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Abstract

This paper presents theory for compartmental models used in positron emission tomogra-

phy. Both plasma input models and reference tissue input models are considered. General

theory is derived and the systems are characterised in terms of their impulse response

functions. The theory shows that the macro parameters of the system may be determined

simply from the coefficients of the impulse response functions. These results are discussed

in the context of radioligand binding studies. It is shown that binding potential is simply

related to the integral of the impulse response functions for all plasma and reference tissue

input models currently used in positron emission tomography. The paper also introduces

a general compartmental description for the behaviour of the tracer in blood, which then

allows for the blood volume induced bias in reference tissue input models to be assessed.

Keywords: PET, Tracer Kinetics, Compartmental Modelling, Parameter Estima-

tion, Basis Pursuit Denoising, Sparse Basis Selection
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1 Introduction

Compartmental analysis forms the basis for tracer kinetic modeling in Positron Emission To-

mography (PET). Well established compartmental models in PET include those used for the

quantification of blood flow (Kety and Schmidt, 1948), cerebral metabolic rate for glucose

(Sokoloff et al., 1977; Phelps et al., 1979) and for neuroreceptor ligand binding (Mintun et al.,

1984). These particular models require an arterial blood or plasma input function, with the

number of tissue compartments dictated by the physiological, biochemical and physiological

properties of the system under study. Other ’reference tissue models’ have been developed,

particularly for the study of neuroreceptor ligands (Blomqvist et al., 1989; Cunningham et al.,

1991; Hume et al., 1992; Lammertsma et al., 1996; Lammertsma and Hume, 1996; Gunn et al.,

1997; Watabe et al., 2000), with a view to avoiding blood sampling. These enable the target

tissue time activity curve to be expressed as a function of that of the reference tissue. For

neuroreceptor applications reference tissue models assume that there exists a reference area

of brain tissue essentially devoid of specific binding sites. The number of compartments in

the reference region and in the region of interest is dependent on the rate of exchange of the

tracer between the free, nonspecifically bound and specifically bound pools of tracer. All these

models make a series of general assumptions, e.g. that there is instantaneous mixing within

the individual compartments, and that the concentration of tracer is small enough such that it

does not perturb the system under study. Under these conditions the systems are described by

a set of first order linear differential equations. Parameter estimates may be obtained by the

weighted least squares fitting of these models to measured PET data. This paper is not con-

cerned with the determination of model complexity from measured data, but with the analysis

of those model configurations which have been selected a priori by the investigator.

In PET the measured regional radioactivity comprises the sum of all tissue compartments

and a blood volume component. As Schmidt (1999) comments ’most of the literature on

compartmental systems has been concerned with measurement of the content of individual

compartments, and little attention has been directed to the particular problem of characterising

the sum of the contents in all compartments of the system’. This paper is principally concerned

with developing a general framework for PET compartmental models. It aims to draw attention

to the parallels which exist between reference tissue models and those models employing a

plasma input, and to those properties of reference tissue models which are robust and common

to all models independent of the number and topology of compartments used to describe the

tissues. Both reversible and irreversible systems will be considered and particular attention

will be paid to their interpretation in terms of neuroreceptor ligand binding studies.

The paper presents general theory for modelling of tissue data using either a plasma input

(Section 2) or a reference tissue input (Section 3). Theory is also presented for the behaviour

of the tracer in blood which accounts for both partitioning and metabolism (Appendix A).

This enables theoretical consideration of blood activity contribution to the tissue signals for

reference tissue input models. General theory is derived which gives the explicit functional

form for the impulse response functions of the systems. It will be seen that simple relationships
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exist between these functional forms and the macro system parameters. First, some of the basic

concepts used in the paper are introduced:

Linear Compartmental Systems

Linear compartmental systems lead to a set of linear first order differential equations. Often in

PET articles these equations are written out explicitly. However, it is convenient and concise

to represent the whole system in terms of state space representation. A time-invariant linear

compartmental system is defined in terms of its state space representation as,

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

x(0) = x0. (1)

where x(t) is a p-vector of state variables, y(t) is a q-vector of observations, u(t) is a r-vector

of input functions, A is the (p × p) state transition matrix, B is the (p × r) input matrix, C

is the (q × p) observation matrix, D is the (q × r) feedthrough matrix, and x0 is a p-vector

of initial conditions. The state transition matrix A takes the form of a diagonally dominant

matrix with non-positive diagonal elements and non-negative off diagonal elements. In this

paper the non-cyclic subset of linear compartmental systems is considered, which implies that

A is negative semidefinite (for a discussion of these issues see Schmidt (1999)). The elements

of A, B, C and D are assumed to be constant during the period of the experiment, although

they may change between experiments. In PET A is made up of simple combinations of the

rate constants denoting the transfer of material between compartments, B is typically just the

delivery of the tracer to the tissue, K1, C is a vector of 1’s which implies that the observation

is the sum of all the compartments, and D contains the blood volume fraction, VB , The input,

u(t), contains the plasma parent and whole blood time courses, and the observation (or output),

y(t), corresponds to the tomographic PET signal.

Macro and Micro Parameters

In this paper the terms macro and micro parameters are used to distinguish between the

individual rate constants (micro) and global system parameters which are functions of the rate

constants (macro). For instance, the volume of distribution of the target tissue, VD , which is

equal to the step response of the system, and the irreversible uptake rate constant from plasma,

KI , which is equal to the steady state response of the system are both macro parameters. The

macro parameters are generally more stable with respect to the parameter estimation problem

from dynamic PET data.
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Indistinguishability and Identifiability

Within the paper the concepts of indistinguishability and identifiability of the linear compart-

mental systems are discussed. Indistinguishability is concerned with determining a set of models

which give rise to identical input-output behaviour. Structural identifiability is concerned with

whether or not the parameters may be estimated uniquely from perfect input-output data.

This may be determined from analysis of the transfer function using a technique such as the

Laplace transform approach (Godfrey, 1983).
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2 Plasma Input Models

Consider a general PET system, as illustrated in Figure 1 where the measured radioactivity

data consists of the total tissue concentration, CT , the parent tracer concentration in plasma,

CP , and the whole blood concentration, CB . The blood volume component is omitted from

Figure (1) for clarity.

1
TC

�

TC

nTC
�

TC

TCPC

Figure 1: Generalised tissue model

Its state space formulation is given by

ĊT(t) = ACT(t) +
[
K1e1 0

] [CP(t)

CB(t)

]

CT (t) = (1 − VB)1TCT(t) +
[
0 VB

] [CP(t)

CB(t)

]

CT(0) = 0. (2)

where A is the state transition matrix, K1 is the influx constant for tracer into the tissue, and

VB is the fractional blood volume component.

Definition 2.1. Let M denote the set of linear compartmental systems with n compartments

(described by equation 2), where A is negative semidefinite1 with distinct eigenvalues,

M =

{
(A,K1,VB)

∣∣∣∣∣
Aij

i6=j

≥ 0,Aii ≤ 0,
∑

i Aij ≤ 0,∀x xTAx ≤ 0

K1 ≥ 0,VB ∈ [0, 1], |Sp(A)| = n

}
.

Let R denote the set of reversible models (Figure 2),

R = {M | ∀j ∃i : Aij 6= 0} ⊂ M,

1This set includes all non-cyclic systems and the subset of cyclic systems in which the product of rate
constants is the same regardless of direction for every cycle (Goldberg, 1956; Godfrey, 1983)
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and I denote the set of irreversible models with a single trap2 (Figure 3),

I = {M | ∀i Ain = 0} ⊂ M.

1
TC

�

TC

nTC
�

TC

TCPC

Figure 2: Reversible tissue model

1
TC

�

TC

nTC
�

TC

TCPC

Figure 3: Irreversible tissue model with a single trap

Theorem 2.2. A model s ∈ M has a solution given by,

CT (t) = (1 − VB)HTP(t) ⊗ CP(t) + VBCB(t),

where

HTP(t) =





n∑

i=1

φie
−θit : s ∈ R

n−1∑

i=1

φie
−θit + φn : s ∈ I

,

θi > 0 and
n∑

i=1

φi = K1.

2Without loss of generality the nth compartment is defined to be the trap
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If s ∈ R,

n∑

i=1

φi

θi

=

∫ ∞

0

HTP(t)dt,

= VD .

If s ∈ I,

φn = lim
t→∞

HTP(t),

= KI .

It is straightforward to derive an indistinguishability and identifiability corollary directly from

Theorem 2.2.

Corollary 2.3. Indistinguishability: Any two plasma input models within the subset R (or

similarly for I) with a total of N tissue compartments are indistinguishable.

Corollary 2.4. Identifiability: The macro parameters (K1,VD or KI ) are uniquely identifiable

from perfect input-output data.
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3 Reference Tissue Input Models

Consider a general PET reference compartmental system, as illustrated in Figure 4 where the

measured radioactivity data consists of the total tissue concentration, CT , and the total refer-

ence tissue concentration, CR. The general PET reference tissue model restricts the interaction

of the target and reference tissues solely via the plasma.

1TC
�

TC

nTC
�

TC

1RC
�

RC

mRC
�

RC

TC

RC

PC

Figure 4: Generalised reference tissue model

Its state space formulation is given by,

[
ĊT(t)

ĊR(t)

]
=

[
A 0

0 A′

] [
CT(t)

CR(t)

]
+

[
K1e1 0

K ′
1e1 0

] [
CP (t)

CB(t)

]

[
CT (t)

CR(t)

]
=

[
(1 − VB)1T 0T

0T (1 − V ′
B)1T

] [
CT(t)

CR(t)

]
+

[
0 VB

0 V ′
B

] [
CP (t)

CB(t)

]

[
CT(0)

CR(0)

]
= 0. (3)

where the primes (′) refer to the reference tissue parameters. Often when a reference tissue

model is used there is no associated measurement of the blood radioactivity concentration and

so correction for blood contribution to the tissue signals is not possible. Here, the cases when

the blood activity does and does not contribute to the tissue signals are considered separately.
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No Blood Volume

Consider the case where there is no contribution of blood activity to the reference and target

tissue signals (VB = V ′
B = 0).

Definition 3.1. Consider the set of linear compartmental reference systems (described by

equation 3) where the connection of the reference tissue (m compartments) and the target

tissue (n compartments) is solely through the plasma and the blood volume components are

zero,

F =

{
(s′, s)

∣∣∣∣
s′ ∈ M,V ′

B = 0, s ∈ M,VB = 0,

|Sp(A) ∪ Sz(A′,b′)| = n+m− 1

}
.

The set of reversible reference, reversible target models (Figure 5) is defined as,

FRR = {(s′, s) | s′ ∈ R, s ∈ R} ∩ F .

The set of reversible reference, irreversible target models (Figure 6) is defined as,

FRI = {(s′, s) | s′ ∈ R, s ∈ I} ∩ F .

The set of irreversible reference, irreversible target models (Figure 7) is defined as,

FII = {(s′, s) | s′ ∈ I, s ∈ I} ∩ F .

1TC
�

TC

nTC
�

TC

1RC
�

RC

mRC
�

RC

TC

RC

PC

Figure 5: Reference tissue model with reversible target and reference tissues
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1TC
�

TC

nTC
�

TC

1RC
�

RC

mRC
�

RC

TC

RC

PC

Figure 6: Reference tissue model with irreversible target tissue and reversible reference tissue

1TC
�

TC

nTC
�

TC

1RC
�

RC

mRC
�

RC

TC

RC

PC

Figure 7: Reference tissue model with irreversible target and reference tissues (single trap
in each)
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Theorem 3.2. A model s ∈ F has a solution given by,

CT (t) = HTR(t) ⊗ CR(t),

where

HTR(t) =





φ0δ(t) +
m+n−1∑

i=1

φie
−θit : s ∈ FRR

φ0δ(t) +
m+n−2∑

i=1

φie
−θit + φm+n−1 : s ∈ FRI

φ0δ(t) +
m+n−2∑

i=1

φie
−θit : s ∈ FII

,

θi > 0 and φ0 =
K1

K ′
1

= RI .

If s ∈ FRR,

φ0 +
m+n−1∑

i=1

φi

θi

=

∫ ∞

0

HTR(t)dt,

=
VD

V ′
D

.

If s ∈ FRI,

φm+n−1 = lim
t→∞

HTR(t),

=
KI

V ′
D

.

If s ∈ FII,

φ0 +
m+n−2∑

i=1

φi

θi

=

∫ ∞

0

HTR(t)dt,

=
KI

K ′
I

.

Again, it is straightforward to derive an indistinguishability and identifiability corollary directly

from Theorem 3.2.

Corollary 3.3. Indistinguishability: Any two reference tissue input models within the subset

FRR (or similarly for FRI or FII) with a total of N tissue compartments (reference+target)

are indistinguishable.

Corollary 3.4. Identifiability: The macro parameters (RI ,
VD

V ′

D

or KI

V ′

D

or KI

K ′

I

) are uniquely

identifiable from perfect input-output data.
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Blood Volume

Now consider the general PET reference tissue model, Figure 4, with blood volume in both

the reference and target tissues (VB > 0,V ′
B > 0). The subsequent Theorem requires charac-

terisation of the tracer’s behaviour in blood and uses a result derived in Appendix A (Lemma

A.1).

Definition 3.5. Consider the set of linear compartmental reference systems (described by

equation 3) where the connection of the reference tissue (m compartments) and the target

tissue (n compartments) is solely through the plasma, a blood volume component is present in

each tissue and the tracer behaviour in blood is described by Lemma A.1 (see Appendix B),

G =

{
(s′, s)

∣∣∣∣
s′ ∈ M,V ′

B > 0, s ∈ M,VB > 0,

|Sp(A) ∪ Ω| = n+m+ p+ q − 1

}
.

The set of reversible reference, reversible target models (Figure 5) is defined as,

GRR = {(s′, s) | s′ ∈ R, s ∈ R} ∩ G.

The set of reversible reference, irreversible target models (Figure 6) is defined as,

GRI = {(s′, s) | s′ ∈ R, s ∈ I} ∩ G.

The set of irreversible reference, irreversible target models (Figure 7) is defined as,

GII = {(s′, s) | s′ ∈ I, s ∈ I} ∩ G.

Theorem 3.6. A model s ∈ G has a solution given by,

CT (t) = HTR(t) ⊗ CR(t),

where

HTR(t) =





φ0δ(t) +

m+n+p+q−1∑

i=1

φie
−θit : s ∈ GRR

φ0δ(t) +

m+n+p+q−2∑

i=1

φie
−θit + φm+n+p+q−1 : s ∈ GRI

φ0δ(t) +

m+n+p+q−2∑

i=1

φie
−θit : s ∈ GII

,

θi ≥ 0 and φ0 =
VB

V ′
B

.
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If s ∈ GRR,

φ0 +

m+n+p+q−1∑

i=1

φi

θi

=

∫ ∞

0

HTR(t)dt

=
(1 − VB)VD + VBPB

(1 − V ′
B)V ′

D + V ′
BPB

.

If s ∈ GRI,

φm+n+p+q−1 = lim
t→∞

HTR(t)

=
(1 − VB)KI

(1 − V ′
B)V ′

D + V ′
BPB

.

If s ∈ GII,

φ0 +

m+n+p+q−2∑

i=1

φi

θi

=

∫ ∞

0

HTR(t)dt,

=
(1 − VB)KI

(1 − V ′
B)K ′

I

.
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4 Discussion

This paper is concerned with generic compartmental modelling of dynamic PET data, where

the measured signal is the sum of all the constituent tissue compartments. General results

have been derived for plasma input and reference tissue input models and are summarised in

Tables 1 and 2. In each case the tissue impulse response function is comprised of a sum of

exponentials, with an additional delta function term for reference tissue input models. There

are three fundamental characteristics of the tissue impulse response function that are of interest;

the initial value (which is equal to the value at t = 0), the step response (which is equal to the

area under the impulse response function from t = 0 to t = ∞) and the steady state response

(which is equal to the final value of the impulse response function). It can be seen that macro

parameters of the system (VD , KI ,
VD

V ′

D

, KI

V ′

D

, KI

K ′

I

, BP .f1 , and BP .f2 ) are simply related to these

characteristics of the impulse response function independent of the number and topology of

compartments. Furthermore, these macro parameters are uniquely identifiable from perfect

input-output data.

Plasma Input Models

Plasma input models in PET are often treated as a gold standard (Kety and Schmidt, 1948;

Sokoloff et al., 1977; Phelps et al., 1979; Mintun et al., 1984). The impulse response function

is a sum of exponentials (Theorem 2.2), with the rate of delivery from the plasma, K1, given

by the initial value of the impulse response function. For reversible tissue kinetics the total

volume of distribution, VD , is given by the integral of the impulse response function. For

irreversible tissue kinetics the irreversible uptake rate constant from plasma, KI , is given by

the final value of the impulse response function. It may be noted that the final value of the

impulse response function is equal to the limiting slope of a Patlak plot (Patlak et al., 1983).

This result, as with the Patlak analysis, is independent of the number of intermediate reversible

tissue compartments.

Target Tissue Impulse Response Parameter

R
n∑

i=1

φie
−θit VD =

n∑

i=1

φi

θi

I

n−1∑

i=1

φie
−θit + φn KI = φn

Table 1: Summary of Plasma Input Models
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Reference Tissue Input Models

Reference tissue models have the advantage that no blood measurements are required and

parameters are derived purely from the tomographic tissue data. For reference tissue input

models the general form of the impulse response function is a sum of exponentials plus a

delta function term (Theorem 3.2). First, consider the results when there is no significant

blood volume contribution to either the target or reference tissue. The coefficient of the delta

function is equal to the relative delivery of tracer to the target versus the reference tissue, RI .

For reversible kinetics in both the reference and the target tissues the integral of the impulse

response function is equal to VD

V ′

D

. The relationship of this parameter to BP .f2 is discussed

later. If the target tissue is irreversible and the reference tissue is reversible the normalised

irreversible uptake rate constant from plasma, KI

V ′

D

, is given by the final value of the impulse

response function. Again this is analogous to the reference tissue Patlak approach (Patlak and

Blasberg, 1985). If both the target and reference tissues are irreversible then the ratio of the

uptake rate constants between the target and the reference, KI

K ′

I

, is given by the integral of the

impulse response function.

Tissue

Reference Target Impulse Response Parameter

R R φ0δ(t) +
m+n−1∑

i=1

φie
−θit

VD

V ′
D

= φ0 +
m+n−1∑

i=1

φi

θi

R I φ0δ(t) +
m+n−2∑

i=1

φie
−θit + φn

KI

V ′
D

= φn

I I φ0δ(t) +
m+n−2∑

i=1

φie
−θit

KI

K ′
I

= φ0 +
m+n−2∑

i=1

φi

θi

Table 2: Summary of Reference Tissue Input Models

For reference tissue input models it is interesting to note the similarities and equivalences with

plasma input models. In particular, for reversible kinetics the integral of the impulse response

function for plasma input models is the volume of distribution, VD , and for reference tissue

input models it is the relative volume of distribution, VD

V ′

D

. Other similar analogies apply for

the irreversible cases.

Model Indistinguishability

As a consequence of Theorem 3.2 it can be shown that the topology of the compartments in

the reference and target tissues is not important as regards the macro parameters. It is merely

the total number of compartments in the reference and target tissues that defines the set of

indistinguishable reference tissue input models (Corollary 3.3). In practice the models may
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behave slightly differently if there is a significant contribution of blood activity to the tissue

signal.

Inclusion of Blood Volume

This paper also considers the case where a significant contribution to the tissue signals is derived

from the blood. If this is the case then a bias may be introduced in the macro parameter

estimates. The magnitude of this bias is dependent on the blood volume, VB , the volume of

distribution of the reference tissue, V ′
D , and the steady state parent plasma to whole blood

ratio , PB (Theorem 3.6). Similarly, a bias in the macro parameters for plasma input models,

when blood contribution is ignored, can also be derived (not shown here). Investigators should

be aware of these factors when applying plasma/reference input compartmental models or

graphical methods such as the Patlak (Patlak et al., 1983) and Logan (Logan et al., 1990) plots

without correcting for blood volume.

Radioligand Binding Studies

Let us now consider these models in the context of radioligand binding studies. There are several

compartmental models in common use for the analysis of radioligand binding (Appendix C.1

and C.2). The point of these appendices is to illustrate the relationship between these commonly

used compartmental models and the general results derived in this paper. The models in the

appendix are formulated in terms of micro parameters i.e. individual rate constants for the

exchange of tracer between compartments. In particular they show that for reversible reference

tissue models the integral of the impulse response function is simply related to binding potential

in the same way in all cases.

Binding potential, BP , is a useful measure to quantify ligand-receptor interactions. The original

definition of binding potential was introduced by Mintun (Mintun et al., 1984) as the ratio

of Bmax (the maximum concentration of available receptor sites) to the apparent KD of the

free radioligand. To determine this parameter the free fractions of the radioligand in plasma

(f1) and tissue (f2) need to be taken into account (Koeppe et al., 1991). It is necessary to

distinguish between estimates of BP , BP .f1 , and BP .f2 . A summary of these parameters and

their relationship to the volumes of distribution is given in Table 3.

BP .f2 may be determined from micro or macro parameters; Either directly from the ratio of

the micro parameters (typically k3 and k4 ), or indirectly from a volume of distribution ratio.

The direct estimation is often susceptible to noise and the BP .f2 estimate may be unreliable.

The second case requires a suitable reference region devoid of specific binding and requires

that V ′
DF

+ V ′
DNS

= VDF
+ VDNS

(this assumption might be assessed by separate blocking

studies). The determination of BP .f1 requires the same two assumptions, and is derived by

subtracting the reference tissue volume of distribution from that of the target tissue. To derive

the true binding potential, BP , the additional measure of the plasma free fraction is required,
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f1. The measurement of f1 may be determined from analysis of a blood sample, although these

measurements are often inaccurate (see Laruelle (2000) for a discussion of these issues ). These

results are summarised in Table 3.

BP V3 Definition Calculation Input
notation notation required

BP V3
Bmax

KD

(
1 +

∑
i

Fi

KDi

) VD − V ′
D

f1

CP

BP .f1 V ′
3

f1Bmax

KD

(
1 +

∑
i

Fi

KDi

) VD − V ′
D CP

BP .f2 V ′′
3

f2Bmax

KD

(
1 +

∑
i

Fi

KDi

) VD − V ′
D

V ′
D

CP or CR

Table 3: Summary of different binding potential measures, their V3 notation, expansion in
terms of concentration and affinity of binding sites (the bracketed term on the bottom allows

for competition), their calculation and the input function required

The estimation of these parameters for reversible reference tissue approaches with respect to

radioligand binding are summarised in Table 4.

Tissue

Reference Target Impulse Response(s) Parameter

R R

n∑

i=1

φie
−θit,

m∑

j=1

φ′
je

−θ′jt BP .f1 =
n∑

i=1

φi

θi

−

m∑

j=1

φ′
j

θ′j

R R φ0δ(t) +
m+n−1∑

i=1

φie
−θit BP .f2 = φ0 +

n∑

i=1

φi

θi

− 1

Table 4: Summary of binding potential measures derived from impulse response functions

Particular Compartmental Structures

The reference tissue input model began as a 5 parameter model, the individual deliveries being

unidentifiable without a plasma input function, leading to a reparameterisation of the original 6

parameter system. This reparameterisation introduces a parameter for the ratio of influxes (or

relative delivery) as RI(or R1) = K1

K ′

1

(Blomqvist et al., 1989; Cunningham et al., 1991). With

the assumption of equal Blood Brain Barrier transport rate constant ratios the model reduces

to a 4 parameter system (Cunningham et al., 1991). The simplified reference tissue model

assumes rapid exchange between the free and non-specific compartments and has 3 parameters

(Lammertsma and Hume, 1996). Finally, the Watabe reference tissue model returns to a 5

parameter formulation (Watabe et al., 2000). These models are summarised in Appendix C.2.
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Model Indistinguishability

To address the issue of the bias in the simplified reference tissue model for some tracers Watabe

(Watabe et al., 2000) proposed a model with two tissues in the reference region. The theory

presented here (Corollary 3.3) proves that the ’Watabe’ reference tissue model is indistinguish-

able from the original reference tissue model (with 5 parameters) and will give the same value

for the BP .f2. (Note: the ’Watabe’ model may behave slightly differently if the rate constants

k5 and k6 are fitted from a range of data initially (Watabe et al., 2000) and if there is significant

contribution from blood activity to the tissue signals).

Reference Tissue Model Bias

Recently, there has been some discussion about the biases that may be introduced by using the

simplified reference tissue model (Parsey et al., 2000; Alpert et al., 2000; Gunn et al., 2000;

Slifstein et al., 2000). A bias may be introduced for reference tissue input models in two ways;

either from blood volume contribution to the tissue signals or from the use of a reduced order

model. Theorem 3.6 summarises the blood volume induced biases for reference tissue input

models. An expression for the blood volume induced bias in reversible reference tissue input

models, in the estimated B̂P .f2, may be derived simply from Theorem 3.6 and if we assume

that VB = V ′
B is given by,

B̂P .f2 = BP .f2

(
V ′

D

V ′
D + VBPB

1−VB

)
.

This general result shows that the bias is linear and allows the assessment of blood volume

induced biases for individual radioligands. Table 5 presents these results for [11C]Raclopride

were the parameter values are obtained from the literature (Lammertsma et al., 1996), except

for the theoretical bias which is calculated as the bracketed term in equation 4. The reciprocal

of PB was approximated by the plasma to blood ratio multiplied by the parent fraction for

data at the end of the scanning period, although PB could be obtained from a fit using a

model outlined in Appendix A. Good agreement is observed between the experimentally and

theoretically derived biases.

Bias

Radioligand VB V ′
D PB Theory Experimental

[11C]Raclopride 0.05 0.43 1.03 0.89 0.87

Table 5: Bias introduced by blood signal in BP .f2 for reversible reference tissue input model
analysis. The theoretical scalar bias calculated from equation 4 and the value determined

experimentally by comparing reference and plasma input analyses
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Irreversible Systems

Dynamic radioligand PET data may exhibit irreversible characteristics when the time scale of

the experiment is too short to fully characterise the (slow) reversible binding of the radioligand.

Typically, longer scanning periods are impractical either due to discomfort to the subject or

degradation of signal. In these situations one is restricted to parameters which represent

irreversible kinetics, usually the k3 (micro parameter) or the KI (macro parameter). Whilst,

the k3 is often numerically unidentifiable, the KI does not suffer from this problem. However,

interpretation of the KI parameter is often confounded by blood flow (see Table 6). Ultimately,

with KI there is always an unfortunate trade off between the specificity and the magnitude

of the signal, i.e. when there is a large signal the parameter reflects blood flow and when the

parameter reflects binding the signal is small.

Model

KI Plasma Input Reference Input

lim
k3
k2

→∞

KI K1
K1

V ′

D

lim
k3
k2

→0

KI

f1konBmax

1 +
∑

i
Fi

KDi

f2konBmax

1 +
∑

i
Fi

KDi

Table 6: Interpretation of the irreversible binding parameter KI for the irreversible models
given in Appendix C.1 and C.2

Blood and Metabolism Models

In this paper a generic model for metabolism and partitioning of parent tracer between plasma

and red cells is presented. This leads to a general form for a parent input function in terms

of the whole blood curve. This functional form would allow general fitting of this function to

discrete blood and metabolite measures. As such this would provide a flexible kinetic model

for generating plasma parent input functions rather than using arbitrary functional forms. A

particular example is presented in Appendix C.3. A general approach to modelling tracer

metabolism has been presented previously by Huang et al. (1991), where they consider micro

parameter formulations rather than considering the general form for the impulse response

function. Particular compartmental structures have also been used to describe the metabolism

of the parent tracer (Lammertsma et al., 1993; Gunn, 1996; Carson et al., 1997).

Summary

This paper has presented general theory for PET compartmental models, which shows that

the required macro system parameters can be determined simply from the associated impulse
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response functions. The form of the relationships between the macro parameters and the

impulse response function are common to all models independent of the number and topology

of compartments. Choosing a particular compartmental structure with a predefined number of

compartments is equivalent to choosing the number of terms in the impulse response function.

Ultimately, the number of numerically identifiable components in the impulse response function

that can be determined from measured PET data will depend on both the statistical noise and

the experimental design. The selection of a particular compartmental structure can meet

with problems either if the number of identifiable components is less than the chosen model

(e.g. high noise) or more than the chosen model (e.g. heterogeneity). This paper shows

that a more general approach is possible where the macro parameters could be estimated by

determination of the systems impulse response function without the need for a priori model

selection. Approaches to the fitting of PET data to these generic models are being developed.
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A Generic Blood and Metabolism Model

Consider a general PET system, as illustrated in Figure 8 where the measured radioactivity data

consists of the parent tracer concentration in plasma, CP , and the whole blood concentration,

CB .

1BC
KBC

qBC
KBC

PC

1TC

KT
C

KT
C

pTC

Figure 8: Generalised parent metabolism and blood partitioning model

Its state space formulation is given by,

[
ĊB(t)

ĊT(t)

]
= A

[
CB(t)

CT(t)

]
+ l1e1U(t)

[
CB(t)

CP(t)

]
=

[
1T 0T

e1
T 0T

] [
CB(t)

CT(t)

]

[
CB(0)

CT(0)

]
= 0. (5)

where U(t) is the time course for the intravenous injection of tracer. Here CTi
represents tissue

compartments which allow for the metabolism of the parent tracer.

Lemma A.1. The blood model defined by equation 5 is characterised by,

CB(t) = HBP(t) ⊗ CP(t),

where the impulse response function is,

HBP(t) = δ(t) +

p+q−1∑

i=1

ϕie
−ϑit
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ϑi ≥ 0. The steady state ratio of whole blood to parent in plasma activity is,

PB =

∫ ∞

0

HBP(t)dt,

= 1 +

p+q−1∑

i=1

ϕi

ϑi

.

Alternatively, the parent tracer concentration in plasma can be expressed as a function of the

whole blood concentration,

CP(t) = HPB(t) ⊗ CB(t),

where

HPB(t) = δ(t) +

p+q−1∑

i=1

ϕ′
ie

−ϑ′

it,

which follows from the general form of the transfer function,

H̃BP (s) =

p+q−1∏
i=1

(s− αi)

p+q−1∏
j=1

(s− βj)

.

Note: It is assumed that no multiplicity terms occur, i.e. |Sp(A)| = p+ q.
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B Proofs

Proof of Theorem 2.2

The state space formulation for a general plasma input model, s ∈ M, is given by,

ĊT(t) = ACT(t) +
[
b 0

] [CP(t)

CB(t)

]

CT (t) = (1 − VB)1TCT(t) +
[
0 VB

] [CP(t)

CB(t)

]

CT(0) = 0.

Taking Laplace transforms yields,

C̃T (s) = (1 − VB)1T
[
sI − A

]−1
bC̃P(s) + VB C̃B(s),

and the plasma to tissue transfer function is given by,

H̃TP (s) = 1T
[
sI − A

]−1
b,

= 1Tb

n−1∏
i=1

(s− µi)

n∏
j=1

(s− νj)
,

where ν = Sp(A) and µ = Sz(A,b) are defined by the solutions to the following equations,

∣∣µI − A + b1T
∣∣− |µI − A| = 0,

|νI − A| = 0.

The general form of the transfer function is,

H̃TP (s) = 1Tb

n∑

i=1

ρi

(s− νi)
,

and the impulse response function is given by,

HTP(t) = 1Tb

n∑

i=1

ρie
νit,



PET Compartmental Models 25

where
n∑

i=1

ρi = 1. If s ∈ R, VD is equal to the step response,

VD =

∫ ∞

0

HTP(t)dt,

= H̃TP (0),

= 1Tb

n∑

i=1

ρi

−νi

,

and if s ∈ I, (νn = 0), the irreversible uptake rate constant from plasma is equal to the steady

state response,

KI = lim
t→∞

HTP(t),

= lim
s→0

sH̃TP (s),

= 1Tbρn.

�

Note: If the eigenvalues of A are not distinct (i.e. |Sp(A)| < n) the general solution for the

transfer function is,

H̃TP (s) = 1Tb

n∑

i=1

qi∑

j=1

ψij

(s− νi)j
,

where qi is the multiplicity of νi, and the impulse response function will take the form,

HTP(t) = 1Tb

n∑

i=1

qi∑

j=1

ρijt
j−1eνit.

Proof of Theorem 3.2

The state space formulation for a general reference tissue input model with no blood volume,

s ∈ F , is given by,

[
ĊT(t)

ĊR(t)

]
=

[
A 0

0 A′

] [
CT(t)

CR(t)

]
+

[
b

b′

]
CP (t)

[
CT (t)

CR(t)

]
=

[
1T 0T

0T 1T

] [
CT(t)

CR(t)

]

[
CT(0)

CR(0)

]
= 0.
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Taking Laplace transforms and using Theorem 2.2 yields,

H̃TR(s) =
H̃TP(s)

H̃RP(s)
,

=

1Tb
m∏

i=1

(s− ν ′i)
n−1∏
i=1

(s− µi)

1Tb′
n∏

i=1

(s− νi)
m−1∏
i=1

(s− µ′
i)

,

where ν = Sp(A), µ′ = Sz(A′,b′), ν ′ = Sp(A′) and µ = Sz(A,b). The general form of the

transfer function is,

H̃TR(s) =
1Tb

1Tb′

(
1 +

n∑

i=1

ρi

(s− νi)
+

m−1∑

i=1

̺i

(s− µ′
i)

)
,

and the impulse response function is given by,

HTR(t) =
1Tb

1Tb′

(
δ(t) +

n∑

i=1

ρie
νit +

m−1∑

i=1

̺ie
µ′

it

)
.

If s ∈ FRR, the step response is given by,

∫ ∞

0

HTR(t)dt = H̃TR(0),

=
1Tb

1Tb′

(
1 +

n∑

i=1

ρi

−νi

+
m−1∑

i=1

̺i

−µ′
i

)
,

=
H̃TP (0)

H̃RP (0)
,

=
VD

V ′
D

,

if s ∈ FRI, (νn = 0), the steady state response is given by,

lim
t→∞

HTR(t) = lim
s→0

sH̃TR(s),

=
1Tb

1Tb′
ρn,

= lim
s→0

s
H̃TP (s)

H̃RP (s)
,

=
KI

V ′
D

,
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and if s ∈ FII, (νn = 0), the step response is given by,

∫ ∞

0

HTR(t)dt = H̃TR(0),

=
1Tb

1Tb′

(
1 +

n−1∑

i=1

ρi

−νi

+
m−1∑

i=1

̺i

−µ′
i

)
,

=
H̃TP (0)

H̃RP (0)
,

=
KI

K ′
I

.

�

Note: If multiplicity occurs (i.e. |Sp(A)∪Sz(A′,b′)| < n+m− 1) the general solution for the

transfer function is,

H̃TR(s) =
1Tb

1Tb′

(
1 +

n∑

i=1

qi∑

j=1

ψij

(s− νi)j
+

m−1∑

i=1

ri∑

j=1

ωij

(s− µ′
i)

j

)
,

where qi, ri are the multiplicity of νi, µ
′
i respectively. The impulse response function will take

the form,

HTR(t) =
1Tb

1Tb′

(
δ(t) +

n∑

i=1

qi∑

j=1

ρijt
j−1eνit +

m−1∑

i=1

ri∑

j=1

̺ijt
j−1eµ′

it

)
.

Proof of Theorem 3.6

The state space formulation for a general reference tissue input model with blood volume con-

tribution and blood kinetics defined by Lemma 1, s ∈ G, is given by,

[
ĊT(t)

ĊR(t)

]
=

[
A 0

0 A′

] [
CT(t)

CR(t)

]
+

[
K1e1 0

K ′
1e1 0

] [
CP (t)

CB(t)

]

[
CT (t)

CR(t)

]
=

[
(1 − VB)1T 0T

0T (1 − V ′
B)1T

] [
CT(t)

CR(t)

]
+

[
0 VB

0 V ′
B

] [
CP (t)

CB(t)

]

[
CT(0)

CR(0)

]
= 0.

The transfer function is given by,

H̃TR(s) =
(1 − VB)H̃TP (s) + VBH̃BP (s)

(1 − V ′
B)H̃RP (s) + V ′

BH̃BP (s)
.
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Using Theorem 1 and Lemma 1 yields,

H̃TR(s) =

(1 − VB)1Tb

n−1
∏

i=1

(s−µi)

n
∏

j=1

(s−νj)
+ VB

p+q−1
∏

i=1

(s−αi)

p+q−1
∏

j=1

(s−βj)

(1 − V ′
B)1Tb′

m−1
∏

i=1

(s−µ′

i)

m
∏

j=1

(s−ν′

j)
+ V ′

B

p+q−1
∏

i=1

(s−αi)

p+q−1
∏

j=1

(s−βj)

,

=

m
∏

i=1

(s−ν′

i)

(

(1−VB )1T b

p+q−1
∏

j=1

(s−βj)
n−1
∏

k=1

(s−µk)+VB

p+q−1
∏

j=1

(s−αj)
n
∏

k=1

(s−νk)

)

n
∏

i=1

(s−νi)

(

(1−V ′

B
)1T b′

p+q−1
∏

j=1

(s−βj)
m−1
∏

k=1

(s−µ′

k
)+V ′

B

p+q−1
∏

j=1

(s−αj)
m
∏

k=1

(s−ν′

k
)

) ,

=

VB

m∏
i=1

(s− ν ′i)
n+p+q−1∏

j=1

(s− ǫj)

V ′
B

n∏
i=1

(s− νi)
m+p+q−1∏

j=1

(s− εj)

.

where ν = Sp(A), ν ′ = Sp(A′) and we define the set Ω =
⋃

i εi. The general form of the

transfer function is,

H̃TR(s) =
VB

V ′
B

(
1 +

n∑

i=1

ρi

(s− νi)
+

m+p+q−1∑

j=1

̺j

(s− εj)

)
,

and the impulse response function is given by,

HTR(t) =
VB

V ′
B

(
δ(t) +

n∑

i=1

ρie
νit +

m+p+q−1∑

j=1

̺je
εjt

)
.

If s ∈ GRR, the step response is given by,

∫ ∞

0

HTR(t)dt = H̃TR(0),

=
VB

V ′
B

(
1 +

n∑

i=1

ρi

−νi

+

m+p+q−1∑

j=1

̺j

−εi

)
,

=
(1 − VB)H̃TP (0) + VBH̃BP (0)

(1 − V ′
B)H̃RP (0) + V ′

BH̃BP (0)
,

=
(1 − VB)VD + VBPB

(1 − V ′
B)V ′

D + V ′
BPB

,
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if s ∈ GRI, (νn = 0), the steady state response is given by,

lim
t→∞

HTR(t) = lim
s→0

sH̃TR(s),

=
VB

V ′
B

ρn,

= lim
s→0

s
(1 − VB)H̃TP (s) + VBH̃BP (s)

(1 − V ′
B)H̃RP (s) + V ′

BH̃BP (s)
,

=
(1 − VB)KI

(1 − V ′
B)V ′

D + V ′
BPB

,

and if s ∈ GII, (νn = 0), the step response is given by,

∫ ∞

0

HTR(t)dt = H̃TR(0),

=
VB

V ′
B

(
1 +

n−1∑

i=1

ρi

−νi

+

m+p+q−1∑

i=1

̺i

−εi

)
,

=
(1 − VB)H̃TP (0) + VBH̃BP (0)

(1 − V ′
B)H̃RP (0) + V ′

BH̃BP (0)
,

=
(1 − VB)KI

(1 − V ′
B)K ′

I

.

�

Note: If multiplicity occurs (i.e. |Sp(A)∪Ω| < n+m+ p+ q− 1) the general solution for the

transfer function is,

H̃TR(s) =
VB

V ′
B

(
1 +

m+n+p+q−1∑

i=1

qi∑

j=1

ψij

(s− εi)j

)
,

where qi is the multiplicity of εi, and the impulse response function will take the form,

HTR(t) =
VB

V ′
B

(
δ(t) +

m+n+p+q−1∑

i=1

qi∑

j=1

ρijt
j−1eεit

)
.
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C Examples

C.1 Plasma Input Models

This section contains explicit compartmental models and their functional forms for the com-

monly used PET plasma input models. Blood volume components have been omitted for

simplicity.

One Tissue Compartmental Model

The compartmental structure for the one tissue compartment model (Kety and Schmidt, 1948)

is shown in Figure 9.

C
F+NS+SP

1
K

2
k

C
T

C
P

Figure 9: One Tissue Model

Its state space representation is defined by,

A =
[
−k2

]
,b =

[
K1

]
. (6)

The impulse response function and transfer function of the system are given by,

HTP(t) = φ1e
−θ1t,

H̃TP (s) =
φ1

s+ θ1

, (7)

where,

φ1 = K1,

θ1 = k2 . (8)

From Theorem 2.2 the VD is given by,

VD =
φ1

θ1

,

=
K1

k2

. (9)



PET Compartmental Models 31

Two Tissue Compartmental Model

The compartmental structure for the two tissue compartment model (Mintun et al., 1984) is

shown in Figure 10.
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Figure 10: Two Tissue Model

Its state space representation is defined by,

A =

[
−k2 − k3 k4

k3 −k4

]
,b =

[
K1

0

]
. (10)

The impulse response function and transfer function of the system are given by,

HTP(t) = φ1e
−θ1t + φ2e

−θ2t,

H̃TP (s) =
φ1

s+ θ1

+
φ2

s+ θ2

, (11)

where,

φ1 =
K1 (θ1 − k3 − k4 )

∆
,

φ2 =
K1 (θ2 − k3 − k4 )

−∆
,

θ1 =
k2 + k3 + k4 + ∆

2
,

θ2 =
k2 + k3 + k4 − ∆

2
,

∆ =
+

√
(k2 + k3 + k4 )2 − 4 k2 k4 . (12)

From Theorem 2.2 the VD is given by,

VD =
φ1

θ1

+
φ2

θ2

,

=
K1

k2

(
1 +

k3

k4

)
. (13)
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Three Tissue Compartmental Model

The compartmental structure for the three tissue compartment model (Mintun et al., 1984) is

shown in Figure 11.
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Figure 11: Three Tissue Model

Its state space representation is defined by,

A =



−k2 − k3 − k5 k4 k6

k3 −k4 0

k5 0 −k6


 ,b =



K1

0

0


 . (14)

The impulse response function and transfer function of the system are given by,

HTP(t) = φ1e
−θ1t + φ2e

−θ2t + φ3e
−θ3t,

H̃TP (s) =
φ1

s+ θ1

+
φ2

s+ θ2

+
φ3

s+ θ3

, (15)
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where,

φ1 =
K1 (k3 (k6 − θ1) + (k4 − θ1) (k5 + k6 − θ1))

(θ1 − θ2) (θ1 − θ3)
,

φ2 =
K1 (k3 (k6 − θ2) + (k4 − θ2) (k5 + k6 − θ2))

(θ2 − θ1) (θ2 − θ3)
,

φ3 =
K1 (k3 (k6 − θ3) + (k4 − θ3) (k5 + k6 − θ3))

(θ3 − θ1) (θ3 − θ2)
,

θ1 =
Γ1

3
− 2
√

∆1 cos

(
Υ

3

)
,

θ2 =
Γ1

3
− 2
√

∆1 cos

(
Υ + 2π

3

)
,

θ3 =
Γ1

3
− 2
√

∆1 cos

(
Υ + 4π

3

)
,

Υ =





cos−1
(

+

√
∆2

2

∆3
1

)
: ∆2 < 0

cos−1
(

−

√
∆2

2

∆3
1

)
: ∆2 > 0

,

∆1 = −
1

9

(
3Γ2 − Γ2

1

)
,

∆2 =
1

54

(
2Γ3

1 − 9Γ1Γ2 + 27Γ3

)
,

Γ1 = k2 + k3 + k4 + k5 + k6,

Γ2 = k2k4 + k2k6 + k3k6 + k4k5 + k4k6,

Γ3 = k2k4k6. (16)

From Theorem 2.2 the VD is given by,

VD =
φ1

θ1

+
φ2

θ2

+
φ3

θ3

,

=
K1

k2

(
1 +

k3

k4

+
k5

k6

)
. (17)

Irreversible Tissue Compartmental Model

The compartmental structure for the irreversible tissue compartment model (Sokoloff et al.,

1977) is shown in Figure 12.
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Figure 12: Irreversible Two Tissue Model



PET Compartmental Models 34

Its state space representation is defined by,

A =

[
−k2 − k3 0

k3 0

]
,b =

[
K1

0

]
. (18)

The impulse response function and transfer function of the system are given by,

HTP(t) = φ1e
−θ1t + φ2,

H̃TP (s) =
φ1

s+ θ1

+
φ2

s
, (19)

where,

φ1 =
K1k2

k2 + k3

,

φ2 =
K1k3

k2 + k3

,

θ1 = k2 + k3 . (20)

From Theorem 2.2 the KI is given by,

KI = φ2,

=
K1k3

k2 + k3

. (21)

C.2 Reference Tissue Input Models

This section contains explicit compartmental models and their functional forms for a range of

commonly used PET reference tissue input models.

Simplified Reference Tissue Model

The compartmental structure for the simplified reference tissue model (Lammertsma and Hume,

1996) is shown in Figure 13.

Its state space representation is defined by,

A =
[
−k2

]
,A′ =

[
−k ′

2

]
,b =

[
K1

]
,b′ =

[
K ′

1

]
. (22)

The impulse response function and transfer function of the system are given by,

HTR(t) = RI

(
δ(t) + φ1e

−θ1t
)
,

H̃TR(s) = RI

(
1 +

φ1

s+ θ1

)
, (23)
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Figure 13: Simplified Reference Tissue Model

where,

RI =
K1

K ′
1

,

φ1 = k ′
2 − k2 .

θ1 = k2 . (24)

From Theorem 3.2 the BP is given by,

BP .f2 = RI

(
1 +

φ1

θ1

)
− 1,

=
K1

k2

K ′

1

k ′

2

− 1. (25)

Full Reference Tissue Model

The compartmental structure for the full reference tissue model (Blomqvist et al., 1989; Cun-

ningham et al., 1991; Lammertsma et al., 1996) is shown in Figure 14.
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Figure 14: Full Reference Tissue Model
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Its state space representation is defined by,

A =

[
−k2 − k3 k4

k3 −k4

]
,A′ =

[
−k ′

2

]
,b =

[
K1

0

]
,b′ =

[
K ′

1

]
. (26)

The impulse response function and transfer function of the system are given by,

HTR(t) = RI

(
δ(t) + φ1e

−θ1t + φ2e
−θ2t
)
,

H̃TR(s) = RI

(
1 +

φ1

s+ θ1

+
φ2

s+ θ2

)
, (27)

where,

RI =
K1

K ′
1

,

φ1 =
(k2 − θ2)(k

′
2 − θ1)

∆
,

φ2 =
(k2 − θ1)(k

′
2 − θ2)

−∆
,

θ1 =
k2 + k3 + k4 + ∆

2
,

θ2 =
k2 + k3 + k4 − ∆

2
,

∆ =
+

√
(k2 + k3 + k4 )2 − 4 k2 k4 . (28)

From Theorem 3.2 the BP is given by,

BP .f2 = RI

(
1 +

φ1

θ1

+
φ2

θ2

)
− 1,

=

K1

k2

(
1 + k3

k4

)

K ′

1

k ′

2

− 1. (29)

’Watabe’ Reference Tissue Model

The compartmental structure for the ’Watabe’ reference tissue model (Watabe et al., 2000) is

shown in Figure 15.

Its state space representation is defined by,

A =
[
−k2

]
,A′ =

[
−k ′

2 − k ′
5 k ′

6

k ′
5 −k ′

6

]
,b =

[
K1

]
,b′ =

[
K ′

1

0

]
. (30)



PET Compartmental Models 37

C
F+NS+SP

1
K

2
k

'

2
k

'

1
K

C
R

C
T

C
P

'

6
k

'

5
k

C
F

C
NS

Figure 15: Watabe Reference Tissue Model

The impulse response function and transfer function of the system are given by,

HTR(t) = RI

(
δ(t) + φ1e

−θ1t + φ2e
−θ2t
)
,

H̃TR(s) = RI

(
1 +

φ1

s+ θ1

+
φ2

s+ θ2

)
, (31)

where,

RI =
K1

K ′
1

,

φ1 =
k ′
2k

′
5

k ′
5 + k ′

6 − k2

,

φ2 =
k2

2 − k2 (k ′
2 + k ′

5 + k ′
6) + k ′

2k
′
6

k ′
5 + k ′

6 − k2

,

θ1 = k2 ,

θ2 = k ′
5 + k ′

6. (32)

From Theorem 3.2 the BP is given by,

BP .f2 = RI

(
1 +

φ1

θ1

+
φ2

θ2

)
− 1,

=
K1

k2

K ′

1

k ′

2

(
1 +

k ′

5

k ′

6

) − 1. (33)

Irreversible Reference Tissue Model

The compartmental structure for the irreversible reference tissue model (Vontobel et al., 1996;

Gunn et al., 1998; Houle et al., 1998) is shown in Figure 16.

Its state space representation is defined by,

A =

[
−k2 − k3 0

k3 0

]
,A′ =

[
−k ′

2

]
,b =

[
K1

0

]
,b′ =

[
K ′

1

]
. (34)
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Figure 16: Irreversible Reference Tissue Model

The impulse response function and transfer function of the system are given by,

HTR(t) = RI

(
δ(t) + φ1e

−θ1t + φ2

)
,

H̃TR(s) = RI

(
1 +

φ1

s+ θ1

+
φ2

s

)
, (35)

where,

RI =
K1

K ′
1

,

φ1 = k ′
2 − k2 −

k ′
2k3

k2 + k3

,

φ2 =
k ′
2k3

k2 + k3

,

θ1 = k2 + k3 . (36)

From Theorem 3.2 the KI

V ′

D

is given by,

KI

V ′
D

= φ2,

=
K1k3
k2+k3

K ′

1

k ′

2

. (37)

C.3 Blood and Metabolism Models

Tracer Metabolism and Partitioning in Blood

A simple compartmental structure which accounts for tracer metabolism and partitioning be-

tween plasma and red cells is shown in Figure 17. Its state space representation is defined by,
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Figure 17: Model for Tracer Metabolism and Partitioning in Blood

A =




−l2 − l3 − l5 l4 0 0

l3 −l4 0 0

l5 0 −l6 − l7 l8
0 0 l7 −l8


 ,b = [l1e1] (38)

The impulse response function and transfer function of the system are given by,

HBP(t) = δ(t) + φ1e
−θ1t + φ2e

−θ2t + φ3e
−θ3t,

H̃BP (s) = 1 +
φ1

s+ θ1

+
φ2

s+ θ2

+
φ3

s+ θ3

, (39)

where,

φ1 = l3 ,

φ2 =
l5 (l7 + l8 − θ1)

∆
,

φ3 =
l5 (l7 + l8 − θ2)

−∆
,

θ1 = l4 ,

θ2 =
(l6 + l7 + l8 ) + ∆

2
,

θ3 =
(l6 + l7 + l8 ) − ∆

2
,

∆ =
+

√
(l6 + l7 + l8 )2 − 4 l6 l8 . (40)

The steady state ratio of whole blood to parent in plasma activity is,

PB = 1 +
l3

l4
+
l5 (l7 + l8)

l6l8
.
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D Glossary

Symbol Description Units

CT Target tissue concentration kBq.mL−1

CR Reference tissue concentration kBq.mL−1

CP Plasma concentration kBq.mL−1

CB Whole blood concentration kBq.mL−1

HTP Target tissue IRF with respect to plasma (mL plasma).min−1.(mL tissue)−1

HRP Reference tissue IRF with respect to plasma (mL plasma).min−1.(mL tissue)−1

HTR Target tissue IRF with respect to the reference tissue min−1

HBP Whole blood IRF with respect to parent in plasma (mL plasma).min−1.(mL blood)−1

HPB Parent in plasma IRF with respect to whole blood (mL blood).min−1.(mL plasma)−1

VD Total volume of distribution of the target tissue (mL plasma).(mL tissue)−1

VDF
Volume of distribution of the free compartment (mL plasma).(mL tissue)−1

VDNS
Volume of distribution of the non-specific compartment (mL plasma).(mL tissue)−1

VDSP
Volume of distribution of the specific compartment (mL plasma).(mL tissue)−1

VB Fractional blood volume Unitless

K1 Plasma to brain transport constant (mL plasma).min−1.(mL tissue)−1

RI Relative delivery to the target versus the reference tissue Unitless

BP Binding potential (mL plasma).(mL tissue)−1

BP .f1 Product of binding potential and the plasma ’free fraction’ (mL plasma).(mL tissue)−1

BP .f2 Product of binding potential and the tissue ’free fraction’ Unitless

Bmax Maximum concentration of binding sites nM

KD Equilibrium dissasociation rate constant nM

KI Irreversible uptake rate constant from plasma for the target tissue (mL plasma).min−1.(mL tissue)−1

k2 Brain to plasma transport constant min−1

k3 First order association rate constant for specific binding min−1

k4 Disassociation rate constant for specific binding min−1

k5 Association rate constant for non-specific binding min−1

k6 Disassociation rate constant for non-specific binding min−1

li Rate constants for blood/plasma and parent/metabolite model min−1

⊗ Convolution operator n/a

Sp (A) Spectrum of A, or poles of the transfer function derived from A n/a

Sz (A,b) Set of zeroes of the transfer function derived from A and b n/a

| S | Cardinality of a set S n/a
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