can – using the same detector system – dis-
tinguish pairs of particles separated by as little as 2mm.

The above observation is particularly impressive as this
minimum separation is in fact significantly smaller than
the inherent resolution (∼ 6mm) of the detector3, yet the
machine learning algorithms implemented remain capa-
ble of distinguishing two distinct point clouds – albeit
with a high rejection rate.

Perhaps more remarkable still is that – as shown in Fig.
9 – the spatial resolution with which the particle centres
may be determined remains almost constant with separa-
tion, in stark contrast to previous PEPT algorithms. In
fact, for some smaller separations, the error of location
is actually observed to drop slightly. This observation is
thought to arise due to the fact that, for these smaller
separations, the particles are both placed more centrally

between the detectors, minimising the asymmetric ‘skew’
of the point clouds discussed in section IVB.

Considering the above, it is highly likely that location
errors would be significantly reduced in other camera ge-
ometries (e.g. ring detectors) as the limiting factor in the
current case is not the PEPT-ML algorithm itself, but
rather the asymmetric point clouds inherent to the de-
tectors used.

Despite the impressive consistency in the spatial reso-
lution PEPT-ML with varying particle separation, as is
clear from both Figs. 8 and 9, the number of cutpoints re-
jected by the clustering algorithm increases dramatically
with reducing distance for separations |z1− z2| . 25mm,
thus acting to effectively reduce the maximum temporal

resolution achievable. For separations |z1 − z2| & 10mm,
however, this effect can be compensated for through care-
ful use of the reclustering method (see section IIC).

D. Scalability

Having explored the various key properties of the
PEPT-ML for the two-particle case, it is finally informa-
tive to assess the scalability of the algorithm – i.e. how
well it maintains its accuracy as the number of particles
within the system is increased.

Fig. 10 shows experimental data giving the accuracy
(denoted by the values of the symbols) and precision (de-
noted by the size of their error bars) of location for 2-5
tracers placed, evenly spaced, along a line perpendicu-
lar to the detector faces. Firstly notable is the fact that
both the location accuracy and – even more markedly –
precision are significantly higher for PEPT-ML than for
the Birmingham algorithm.

Secondly, and perhaps more surprisingly, we observe
that the accuracy with which PEPT-ML locates the par-
ticles actually shows a statistically significant increase

with the number of tracers used. A closer analysis of our
results suggests that this arises due to the fact that addi-
tional noise created by the introduction of more particles
acts to ‘mask’ the tear-drop shape of the particles’ cut-
point clouds from the clustering agorithm, thus to an ex-
tent mitigating the apparent systematic errors discussed
in section IVB.

In Figs. 11 and 12, we use simulations to extend our
study to higher tracer numbers. These simulations show
two striking results: firstly, well over 100 tracers can
be successfully, simultaneously located. In fact, the up-
per limit of 128 particles was chosen based on limita-
tions concerning available processing power to handle the
large volumes of data involved, not the limitations of the
PEPT-ML algorithm itself. Secondly, our results suggest
a degree of scalability not achievable using conventional
PEPT algorithms – across the full range (NT ∈ [2− 128])
of tracer numbers used, the location accuracy shows no
statistically significant variation. In other words, using
PEPT-ML, 128 particles can be located just as accurately
as 2 particles.
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FIG. 8. Experimental data showing cutpoint clouds and located particle centres for pairs of 0.6mm alumina particles separated
by distances of (a) 64 mm, (b) 16 mm and (c) 4 mm. In all cases, coloured cutpoints represent those included by the clustering
algorithm, and black cutpoints those ‘rejected’. The located centres are represented by larger, light green points. Note that
for plot c), the same number of LoRs (100,000) were used as for b) and c), but with an increased overlap (380). This is to
compensate for the very high rejection ratio in the 4 mm case.

FIG. 9. a) Variation of the accuracy of location, ∆z, of a pair
of 0.6 mm diameter, alumina particles as their separation,
|z1 − z2|, is varied. Each data point represents the average
of 1,000 individual particle locations, each using 100 lines of
response, with the error bars shown representing the standard
deviation of the measured locations, signifying the location
precision. b) The variation with |z1−z2| of the rejection rate,
R, i.e. the fraction of calculated midpoints not used by the
clustering algorithm.

V. SUMMARY AND CONCLUSIONS

A novel algorithm, utilising advanced machine learning
techniques, has been developed for the positron imag-
ing of particulate and multiphase flows. The method
is shown to facilitate high temporal and spatial resolu-
tion, the latter of which can be further improved through

FIG. 10. Comparison between the accuracy z (mm) (denoted
by colour-filled circles) and precision (denoted by the size of
the error bars) of PEPT-ML with two-pass clustering and the
Birmingham method for varying number of tracers NT . Up
to five 0.6 mm diameter alumina tracers were placed at 30
mm separation in the z-dimension. The accuracy represents
the mean difference between the found and real separations.
The precision represents the standard deviation of the centres
found.

the use of a novel ‘two-pass’ clustering algorithm. The
PEPT-ML algorithm can successfully distinguish parti-
cles separated by distances as small as 2 mm, a value
smaller even than the inherent spatial resolution of the
detector used in the present study.

The ability of the algorithm to successfully locate a
particle using as few as 25 lines of response carries signif-
icant positive consequences for the application of PEPT
not only to extremely rapid flows, but also for the minia-
turisation of PEPT tracers, potentially opening the door
to new biomedical applications of the technique, e.g. la-
belling and tracking blood cells.

The algorithm also includes novel methods for the
identification of individual tracers and their tracks, which
exploit the properties of the algorithms implemented to
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FIG. 11. Visualisation of the clustered cutpoints (left-hand
column) and the centres found after the second pass of clus-
tering (right-hand column) for 8, 32 and 128 simulated par-
ticles, respectively. On panels a), c) and e), the clustered
cutpoints are shown as yellow small circles, the noise is de-
picted in black small circles, while the centres found after one
pass of clustering are shown as purple large circles. Panels
b), d) and f) show the centres of centres, where the cluster
size has been colour-coded such that the purple (yellow) end
of the spectrum represents smaller (larger) cluster sizes.

distinguish particles based on their distinct ‘signatures’.
Uniquely to this algorithm, the accuracy of the PEPT-

ML algorithm is observed to remain effectively invariant
with the number of tracers in the system, for tracer num-
bers of up to 128 – this number being limited not by the
abilities of the algorithm itself, but by the computational
power available to the authors. In the absence of such
constraints, it is expected that this invariance will persist
to still higher tracer numbers.
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