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Abstract— Positron range is one of the factors that fundamen-
tally limits the spatial resolution of PET images. With the higher
resolution of small animal imaging systems and increased interest
in using higher energy positron emitters, it is important to consider
range effects when designing image reconstruction methods. The
positron range distribution can be measured experimentally or
calculated using approximate analytic formulae or Monte Carlo
simulations. We investigate the use of this distribution within a
MAP image reconstruction framework. Positron range is modeled
as a blurring kernel and included as part of the forward projection
matrix. We describe the use of a 3D isotropic shift-invariant
blur kernel, which assumes that positrons are propagating in a
homogeneous medium and is computed by Monte Carlo simulation
using EGS4. We also propose a new shift-variant blurring model
for positron range that accounts for spatial inhomogeneities in
the positron scatter properties of the medium. Monte Carlo
simulations, phantom, and animal studies with the isotopes Cu-60
and Cu-64 are presented.

I. INTRODUCTION

Positron range is one of the factors that fundamentally limits
the spatial resolution of PET images [1]. A positron travels a
short distance before positron-electron annihilation. The range
of the positron depends on its energy as well as the effective
atomic number and atomic weight of the medium. Major
interactions between positrons and the surrounding medium
include Coulomb elastic collisions with atomic nuclei and
inelastic collisions with atomic electrons [1]. In most cases a
positron first loses all its energy and then annihilates with an
electron [2]. In each inelastic collision, the positron only loses
a small part of its energy [1], as a result many collisions will
happen before annihilation and the trajectory of each positron
is tortuous.

Positron range in water has been measured experimentaly for
several medically important isotopes [3], [4], [5]. These results
show considerable variation, primarily because the resolution
of the detectors were comparable to the positron range. Palmer
and Brownell [6] proposed a 3D-Gaussian model for the anni-
hilation point distribution, assuming the positrons behave diffu-
sively. Their calculation is based on an empirical range-energy
formula. Difficulties in experimental range measurements have
also lead to the recent use of Monte Carlo simulation to
calculate positron range [1], [7].
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The effect of positron range is a blurring of the recon-
structed image. Based on the measured positron annihilation
point distribution, Derenzo and Haber proposed a method to
remove the blurring by spatial deconvolution [8], [9]. While this
method can partly recover the resolution loss, by decoupling the
deconvolution from image reconstruction we lose the ability
to optimally handle noise amplification through the use of an
accurate likelihood function.

We have developed a 3D MAP reconstruction method in
which a factored system model is used [10]. In our previous
3D MAP reconstructions, positron range has been ignored.
Recently, the development of new detector technology has
reduced crystal size so that 1mm spatial resolution is poten-
tially achievable with small animal PET scanners such as the
microPET II [11]. The spatial resolution of these scanners
is comparable to the positron range of the isotopes that are
commonly used (e.g., the mean positron range of F-18 in
water is 0.5mm). High-energy isotopes with longer positron
range have also been used in small animal PET studies [7].
In this paper we describe positron range modeling in our
system model using blurring operators in the image space.
We describe two approaches. The first uses a shift-invariant
blurring operator that implicitly assumes homogeneous range
throughout the subject. The second approach uses a sequence
of convolutions to account for the effects of inhomogeneities
in the subject. Preliminary results using high-energy isotopes
show significant improvements in the spatial resolution of the
reconstructed images compared with methods without positron
range modeling.

II. MAP IMAGE RECONSTRUCTION

Maximum a Posteriori (MAP) image reconstruction is a
Bayesian approach that can combine accurate statistical and
physical models for the data with a prior on the unknown image
[10]. PET data are modeled as a collection of independent
Poisson random variables with mean

y = Px + r + s (1)

where r is the mean of the randoms, and s is the mean of
the scattered events. P is the system matrix describing the
probability that an unscattered event is detected, which we
factor as [10]

P = PnormPblurPattnPgeomPrange (2)
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TABLE I

MEAN POSITRON RANGE IN WATER FOR ISOTOPES OF INTEREST IN PET

Isotope Mean range (mm) Isotope Mean range (mm)
F-18 0.51 Cu-60 3.09

Cu-64 0.57 Br-76 3.47
N-13 1.31 Cu-62 4.39
Cu-61 1.32 Ga-66 6.13

where Prange is a local, shift variant blurring operator applied
in the image space that models the positron range effect; Pgeom

is the geometric projection matrix describing the probability
that a photon pair reaches the front faces of a detector pair in
the absence of attenuation and assuming perfect photon pair
collinearity; Pblur is a blurring operator applied in sinogram
space that models photon pair non-collinearity, intercrystal
scatter and crystal penetration; Pattn is a diagonal matrix
containing attenuation correction factors for each detector pair;
and Pnorm is a diagonal matrix containing the normalization
factors for unscattered events.

In this paper we propose a convolutional model for the
effects of positron range which we incorporate in the MAP
reconstruction procedure through the factor Prange. Our goal
is to accurately model this effect in a computationally efficient
manner.

III. POSITRON RANGE MODEL

A. Homogeneous Medium

Since positrons are emitted isotropically, it is reasonable to
assume that the annihilation point distribution in a homoge-
neous medium is also isotropic. We model the annihilation
points in an infinite homogeneous medium with a three-
dimensional isotropic density function centered at the origin.
The shape of the density function was determined by a Monte
Carlo simulation using EGS4 [7].

The annihilation point probability density function (PDF)
f(x, y, z) represents the probability of a positron emitted
from the origin annihilating at point (x, y, z). The PDF for
a homogeneous medium is isotropic, so that is only a function
of the distance from the origin r =

√
x2 + y2 + z2, i.e.

f(x, y, z) = f(r). Using spherical coordinates (r, θ, φ) and
integrating over θ and φ, gives the one dimensional PDF F (r)
for annihilation at a distance r from the origin:

F (r) = 4πr2f(r) (3)

The 1D (F (r)) and 3D (f(r)) annihilation PDFs in water,
computed for several isotopes using EGS4, are shown in Figure
1. Table I lists the mean range for each of these isotopes.

The simplest approach to modeling positron range is to
assume the subject is homogeneous and model the effect as a
shift-invariant blurring function formed by the 3D PDF f(r)
computed for soft tissue. This can be directly incorporated
in the system model, equation (2), as a discrete convolution
operator or blur kernel in Prange. To compute this blur kernel
we need to discretize the distribution f(r). To do this we divide
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Fig. 1. Left column: 1D annihilation PDF, F (r); Right column: 3D
annihilation PDF, f(r), for several medically important isotopes from Monte
Carlo simulation.

each voxel into sub-voxels, the probability that an annihilation
happens in a sub-voxel is approximated by f(ri)δ, where ri

is the distance from the center of ith sub-voxel to the origin
and δ is the volume of the sub-voxel. The probability that
an annihilation occurs in a given voxel is the sum of the
probabilities in its sub-voxels.

In the following subsection we describe a more accurate
model that takes into account inhomogeneities in the subject.
However, we first note that a simple but effective modification
to the homogeneous model is to truncate the blur kernels at
the boundary of the subject. The approximate effect of this
truncation is to assume that any positrons that leave the body
escape and do not contribute photon pairs to the sinogram
data. This method requires only that the boundary of the
subject be determined either from a coregistered CT scan or
a reconstructed transmission image. Implementation of this
correction is straightforward since we need only window the
convolutions with the support of the subject when computing
forward and back projections.

B. Inhomogeneous Medium

In real subjects, positron scatter is neither homogeneous nor
isotropic but depends on the surrounding medium. A positron
has much higher probability of traveling a long distance
before annihilation in air than in the water. The isotropic
model described above is accurate only when the medium
is homogeneous. When the medium is inhomogeneous with
arbitrary geometry, no analytical model is available. The best
way to calculate positron range accurately in this case is
through Monte Carlo simulation. This is not practical for image
reconstruction purposes. Therefore, here we propose a new
shift-variant blurring model that approximates the transport and
annihilation of positrons in a dense medium. This is achieved
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Fig. 2. Trajectories of 100 positrons emitted from a Cu-60 point source in
water, simulated using EGS4.

r 

Fig. 3. Illustration of the inhomogeneous positron range model.

using a sequence of pairs of isotropic convolutions where one
convolution tracks the positrons annihilated at each stage, and
the other tracks the surviving positrons. The local convolution
kernels are determined by the tissue type (lung, soft tissue,
bone) surrounding each voxel.

Figure 2 shows a Monte Carlo simulation of the trajectories
of 100 positrons emitted from a Cu-60 point source in water.
We can split these trajectories into two groups: those that never
leave a sphere of radius r and annihilate within the sphere,
and those that do leave the sphere. We can model this process
by generating two images: the first image gives the spatial
distribution of positron annihilation points within the sphere.
The second is an image of surviving positrons that are confined
to the surface of the radius r sphere, with a uniform distribution
on that surface. This process is illustrated in Figure 3. We can
then track the fate of these surviving photons as follows. Each
point on the sphere surface is viewed as a secondary source.
The positrons from this secondary source either remain within a
sphere of radius r, centered at that point, and annihilate within
the sphere, or they leave the sphere. Again, we can produce two
images. The first is the distribution of positron annihilations
confined to the set of spheres defined for the set of secondary
sources. The second image is that of the surviving photons
that again are confined to the surfaces of spheres of radius
r, centered at the locations of each of the secondary sources.
This procedure is repeated until all positrons are annihilated or
escape the subject.

We can use the positron trajectories from a Monte Carlo
simulation of a point source to determine the distribution of
positrons that are annihilated and that survive at each stage
of this procedure. Note that the two images that are formed at
each stage of this procedure are both convolutions of the results
of the previous stage. The first (the annihilation image) is a
convolution of the previous image of surviving positrons with

Fig. 4. Illustration of the convolutions in each stage of the inhomogeneous
range model.

a blur function which is zero outside the sphere of radius r and
equal to the annihilation density within the sphere. The second
image (the surviving or propagating positrons) is formed as the
convolution of the previous image of surviving positrons with
a kernel that is nonzero only on a spherical surface of radius
r, with a value equal to the fraction of surviving positrons in
that stage normalized by the surface area of the sphere. This
process is illustrated in Figure 4. Note that at each stage, the
surviving positrons will have lower average energy than in the
previous stage, so that the probability of annihilation within
each stage increases as we move from one stage to the next.
Note also, that at each stage we record the annihilation of
only those positrons whose trajectories do not leave the sphere
of radius r; it is possible for other positrons to subsequently
annihilate within this sphere, but if they first leave the sphere,
then these annihilations are accounted for at a later stage. This
property is important since it allows us to model the effect of
inhomogeneities within the subject as we describe below.

Note that if the positron source is spatially distributed rather
than a point source, the above procedure can still be used
by applying the convolution operators throughout the source
volume. The procedure can also be readily discretized into a
set of discrete convolutions on the image volume. Since the
convolutions are all local, the approach is a practical alternative
to Monte Carlo simulation, and can be implemented as a linear
operator on the source distribution, which we represent as
Prange in the system model in equation (2).

This procedure of successive convolutions will track the fate
of all positrons within the subject. It implicitly involves two
assumptions that we now describe and discuss.

• We assume that positrons are scattered isotropically. While
this is true after several scatters, it is not the case for
the first few scattering events. This inevitably causes
errors in our range model which we minimize by fitting
the parameters of the discrete convolution model directly
to the 3D range function f(r) rather than using the
parameters determined directly from the Monte Carlo
positron trajectories. We illustrate the accuracy of this
approximation in the following section.

• The image is assumed to be locally homogeneous. Using
Monte Carlo simulations we can determine the convolution
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kernels for each tissue type of interest; here we normally
assume the body consists of soft tissue, lung and bone. The
kernels are then applied to each voxel in turn to perform
the convolution. Since we discretize the volume, we must
assume a single tissue type at each voxel in order to select
the appropriate convolution kernel. If we select the sphere
radius r equal to the voxel size and assume the mass of the
voxel is concentrated at the center of each voxel, selection
of a kernel for a specific tissue type is equivalent to
assuming each voxel is homogeneous, but that neighboring
voxels can be of different tissue types. Consequently, the
local homogeneity assumption only applies at the sub-
voxel level and is therefore not restrictive.

To discretize this process, we use two 3 × 3 × 3 blur
kernels at each stage, one for annihilation and the other for
propagation. These kernels are calculated by discretizing the
continuous model described above for each medium. In forward
and back projection, the kernels used for each voxel should
be determined from a co-registered CT image segmented into
bone, soft tissue and lung regions. Note that at each stage, the
kernels at a particular voxel change as the average energy of
the surviving positrons reduces.

IV. RESULTS

A. Monte Carlo Simulation of Two Media: Inhomogeneous
Model

To evaluate our inhomogeneous model, we performed a
Monte Carlo simulation using two media. In the simulation a
Cu-60 point source was placed in an infinite medium composed
of soft tissue and lung, separated by an infinite plane at z = 0.
The point source was moved from the boundary into the soft
tissue with a 1mm stepsize. We calculated the positron annihi-
lation density distribution using the inhomogeneous model, and
compared this with the distribution computed from the Monte
Carlo simulation data. For display purposes, we reduced the
results to one dimension by forming planar projections for each
value of z, i.e. for each point source location we computed
the projected point spread function (PPSF) as the sum of the
annihilation density distribution f(x, y, z) over each z plane:
PPSF (z) =

∑
x

∑
y f(x, y, z).

Figure 5 compares PPSFs from the Monte Carlo simulation
with the inhomogeneous convolution model when the point
source is at the soft tissue/lung boundary and when it is 3mm
inside the soft tissue. The fractional mean squared error in
the PPSF is also shown as a function of the location of the
point source. These results demonstrate that the inhomogeneous
model is able to capture the asymmetries in the annihilation
distribution along the z axis for this inhomogeneous medium,
although the accuracy deteriorates as the boundary is ap-
proached. We note that this simulation is for Cu-60 which
has a very high positron energy and hence the isotropic scatter
assumption is more strongly violated here than for lower energy
positrons. Consequently we can expect lower mean squared
error for isotopes of lower energy.

(a) Illustration of the source
and media locations for
study of inhomogeneity.

(b) Mean squared error of
PPSF as a function of point
source location on z axis.

(c) PPSF for a point source
at the soft tissue/lung
boundary.

(d) PPSF for a point source
3mm inside the soft tissue
region.

Fig. 5. Comparison of the inhomogeneous convolutional model with Monte
Carlo data for a a Cu-60 point source placed in a medium consisting of planar
slabs of soft tissue and lung.

B. Phantom Simulation: Homogeneous Model

We simulated a 6cm × 5cm 3D mouse chest phantom and
the image was blurred with the positron range kernel simulated
using Cu-60 in water. The blur kernel was truncated using
the true boundary of the object, then the masked image was
forward projected to obtain the sinogram. The mean positron
range of Cu-60 is 3.09mm. The parameters of the Concorde
microPET R4 rodent scanner were used in this simulation. The
simulation is noiseless for the purposes of demonstrating the
artifacts that arise if a homogeneous range function is used for
reconstruction. Figure 6 shows the central plane of the phantom
and the images reconstructed with and without truncating the
blur kernel when forward and backprojecting. Artifacts are
clearly seen in the image reconstructed without truncating. We
see similar artifacts in in vivo mouse scans with positron range
correction when we do not truncate the range function. This
simulation indicates that in general a simple homogeneous
model that compensates for positron range is not sufficient
and will lead to artifacts, particularly at the boundaries of the
subject.

C. Animal Study

We scanned mice injected with Cu-DO3P, a bone-seeking
agent. Three studies were performed using three different Cu
isotopes: Cu-60, Cu-61, and Cu-64. Data were acquired using
the Concorde microPET R4 scanner. The intrinsic resolution of
the R4 is less than 2mm. In these studies activity was primarily
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(a) (b) (c)

Fig. 6. Cu-60 chest phantom simulation. (a) Central plane of the phantom
simulated; (b) Image reconstructed without truncating the positron range blur
kernel at the object boundary; (c) Image reconstructed with truncation.

in bone and internal organs so that boundary masking was not
essential.

Figure 7 shows maximum intensity projection (MIP) images
for the Cu-60 and Cu-64 labeled tracer reconstructed using FBP,
MAP with positron range modeling (homogeneous model) and
MAP without positron range modeling. The effect of positron
range modeling can be verified visually.

V. CONCLUSION

We have presented a new model for positron range that can
be included as part of a statistical reconstruction method such as
MAP or OSEM. The model accounts for inhomogeneities in the
positron scatter properties of the subject through decomposition
of the model into a sequence of local convolutions. Through
Monte Carlo simulations we have verified that this model is
able to capture asymmetries in positron range that occur for
point sources near tissue boundaries. A full evaluation and
application to in vivo data is still needed. We also show a pre-
liminary in vivo study of correction for positron range in which
the homogeneous model is used and appears to demonstrate
significant improvement in resolution. However, the results of
the phantom study presented indicate that these results need
to be interpreted carefully, since inaccurate range correction
can produce apparent resolution enhancement while actually
introducing significant image artifacts. This phantom simulation
demonstrates that some form of modeling of inhomogeneity
in positron range is necessary when range is included in the
system model.
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