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Abstract

Partial Volume Effects in PET lead to quantitative under and over estimations of the
regional concentrations of radioactivity in reconstructed images and corresponding errors
in derived functional or parametric images. The limited resolution of PET leads to ”Tis-
sue Fraction” effects, reflecting underlying tissue heterogeneity, and ”Spillover” effects
between regions. Addressing the former problem in general requires supplementary data,
for example coregistered high-resolution MR images, whereas the latter effect can be cor-
rected for with PET data alone if the point spread function of the tomograph has been
characterised. Analysis of otherwise homogeneous region of interest data ideally requires
a combination of tissue classification and correction for the point spread function. The
formulation of appropriate algorithms for partial volume correction (PVC) is dependent
on both the distribution of the signal and the distribution of the underlying noise. A math-
ematical framework has therefore been developed to accommodate both of these factors and
to facilitate the development of new PVC algorithms based on the description of the prob-
lem. Several methodologies and algorithms have been proposed and implemented in the
literature in order to address these problems. These methods do not, however, explicitly
consider the noise model whilst differing in their underlying assumptions. The general
theory for estimation of regional concentrations, associated error estimation and inho-
mogeneity tests are presented in a weighted least squares framework. The analysis has
been wvalidated using both simulated and real PET data sets. The relationships between
the current algorithms and those published previously are formulated and compared. The
incorporation of tensors into the formulation of the problem has led to the construction
of computationally rapid algorithms taking into account both tissue fraction and spillover
effects. The suitability of their application to dynamic and static images is discussed.

Keywords: PET, Partial Volume Correction, Point Spread Function, Tissue Clas-
sification, Noise Models, 3-D Algorithms
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1 Introduction

This paper is concerned with theory and methodology for the recovery of partial volume effects
in positron emission tomography (PET). The partial volume correction (PVC) problem in PET
concerns two properties, both arising from the limited resolution of the tomograph, which result
in incorrect estimation of the true local tissue concentration of radioactivity;

"Tissue Fraction Effect” referring to underlying sub-resolution heterogeneity, for example grey
and white matter in brain tissue. In general, correction for this effect requires additional prior
knowledge, for example from an adjunct MRI scan with intrinsically higher resolution enabling
determination of the appropriate tissue fractions.

"Point Spread Effect” or spillover between regions, again reflecting the limited resolution of
the tomograph (Hoffman et al., 1979; Mazziotta et al., 1981; Leahy and Qi, 2000). Typically
the PSF is well approximated by a 3-dimensional Gaussian distribution with FWHM of the
order of a few millimeters. This effect can in principle be corrected from the PET data alone,
assuming that the point spread function of the scanner has been characterised.

It is convenient to distinguish these effects, firstly because the resolution of the tissue fraction
effect will require data in addition to the PET measurements, and secondly because it will be
seen to have statistical consequences in our analysis. However, they are both a result of the
limited resolution of the scanner, and as such are considered by some to be the same effect.

Recovery of the true concentrations of radioactivity in otherwise homogeneous regions thus
requires a combination of tissue classification techniques with corrections for spillover between
adjacent regions. The consequences of these effects on the signal have been investigated pre-
viously (Karp et al., 1991; Rousset et al., 1993; Tida et al., 2000), and a variety of correction
methods, of differing complexities, have been proposed and applied to attempt accurate recov-
ery of the signal in situations where regions are either defined by anatomy, by tissue type, or
both (Meltzer et al., 1990; Muller-Gartner et al., 1992; Labbé et al., 1996; Labbé et al., 1998;
Rousset et al., 1998). These methods often require structural imaging although methods have
been developed (Iida et al., 2000) that do not. In PET the correction is usually applied on
a regional level to the reconstructed images and includes regional homogeneity assumptions,
which makes the problem more tractable than at the voxel level. Such corrections can have
significant impact on the quantitative analysis of PET studies (Labbé et al., 1996; Meltzer
et al., 2000; Law et al., 2000), particularly when it is necessary to take into account the ef-
fects of pathological or structural changes. Upwards of 300% increases in estimates of cerebral
metabolism of ["® F]DOPA after PVC have been reported (Rousset et al., 2000). PVC has also
being explored as a tool for recovery of the input function from PET images (Asselin et al.,
2001). Indeed, in any study where true quantitative parameter estimates are required, the
implementation of PVC is essential.

There are however, differences in the published methods, particularly as regards the implicit
assumptions that are made about the underlying noise models. It will be seen in the present
work that the assumed noise model has a direct impact on the appropriate algorithm to use

for PVC.

This paper introduces a theoretical framework for the general PVC problem and presents new
and improved algorithms for the application of PVC techniques to static and dynamic PET
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images. Both the tissue fraction effect and the point spread effect are accommodated within
this analysis. Previous methods are discussed within this theoretical framework. In addition,
methods for error estimation are presented and regional inhomogeneity testing is investigated.
The general theory for estimation of regional radioactivity concentrations, associated error esti-
mation and inhomogeneity tests are presented in a weighted least squares framework. Regional
inhomogeneity testing allows for the statistical assessment of the methods assumption that all
regions are homogeneous in concentration. Finally, an efficient tensor algorithm allowing for
the application of these methods in 3-D is also presented. This new analysis is validated using
both simulated and experimental PET data.

2 Theory

Partial volume correction in PET will be considered with reference to both the distribution of
the signal and the underlying noise model. The formulation of algorithms for the solution of
the PVC problem is dependent on both of these factors. Noise needs to be considered in terms
of both its distribution and its structure. Several noise distributions have been proposed in the
past for simulation of the problem; Poisson, Gaussian and Poisson + Gaussian (Slifstein et al.,
2001). Here, not only are the noise distributions but also the correlation structure of the noise
investigated and algorithms formulated for these differing structures.

2.1 Noise Models

The measurement of PET data is an inherently noisy process. Radioactive decay is itself a
random process with a Poisson distribution, and other distributions of noise enter the system
at many stages of data collection and reconstruction. In the present paper, two structures are
considered. First, if the noise is inherent in the signal, before any reconstruction has taken
place, then it is considered that this noise will be subject to blurring due to the PSF and will
result in spatially correlated noise in the reconstructed image. Second, noise occurring across
the reconstructed image on a random basis will be modelled with an additive term with no
spatial correlation.

e Uncorrelated Noise Models. This noise model assumes that there is additive Gaussian
noise across the reconstructed image and corresponds to high spatial frequency noise.
Previous methods (Labbé et al., 1996; Labbé et al., 1998; Rousset et al., 1998) are
implicitly based on this model although slightly different weights are applied to obtain
the solution. (see 2.3).

e Correlated Noise Models. There will be a component in the noise that is correlated by
the point spread function. This could arise from the signal itself, or other noisy processes
that become blurred by the PSF. We will also include an uncorrelated component in the
model to allow for any high spatial frequency noise, which would cause an ill-conditioned
solution in not appropriately accounted for. The limit of this model is a purely PSF
correlated noise model, but as has been previously seen (Leahy and Qi, 2000), this does
not adequately describe the true noise in the data.
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For our algorithms, whether the noise is homogeneous across the image, or whether heteroge-
neous is immaterial. There is evidence that the variance is homogeneous across image (Pajevic
et al., 1998). Previous work has detailed methods for the approximation of ROI and pixelwise
variance (Carson et al., 1993). In fact this specifies the correlation function between pixels and
as such can be used as the correlation function in the algorithms themselves. A specification
needs to be made prior to the analysis, but the analysis itself will proceed in the same way.
For the data presented later, the noise models will assume either homogeneous or hetergeneous
variances across the image but include a homogeneous uncorrelated variance component.

2.2 The 1-D Problem

The problem is first formulated in 1 dimension for simplicity. It will be seen that given a
separable point spread function the problem generalizes simply to 3 dimensions. The correlation
function has been assumed, for simplicity, to be accurately characterised by the PSF, but
any separable correlation function can be modelled in this framework. Let P be an n X n
matrix, where n is the number of pixels, whose operation on a vector corresponds to the
blurring introduced by the PSF. For a symmetric spatially invariant PSF this is a symmetric
Toeplitz matrix, although other more general PSF distributions can be accommodated. Let
R be an n x r matrix defining r anatomical regions (R € [0,1]). Let 7" be an n x ¢ matrix
denoting the ¢ different tissue classifications, (7" € [0,1]). Let b be an n x 1 vector containing
the measured tracer concentration. Consequently x is an rt x 1 vector denoting the true
radioactivity concentrations in the different classified regions. As constructed, P accounts
for the ”Point Spread Effect”, R ® T account for the ”Tissue Fraction Effect”, where © is
the Khatri-Rao row product (see Appendix B.2). The tracer concentration is assumed to be
homogeneous within each classified region. A simple example is presented in Figure la which
illustrates how the measured tracer concentrations may be an under- or over-estimation of the
true concentration.

The partial volume problem can then be constructed as a matrix equation, (Figure 1b),
P(R®T)x = b, (1)
and the introduction of noise components gives,
P(ROT)x +n.) =b+ ny, (2)

where 7, and 7, are correlated and uncorrelated noise vectors respectively (see section 2.1).
This equation can be rearranged in terms of the recovered signal and noise components’,

(RoT)r =P 'b+ (P ', +1.), (3)
and is a linear equation of the form Az = b+ .

The weighted linear least squares solution, z, is determined by minimising the objective func-
tion,

%p(Wﬂ@@Tﬂ—P*WWWﬂ@@TW—P*W, (4)

Ly, represents the noise process and hence the sign is unimportant here
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FIGURE 1: 1D PVC Example: a) (top) Tissue Radioactivity with (*) and without (o) ap-

plication of PSF, (middle) Tissue Classification (Grey and White only), (bottom) Region

Definitions b) Matrix construction of the recovery problem, where x4 and x,,; are the recov-
ered grey and white matter values respectively for region i.

where the weighting matrix W is the inverse of the covariance matrix and the solution is given

by,
t=(RoT)Y'WRoT)  ROT)"WPb. (5)

It follows that the variance on the estimates is given by,

var(ay - (BODWROT) (RO Tya = PUW(ROTI =P
n—rt ’

and the sum of squares accounted for by each ROI is given by,
SSQror = (R®T)x — P~0)"W2A(Rror)W?((R® T)x — P~'b) (7)
where A() is the diagonal matrix operator, and ROI is the index of the region to be tested.

The above equations are all theoretically consistent, and in practice can be used to evaluate
partial volume effects. It is interesting to note however, that the equations only hold true when
R ® T is a full rank matrix. This might occur (theoretically), for example, if the grey and
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white composition was constant in a given region. However as the grey and white classification
is probabilistic, and the regions sizes are greater than a few voxels, this is not a problem in
practice.

The recovered values for the regionally classified tissues may be estimated once an appropriate
noise model has been selected (Eqn 5). The noise model determines the form of the weighting
matrix . It should be noted here that it is of increasing importance that the noise model is
estimated correctly to ensure accurate estimates of the parameters above. Hence the accuracy
of the weighting is of limited importance for the estimate of tracer concentration (Eqn 5 &
Figure 2). This results in good estimates from both Labbé and Rousset’s methods. However,
it is more important for estimation of the error on this value (Eqn 6 & Figure 2) and of vital
importance for hypothesis testing of homogeneity derived from the residual sum of squares

(Eqn 7).

2.2.1 Uncorrelated noise: [n, ~ N(0,02I) and 7. = 0]

If the noise on the measured image is characterised purely by independent identically distributed
Gaussian processes with zero mean and standard deviation o, then the weighting matrix is given
by,

W = PTP, (8)

and the weighted least squares solution is,

(RoT)Y'PTP(RoOT) N (RoT) P (9)

s

2.2.2 Pure correlated noise: [, ~ N(0,D) and n, = 0]

If the noise post reconstruction has no uncorrelated component then
W =D"! (10)

where D is a diagonal matrix representing variances at each pixel (can be homogeneous or
inhomogeneous).

The weighted least squares solution is,

(RoT)Y'DHRoT) ™ (RoT)"D*P'b. (11)

T

2.2.3 Correlated noise: [n. ~ N(0,D) and 7, ~ N(0,021)]

If the noise on the image is characterised by both independent identically distributed Gaussian
processes then the weighting matrix is given by,

W= (D+o2P (P ), (12)
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and the weighted least squares solution is,

t=(RoT)(D+o2P (P Y)Y Y (ROT)™ (13)
(RoD)Y(D+a2P (P HH) P b,

If any part of the noise structure is signal dependent, then the recovered signal needs to be
known. These equations assume that the value for this signal is known. As this will not be
the case in heterogeneous signal-dependent noise such as poisson noise, the solution requires
an iterative solution using updates of the estimates, known as Fisher Scoring (McCullagh and
Nelder, 1989). This is easily incorporated into the algorithms described.

2.3 The Methods of Labbé and Rousset

The methods of both Labbé (Labbé et al., 1996) and Rousset (Rousset et al., 1998) and their
solutions to the general partial volume correction problem,

P(ROT)x =0, (14)
can be characterised by their implicit weighting matrices, W, in the weighted least squares

framework (Eqn 4 & 5).

2.3.1 Rousset’s Method

The solution given by Rousset is,
z=(ROT)"P(ROT)) " (ROT)", (15)

which is equivalent to a weighted least squares solution in which,

W =P (16)
2.3.2 Labbé’s Method
The solution given by Labbé is,
r=(RoT)'PTP(ROT)) (RO T)"P'b (17)

which is equivalent to a weighted least squares solution in which,
W =P"P, (18)

and can be interpreted as the ordinary least squares solution to the problem.
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FIGURE 2: 1D PVC Example: Noise Distribution. Histogram: Estimated values, Solid Line:

Expected Theoretical Parameter Distribution. X-axis: estimated parameter values, Y-axis:

probability. This data is simulated using a heterogeneous correlated and homogeneous un-

correlated noise model. The presented method uses this noise structure, whilst the methods

of Labbe and Rousset have implicit assumptions about the noise. This figure is intended

as a graphical representation of the performance of the differing methods in differing noise
situations.

2.4 1-D Simulations

The one dimensional simulations presented here are primarily to demonstrate the problems
that can occur if the wrong noise model is assumed when fitting the data, in terms of the
estimation of the mean and variance. Although the noise model here is a proportional model,
where the noise is proportional to the signal, the underlying problems will also be evident with
other noise models.

Simulations were carried out using the example signal representation above. This was done
in order that there would be regions where the signal was both over and under estimated.
Noise was added which had both a homogeneous uncorrelated component, and a heterogeneous
(proportional to the signal) correlated component. The data sets were then simulated with
25000 repetitions to build up accurate distributions from each of the estimators.

As can be seen in the figure (Figure 2) if the noise model is incorrect, the estimates of the
variance of the signal estimate are not correct. The histograms represent the true distribution
of the estimate of the value whilst the solid lines represent the estimated distribution. As can
be seen, the variance of true distributions are either under or over estimated by the Rousset
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and Labbé algorithms, and different regions have different over / under estimation. This is due
to the implicit assumptions of the model. The Labbé algorithm assumes uncorrelated noise,
and as such the background as the largest region dominates this noise resulting in a good
estimate of the background noise, but underestimation in regions of higher noise. The Rousset
algorithm has the assumption that the noise is inversely correlated from smoothing, and as
such over-estimates the variance in regions with low noise and under-estimates the variance in
regions with higher noise. However the estimates of the signal itself is unbiased for the differing
estimators.

2.5 Generalization to 3-Dimensions

The theory above has been presented in terms of the 1-Dimensional case. A consideration
of the assumptions which allows the theory to be generalized to 3-Dimensions follows. The
only assumption to allow the full generalization of the above theory is that each dimension is
separable from all the other dimensions. This means that the PSF operator may be applied
independently in the x,y and z dimensions. This assumption is weaker than the assumptions
that are made in some previous methods where stationarity is also assumed to facilitate com-
putation (Labbé et al., 1996). However this assumption was partially removed in later work
(Labbé et al., 1998).

It is important to consider other computational aspects which allow for the higher dimension
generalization. It is straightforward to see how the computation is handled in the 1-D case with
simple matrix and vector operations. The 3-D equivalent is simplified by considering tensor?
operations with restrictive separable properties. Such a construction leads to a computationally
efficient algorithm for the implementation of 3-D partial volume correction (see Appendix A.1).

3 Methods

The above theory and algorithms were applied to several data sets for the purpose of validation.
Both simulated and measured data were used, primarily with the same specifications, except
that in the simulated data sets, the noise characteristics were known perfectly, whilst in the
measured data sets, the noise characteristics were assumed to be fully characterised.

3.1 Simulated Data Sets

Two simulated data sets were considered. The first consisted of a set of four syringes of differing
diameters and considers merely the ”Point Spread Effect” and required only the definition of
R. The second is a flumazenil brain phantom which considered both the ”Point Spread” and
"Tissue Fraction” effects and required the definition of both R and 7. The simulated data sets
were primarily specified using the corresponding measured data sets. The noise variances were
determined approximately from the measured data, and then the linear model to be solved

2Tensors are merely generalizations of vectors (1D) and matrices (2D) in higher dimensions
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was constructed to produce simulated realizations with the exact noise characteristics for the
weighting matrix.

3.1.1 Syringe Phantom

The Syringe Phantom data were simulated realisations of the measured data obtained from
the ECAT ART scanner. The reported PSF characteristics (Bailey et al., 1997) for the ART
scanner were used to specify the PSF as a Gaussian kernel, both in the construction of the
data set and the subsequent fitting procedures of the algorithms. This allowed for perfect
specification of the PSF. The syringe ROIs were generated as cylinders corresponding to the
size and location of their counterparts in the physical phantom (Figure 3). The syringes were
simulated to contain 75 kBq/ml of activity at the start of the first acquisition. Noise was added
to the images to approximate the measured data for different epochs in time, each epoch being
separated by a tracer half life (in this case 20 mins for Carbon-11). This generated data with
a progressively decreasing signal to noise ratio. Homogeneous correlated noise was introduced
before applying the PSF and subsequently uncorrelated noise was added. The variance of
the noise was based on the background noise in the actual measured images at the times of
acquisition. Analysis was performed on non-decay corrected data, whilst the results were decay
corrected for ease of comparison. The analysis was carried out using the presented algorithms,
as well as Labbé and Rousset’s algorithms, to recover the signal and the error estimates. The
simulations were also used to assess the possibility of homogeneity testing in well defined noise
models. This was assessed using both the entire dataset and a single syringe ROI and it was
determined whether the expected distribution was obtained using the Krylov approximation
model (see Appendix A.3).

FIGURE 3: Definition of the 5 regions (including background) for the syringe data set repre-
sented by different grey levels (corresponding to R).

3.1.2 Flumazenil Phantom via MRI segmentation

The flumazenil simulation was generated using the measured flumazenil data set analysed
below. The data was simulated using the region definitions (R) combined with the tissue
classifications (T) (Figure 4) . The simulated V values were taken from the measured results.
It was then smoothed with the assumed PSF. The noise added was also taken from the noise
estimate of the real data. The presented analysis was again used, in a similar way to the syringe
data. The estimated noise characteristics of the real model were used to describe the noise in
the simulations. The Krylov inhomogeneity testing requires a known variance, and in this case
where the variance is estimated, its use is not applicable.
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FIGURE 4: Flumazenil Data Set : (a) Definition of the 43 regions for the flumazenil data set
represented by different grey levels (corresponding to R). (b) grey (c) white and (d) CSF
tissue classification probabilities (corresponding to 7).

3.2 Measured Data Sets

3.2.1 Syringe Phantom

Four syringes of inner diameters 14.8+/-0.lmm, 11.9+/-0.1lmm, 8.6+/-0.lmm and 4.7+/-
0.1lmm were filled with a C-11 solution (75 kBq/ml at the start of the first acquisition) and
inserted into a 20-cm diameter 30-cm long cylinder filled with water. The phantom was scanned
in an ECAT ART tomograph (CTI/Siemens, Knoxville, TN, USA) for 10s and 120s, four times,
one half life (20 min) apart each time (Figure 5). The images were reconstructed using the
reprojection algorithm (Kinahan and Rogers, 1989) with the ramp and Colscher filters set at
Nyquist cut-off frequency. A calculated attenuation correction and a model-based scatter cor-
rection (Watson et al., 1996) were applied to the data during reconstruction. The reconstructed
images consisted of 47 planes (of which only the centre seven were used in the analysis) having a
transaxial spatial resolution of 6.7 mm (at 5 cm from the centre of the FOV where the syringes
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were located) and an axial spatial resolution of 6.8 mm (FWHM) (Bailey et al., 1997). The
presented analysis was again used to calculate the recovery and errors and compared with the
methods of Labbé and of Rousset. To assess whether the specified noise model was accurate
the Krylov algorithms were applied to the measured data. This was again done on the both
the entire data set, and the single syringe as in the simulations above.

FIGURE 5: Measured Syringe Data: (top) 10s acquisitions (one half life apart), (bottom) 120s
acquisitions (one half life apart).

3.2.2 Measured Flumazenil

AAn [M'C]Flumazenil data set was obtained from an ongoing clinical study and acquired accord-
ing to a protocol described previously (Koepp et al., 1996; Richardson et al., 1996). Briefly,
the scan was performed in 3D mode on a 953 B Siemens/CTI PET camera with a recon-
structed image resolution of approximately 4.8x4.8x5.2 mm at FWHM (Bailey, 1992) for 31
simultaneously acquired planes with reconstructed voxel sizes of 2.09x2.09x3.42 mm. A con-
volution subtraction method was used to correct for scatter (Bailey and Meikle, 1994) and
axial scaling with the inverse of the scanner’s axial profile was applied to obtain uniform ef-
ficiency throughout the field of view (Grootoonk, 1995). Voxel-by voxel parametric images of
[''C]flumazenil volume-of-distribution (Vp) were then produced from the brain uptake and ar-
terial metabolite-corrected plasma input functions using a single compartmental tracer kinetic
model and estimates of the variance of the parameters calculated (Aston et al., 2000) and is
shown in Figure 6. A region template containing 43 regions was used which was derived from
the MRI of a single brain (Holmes et al., 1998) which has been widely used as a reference
brain. To subdivide the flumazenil data set, the region template was spatially warped to fit
the individual’s MRI data set. This was performed using linear and nonlinear transformations
(Ashburner and Friston, 1999) with parameters derived from the MRI data set associated with
the template (Hammers et al., ). The individuals own MRI was also segmented (Lemieux et al.,
1999) into grey matter, white matter and CSF. The transformed region template and the MRI
data sets were then coregistered with the PET data set (Ashburner and Friston, 1997). PVC
to recover the corrected Vp values was applied using weights derived from the variance map
calculated as part of the analysis. Again, the Krylov method was not appropriate for this
dataset, due to its unknown variance.
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FIGURE 6: Flumazenil: (a) Volume of Distribution; (b) Volume of Distribution Error; prior
to correction.

All data analysis was performed in Matlab (The Mathworks Inc.) running on a 650 MHz
Pentium PC.

4 Results

In all the studies it was found that the purely correlated noise algorithms were unstable in
the presence of uncorrelated noise in the data. This is due to the ill-conditioned nature of the
inverse of the correlation matrix. As all the data were assumed to have a true noise structure
that included a component of uncorrelated noise, the results of purely correlated algorithms
have been omitted due to their instability. This result was not unexpected, and in practice
purely correlated noise algorithms are seldom if ever used to analyze data.

4.1 Simulated Data Sets
4.1.1 Syringe Phantom

The syringe simulations showed that good recovery of the true signal was achieved with all
algorithms (Table 1), at different times, with earlier frames, where there are more counts,
providing yielding closer to truth estimates than later frames (all frames are decay corrected
back to the start). However, the estimates of the standard deviation in the Labbé and Rousset
algorithms were too low, which would lead to the rejection of null hypotheses with the true
mean in some cases. This did not occur with the presented algorithm.
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FIGURE 7: Typical Krylov interations for simulated syringe.

The presented algorithm took approximately 10 mins per frame to run. This is dependent on
the noise model, as can be seen in equation 26 in the Appendix. The condition number of the
matrices in the equations depends on the relative contributions of the noise. The Labbé and
Rousset algorithms took approximately 10 secs per frame to run.

Whilst the overall SSQ for the entire dataset was consistent with the noise model, the Krylov
subspace approximation was not able to accurately distinguish between the different regional
SSQs for a small number of interations. In principle, however, with a large enough amount
of memory the algorithm would become increasingly more accurate. The Krylov subspace
algorithms gave a good approximation to the SSQ for a single ROI. As the number of iterations
was increased, so was the accuracy of the approximation (Figure 7). However, the increase in
the number of iterations also required an increase in memory, and so would not allow the
approximation to necessarily be used in practice on larger data sets.

4.1.2 Flumazenil Phantom via MRI segmentation

The recovered image from the simulation is shown in Figure 8. There was a good correlation
between the recovered values and the simulated values (R= 0.98) in the grey and white regions
(Table 2), although CSF regions were not well recovered. This is due to the low probability of
the CSF in some regions, and the consequent difficulty in estimation. The actual values for the
CSF, however, are not usually of interest, but it is important to include them in the model.

The algorithms speed is related directly to the number of regions and tissue classifications
defined (rt). The time increases linearly (assuming the algorithm does not have to be split for
memory purposes), with an addition of approximately 10-15 secs per extra classified region.

4.2 Measured Data Sets

4.2.1 Syringe Phantom

As can be seen (Table 3), the measured data sets were less well modelled by the noise charac-
teristics, than the simulated data. This is not unexpected as the simulated data had perfect



PET Partial Volume Correction: Estimation and Algorithms 16

Region ‘ GM True GM Rec GM Sd ‘ WM True WM Rec WM Sd
R Amygdala 7.21 5.32 0.35 0.48 1.25 0.33
L Amygdala 5.83 4.28 0.35 0.37 0.65 0.27
R Mid Inf Temp Gyrus 8.32 7.70 0.17 1.80 1.94 0.03
L Mid Inf Temp Gyrus 10.83 10.86 0.08 2.49 2.67 0.03
R Frontal Lobe 9.23 9.03 0.03 2.31 2.45 0.01
L Frontal Lobe 8.81 8.63 0.03 2.96 3.14 0.01
R Parietal Lobe 10.38 10.25 0.04 1.81 2.02 0.01
L Parietal Lobe 10.51 10.53 0.04 2.02 2.25 0.01
R Occipital Lobe 7.51 7.36 0.06 4.19 4.31 0.02
L Occipital Lobe 6.73 6.53 0.06 4.46 4.64 0.02
R Thalamus 4.76 5.09 0.18 1.81 1.88 0.03
L Thalamus 5.32 5.21 0.16 1.10 1.20 0.03
R Cerebellum 6.26 6.24 0.03 2.31 2.44 0.01
L Cerebellum 6.61 6.54 0.03 2.12 2.25 0.01

TABLE 2: Results from simulated ['!C]flumazenil data set: Grey Matter (GM) and White
Matter (WM) Vp(ml/ml) values recovered by partial volume correction (Rec) for a represen-
tative set of anatomical regions and compared with the results pre correction.

FiGURE 8: Simulated Flumazenil data projected onto MRI template.

noise specification. However, the new method gives apparently more plausible estimates for
the error of the estimate, given the true value, especially in the higher noise frames.

As might have been expected, the Krylov algorithm did not allow for hypothesis testing of
homogeneity. This was almost certainly due to inadequate specification of the noise model.
The total SSQ was not as expected if the noise model had been correctly specified, and the SSQ
of the single syringe was also affected this way. The noise model is of increasing importance
from estimation of signal, errors through to hypothesis testing. In the case of hypothesis
testing, the noise model must be assumed to be fully characterised, including a known variance.
However with more accurate specification of the noise model, the possibility of hypothesis
testing remains.

4.2.2 Measured Flumazenil

The flumazenil data was well recovered in the measured data (Figure 9, Table 4), except in
the few regions where the grey/white border is less well defined (eg Occipital Lobe), giving the
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Region | GM Pre  GM Rec GM Sd | WM Pre WM Rec WM Sd
R Amygdala 3.30 7.21 0.39 2.78 0.48 0.38
L Amygdala 4.01 5.83 0.40 2.68 0.37 0.31
R Mid Inf Temp Gyrus 5.51 8.32 0.20 3.56 1.80 0.04
L Mid Inf Temp Gyrus 5.90 10.83 0.09 3.91 2.49 0.04
R Frontal Lobe 5.78 9.23 0.03 3.5 2.31 0.01
L Frontal Lobe 5.35 8.81 0.03 3.91 2.96 0.01
R Parietal Lobe 5.85 10.38 0.05 2.98 1.81 0.01
L Parietal Lobe 5.74 10.51 0.05 3.07 2.02 0.02
R Occipital Lobe 5.47 7.51 0.07 4.86 4.19 0.03
L Occipital Lobe 5.42 6.73 0.06 4.77 4.46 0.03
R Thalamus 2.10 4.76 0.20 1.55 1.81 0.04
L Thalamus 3.06 5.32 0.19 1.13 1.10 0.03
R Cerebellum 4.29 6.26 0.03 2.88 2.31 0.01
L Cerebellum 4.49 6.61 0.03 3.03 2.12 0.01

TABLE 4: Results from measured [ C]flumazenil data set: Grey Matter (GM) and White
Matter (WM) Vp(ml/ml) values recovered by partial volume correction (Rec) for a represen-
tative set of anatomical regions and compared with results pre correction.

impression that the binding was taking place in the white matter. Again the CSF was highly
variable and as such is not included in Table 4.

5 Discussion

The purpose of the present work was first; to bring together previous approaches to the PVC
problem into a coherent mathematical framework, second; to devise rapid computational algo-
rithms based on explicit definitions of noise models, and third; to explore the possibilities of
obtaining further information on the associated errors, and questions about the homogeneity
of the defined ROIs.

In the present paper partial volume effect models have been formulated in terms of linear matrix
equations, in which the observed image is expressed as the product of the true concentration in
a set of regions and matrices accounting for tissue fraction and point spread effects. The true
local concentration is then estimated by the appropriate weighted least squares procedure. It
is shown that the choice of algorithm for obtaining the least squares solution are dependent
on the assumed noise models. Three noise models were considered; noise correlated by the
PSF, uncorrelated noise, and a combination of both. Previous presentations of this problem in
the literature have been principally concerned with algorithms for obtaining solutions but as a
consequence have implicit assumptions about the noise model. The computational schemes pre-
sented here incorporate explicit assumptions. They differ with respect to ease of computation
and inherent stability in the face of misspecification of the noise model.

Three aspects of the solution have been considered. First obtaining an estimate of the mean
regional radioactivity. It is shown that this is relatively insensitive to the noise models in routine
use. The principle assumption associated with this aspect of the solution is the homogeneity of
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FIGURE 9: Measured Flumazenil data projected onto segmented MRI template after PVC;
(a) Total (b) Grey Matter (c) White Matter (d) CSF.

the ROIs and the correct classification of the tissue type within those ROIs. Rapid algorithms
are presented here which enable partial volume corrected estimates to be readily calculated.
The second aspect is obtaining an estimate of the variance of the estimates. As would be
expected this is more dependent on the assumption of a correct noise model. The third aspect
which was considered is the ability to test the assumed homogeneity of the ROIs. The Krylov
method developed allows for hypothesis testing of inhomogeneity. However, in practice, this
is limited by two factors. First as the volumes and number of tissues increase the memory
required for the computations becomes too large on a standard desktop PC and second, that
the approximation of the noise model for measured data is not sufficiently accurate.

In the simulations, realisations with noise of a completely characterised structure were pre-
sented, and it was shown that this resulted in good recovery of both the parameter estimates
and the errors associated with them. However in practice it is well-known that the noise struc-
ture will not be perfectly characterised. It was seen in the true syringe phantom experiments
that whilst this leads to estimates with greater variability than might be expected from the
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simulations, the estimates themselves remain stable. The variability although increased is still
a more accurate estimate of the variability than using error estimates derived from the models
of either Rousset or Labbé. It was seen that the estimates are only as good as the underlying
tissue data, and this was especially evident in the occipital cortex of the Flumazenil study.
Here the grey matter / white matter boundary is less well defined than in other regions, and
this leads to the estimates of the activity from the grey and white matter areas being difficult
to distinguish. This is a problem in all techniques that use structural definition, especially
when the structure cannot be well defined.

The nature of partial volume effects means that even if accurate an estimation technique is
specified, and validated against phantom models, the underlying assumptions of tissue het-
erogeneity and the point spread effect are critical. In performing partial volume correction
using MRI imaging, partial volume corrections are being based on information which is itself
subject to partial volume effects albeit on a much smaller scale. True direct validation requires
estimation and the recovery of tissue values from sources where these tissue values can also be
directly measured outside the PET system. This is also true of validation of MRI segmentation
techniques. Only a minority of partial volume techniques have considered this highly complex
methodological problem (lida et al., 2000), and this was not the focus of the work presented
here. However, if models for the errors from this source were available, these could possibly be
incorporated into the method presented.

The characterisation of the PSF is of central importance. The matrix formulation allows com-
plex non-stationary characterisation. However, it is important to note that the algorithms
presented here require that the PSF is separable, i.e. it can be applied independently in the x,
y and z directions. The separability of the PSF was exploited in devising computationally fast
algorithms. The dependence of the final estimates on the accuracy of the PSF characterisation
has not been considered here, but would be dependent on ROI shape, noise in the image, tissue
classification, shape of the PSF and relative FWHM, and would need testing for individual
applications. Likewise we have not considered the effects of image misregistration, tissue mis-
classification (Meltzer et al., 1999; Reilhac et al., 2001), or ROI misplacement. Ideally these
could be tested for in terms of inhomogeneity. The principal problems associated with this,
however, is inadequate characterisation of the noise model as discussed above. Accurate char-
acterisation of the noise model in image space is difficult but might be simplified by considering
the problem in sinogram space (Carson, 1986). This would however offer challenges associated
with specification of the model in sinogram space.

Computational schemes appropriate for the various noise models have been presented and are
expanded further in the appendix. These schemes can be easily implemented and have proved
to be very fast (e.g. the 43 region flumazenil volume with 3 tissue classifications is calculated
in approximately 30 mins on a desktop computer). In principle, they can be applied to raw
PET data, or to parametric images derived from application of temporal kinetic models to the
raw data. Application to parametric images has the implicit assumption that the kinetic model
is linear in the functional parameter. In this case, the non-correlated model, which requires
no estimates of multiplicative noise, is probably sufficient to obtain an estimate of a classified
regional activity together with its error.

Strictly, application to non-linear temporal kinetic modelling should be applied frame by frame.
This has the advantages of allowing specification of a more accurate noise model including both
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correlated and uncorrelated components, as well as producing error estimates which can then
be utilised for weighting in the subsequent kinetic fitting. Estimates of the additive noise
component can be obtained from the background. In practice, however effects of the non-
linearity can be assessed in individual cases and the simpler uncorrelated PVC model applied
to the parametric image, if the bias is considered acceptable.

A Algorithms for 3-D Implementation

A.1 Tensor Implementation

There is an inherent 3-dimensional structure in the data. Methods such as Labbé (1996) ,
while designing complex matrix algorithms to account for this structure, fail to make use of
it in the algorithm for solution. Methods such as Rousset (Rousset et al., 1998), did use this
structure but through the time consuming process of an analytical simulator. Further, the use
of an analytical simulator does not lend itself easily to the calculation of errors.

The algorithm proposed here will allow easy specification of a spatially variant PSF, with the
assumption of separability in the 3 cartesian axes. This is the equivalent assumption to Labbé,
but with the added advantage of allowing for a spatially variant PSF.

FIGURE 10: : a) Tensor point spread operator, b) Tensor recover operator.

A tensor can be thought of as a multi-dimensional matrix. The PSF specification is then classed
as a 6-D tensor taking ((x,y,z),(x’,y'z’)) co-ordinate structures so that any point is related to
the space that the point is blurred to. The condition of separability allows the 6-D tensor to
be written as a product of three 2-D tensors relating (x,x’), (y,y’) and (z,2’) (see Figure 10).
Thus the tensor product becomes a series of matrix multiplications, which are fast and simple
to compute. This process is also applicable to the weighting matrix for the purely uncorrelated
and purely correlated cases. For the more complex correlated noise model other methods are
required and developed below (see A.2).
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The algorithm applies the PSF to the native 3-D volume without requiring vectorisation of the
image. All operations are thought of as multi-dimensional operations as opposed to the uni
(vector) or bi (matrix) dimensional operations of other methods. Thus the solution may be
written in tensor notation as,

— —1
I"'l - (erzlylwlley12122y2x2R12y222r2)

R""Q 23Y3T3 WI3y3Z322y4I4 Px4y4z425y5x5 b$5y5zs ) ( 19)

using the summation notation convention. The inverse, in Eqn 19, is simply a 2D matrix
inverse.

For the different noise models these equations lead to slightly different algorithms. In the purely
uncorrelated and purely correlated (no uncorrelated component) cases this equation can be used
to estimate both the signal (z) and errors (var(z)) since P and W are separable. However,
the correlated noise case requires an extra algorithm because although P is well specified in a
separable tensor notation, W is not (even though W1 can be specified in a separable tensor
notation). This algorithm could be described in terms of a constrained noise algorithm, where
the uncorrelated component of the noise acts as a regularisation parameter. A very small
component of uncorrelated noise causes large variance in the estimates of an algorithm that
does not take this possibility into account. This is due to the condition number of the matrices
involved. However the addition of the uncorrelated component term accounts for this problem
and as such acts as a regularisation term for the algorithm.

A.2 Estimation of X and var(x) with Correlated Noise

For the correlated noise model an iterative method can be used to circumvent the non-separability
of the weighting matrix. The inverse of the weighting matrix is separable and this lends itself
to the iterative solution of Z = W R. Estimates of Z are updated via a suitable scheme until
W-Z =R.

A.2.1 Tterative Method

A first-order stationary iterative scheme was chosen which converges in all cases and has a
suitably bounded convergence parameter (see below). The algorithm for the correlated noise
model is,
1
Tni1 = (1 —=7)2Z, + T;PTP(R — A(Rz)Z,) (20)

where 7 is a relaxation parameter which is calculated at the beginning of the algorithm to
ensure convergence.

The solution Z is then incorporated into the weighted least squares solution as,

&= (Z"R)"'ZP ™, (21)
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and for the variance estimate as,

ZTR)Z*(Rx — P~'b
var(z) = . EVV f ;ROI ), (22)

where Z* = (Rx — P~'b)TW is solved using the same iterative procedure.

A.2.2 Proof of Convergence

Let C = 2P~ Y(P~H)T and W = (D + o2(P~1)TP~1)~1 as above. Then the iterative scheme
(Eqn 20) is given by,
Zni1 = Zn +7CHR-W™Z,) (23)

If C~! and W~ are positive definite (which is elementary from their definitions) then the
iterative scheme will converge for 0 < 7 < % where )\, is the maximal eigenvalue of C—1WW !
(Axelsson, 1994, Theorem 5.6).

Thus, to guarantee convergence, it remains to calculate an upper bound for the maximal
eigenvalue of C~'W ! which enables an appropriate selection of 7.

1
c'wt = S PTP(D+oi (PP
Uu

= %PTPD +1I (24)
Uu

where I is the identity matrix. The eigenvalues of C~'W ™! are the eigenvalues of a product
of a positive definite matrix PT P and a diagonal matrix plus the identity matrix. A corollary
(Axelsson, 1994, Corollary 3.14) of the Courant-Fischer theorem (Axelsson, 1994, Lemma 3.13)
gives an upper bound for the maximal eigenvalue in the case of a product of a positive definite
matrix (PTP) and a matrix with non-negative maximal eigenvalue (D). The addition of the
identity matrix simply adds 1, giving,

e 1
)\ma:r:(c 1W 1) S ;

Smaz(P)? Amaz(D) + 1 (25)

where 8,4, 18 the maximum singular value and A4, is the maximum eigenvalue. \4.(D) is
the largest element of D and $,,..(P) is the product of the maximal singular values of each
cartesian component of P.

A value for 7 that guarantees convergence of the iterative scheme can then be chosen as

202
_ i 26
T o P A (D) 11 (26)
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A.3 Inhomogeneity Testing

The above algorithms allow estimates of the signal and its associated error. However, they do
not facilitate the estimation of the regional SSQ, which is required for inhomogeneity testing.
However, there are approximational methods that will in principle converge to the correct value
of the regional SSQ allowing the possibility of inhomogeneity testing. However this is highly
dependent on the correct specification of the noise model.

If the ROI is defined in a deterministic sense in contrast to a probabilistic sense, then in principle
inhomogeneity testing is possible. The ROIs represented in the R matrix can each be associated
with a sum of squares error, independently of the other ROIs due to their orthogonal nature
(by definition if they are not probabilistically defined). However, implementation requires
knowledge of the correctly weighted residuals for each of the orthogonal ROIs which depends
on the weighting matrix.

Krylov subspace methods are adept at estimating the square root of symmetric matrices (where
the square root is defined to also be symmetric allowing it to be uniquely defined). These
methods have previously been rigorously analyzed for deconvolution (Schneider and Willsky,
2001), but not for inhomogeneity testing.

The major advantages of using a Krylov algorithm is that the matrix that a square root is
required for is not altered by the algorithm (Golub and Van Loan, 1983) so only a method of
applying the matrix to vectors is needed and hence we can make use of the Tensor structures
already defined to allow the computation A.1.

In order to evaluate the square root matrix equation, we make use of the Lanczos Algorithm
(Golub and Van Loan, 1983) and its extensions to matrix square roots (Allen et al., 2000). The
results from the algorithm allow estimation of the regional sum of squares

SSQror = (Rx — P'0)"W2R%,, RrorW?(Re — P~'b) (27)

It is known that if the noise model is correctly specified including the underlying value of 03
then the total sum of squares error will be distributed y? with degrees of freedom equal to the
number of data points. This is also true on a subset of the regions if they are independent
from the other regions. Thus if we want to test the homogeneity of a region, we just test the
regional sum of squares error against the size of the region, assuming the correctly specified
noise model.

SSQror ~ X*(I|ROI o) (28)
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B Glossary

B.1 Variables and Functions

Symbol  Description

Point spread operator

Region of interest definition

Tissue classification

Measured image

True PVC corrected tracer activities
Weighting matrix

Identity matrix

Number of Voxels

Number of Regions in R

Number of Classifications in T

Khatri-Rao row product (see B.2)

2O TS ~NZR SNz

) Diagonal matrix

Amaw () Maximum eigenvalue
Smax() Maximum singular value
T Relaxation parameter
Mp Poisson noise process

Ng Gaussian noise process
Og Gaussian noise std

SSQRO] Residual sum of squares for an ROI

B.2 Khatri-Rao Row Product (©)

This product is the row-wise kronecker (®)product between the rows of A, a k X m matrix
and B, a k x n matrix giving a k x mn matrix (Rao and Mitra, 1971). The product takes the
following form

a1 ® by a11b1 aeby -+ appby
A®B= as ® by _ a21b2 ageby -+ agyby (29)
ar @ by, ak1by ag2by -+ apnby

where a;; is the i — j element of A and a;, b; are the ith rows of A and B respectively.
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