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Positronium (a hydrogen-like bound state of an electron and  

a positron) is a convenient probe to determine the sizes of 

subnanometric free volumes (voids) in condensed matter. A review 

of experimental methods used in positron spectroscopy and 

examples of their application to the free volume studies are 

presented. 

 

 

1. INTRODUCTION 

 

Positronium (Ps) is a bound structure of an electron and positron, 

thus it is a kind of hydrogen-like atom with reduced mass equal to half of 

electron mass, m’ = me/2. As a consequence, the binding energy of its 

ground state is half of that for hydrogen –6.8 eV, the most probable 

distance of particles is 2a0 (where a0 = 0.053 nm is the Bohr radius). The 

positronium was discovered in 1951 by Deutsch [1] in the processes of 

positron slowing down in gases.  

Energetic positrons entering matter lose their energy by ionization,  

excitation of the medium molecules, production of radicals etc. The cross 

section for ionization is of the order of 10
–16

 cm
2
, while the cross section 

for the simplest, two-quantum, annihilation vary from 10
–22 

cm
2
 for 

positrons with the energy comparable to that of atomic valence electrons, 

to 5·10
–25 

cm
2
 for positrons with the energy 100 keV. Thus, the 

annihilation „in flight” is negligible and the transformation of electron-
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positron pair into gamma quanta occurs almost exclusively after positron 

thermalization. At this stage the direct annihilation competes with that 

preceded by the formation of the bound state. 

The states of Ps show a hyperfine structure. Depending on mutual 

spin orientation of involved particles we have the singlet state 

(antiparallel spins) called para-positronium, p-Ps, or triplet state (parallel 

spins) – ortho-positronium, o-Ps. Due to the parity conservation law p-Ps 

can annihilate from its ground state with the emission of an even number 

of -quanta, o-Ps – of an odd number (one-quantum annihilation of free  

o-Ps is forbidden). The lifetime of p-Ps decaying in vacuum into two 

gamma quanta 511 keV is S = 125 ps, the three-quantum process of o-Ps 

disappearance occurs relatively slowly, the mean lifetime of o-Ps in 

vacuum is T = 142 ns; the energy spectrum of quanta is continuous 

(0÷511) keV. Just that presence of long-lived component in the positron 

lifetime distribution is the hallmark of o-Ps formation and served for Ps 

identification in Deutsch’s experiment. The processes with emission of 

four or more quanta can be neglected; the probability of decay decreases 

rapidly with the number of emitted quanta, e.g. the ratio of probabilities 

(branching ratio) of four- and two-quantum annihilation is about 1.5 ·10
–6 

[2]. Quantum electrodynamics predicts also an exotic decay of Ps into  

a pair neutrino-antineutrino, but the branching ratio is 6 ·10
–18 

[3]. 

Soon after the discovery of positronium in gases it was reported that 

similar bound structures can be formed also in molecular substances, 

liquid and solid [4, 5]. Their properties (decay mode, lifetime, momentum 

at the time of annihilation), depending on the properties of medium in 

which they reside, open the possibility to use Ps as a tool in the study of 

condensed matter. In particular, one can use positronium techniques to 

determine the sizes of free (i.e. electron-less) volumes in solid, in the 

range from 0.2 nm to about 50 nm. 

In condensed matter Ps is formed almost exclusively in its ground 

state, due to the low binding energy and large size of that atom in excited 

states. Positronium in these states can be created as a result of interaction 

of slow positrons with surfaces, when newly formed Ps escapes into 

vacuum. Excitation of free Ps atoms is possible by resonance absorption 

of tunable laser light. All fundamental properties of Ps atom like the 

hyperfine structure of low-lying levels, respective lifetimes to annihilation 

and to the optical transitions between the levels, the behaviour in 

magnetic or electric fields were calculated and confirmed experimentally. 

Long lasting controversies between experimental results for the o-Ps 
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lifetime in vacuum [6] and its predictions by quantum electrodynamics 

[7] were finally  eliminated [8].  

 

* * * 

The structure and properties of the positronium excited states 

are not the subject of this paper, respective data one can find in the 

review articles [I-III]. 

 

 

2. POSITRON AND POSITRONIUM SOURCES 

 

2.1. Radioactive sources 

As positron sources the isotopes decaying via 
+
 process, e.g. 

22
Na, 

44
Ti-

44
Sc, 

68
Ga, are commonly used. The advantage of a 

22
Na source 

(beside its long half-life, 2.7 y) is that the beta decay populates the excited 

state of a 
22

Ne nucleus, which in very short time (  5 ps) de-excites 

emitting the 1274 keV gamma ray. The appearance of that gamma 

quantum can serve as a signal of positron birth. Also the decay of 
44

Sc is 

accompanied by the emission of a 1160 keV quantum. 

In the majority of experiments the positron source is in the direct 

contact with the investigated sample (in a sandwich between two 

samples). In order to avoid sample contamination by 
+
 activity and allow 

its multiple use, the radioactive source is usually sealed in a thin 

envelope. It can be made of metal foil (e.g. nickel  1 m thick), or 

polyimide Kapton foil, (6 ÷ 10) m thick. Such foils absorb about 10% of 

positrons from the 
22

Na source and respective correction should be 

introduced at processing the experimental data. The Kapton foil is the 

most convenient source envelope, as it introduces one lifetime component 

only. Moreover, this lifetime, 380 ps, practically does not depend on 

temperature. The 
22

Na activity is usually deposited in the form of NaCl 

solution and then dried. NaCl corrodes some metal backings if not 

protected by a very thin non-corroding layer, e.g. of gold (a few nm). The 
22

Na activity in the form of Na2CO3 is sometimes used. 

As an example of positron source without envelope one can mention 

the glass foil with Na diffused in at high temperature [9]; the sources with 
22

Na implanted as high energy ions into metallic foils [10, 11] did not find 

practical application yet. In the study of liquids the 
22

Na activity can be 

dissolved directly in the sample volume. 
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2.2. Pair creation 

Another source of positrons is via the creation of electron-positron 

pairs in the interaction of high energy quanta with matter. Hitting the 

target they transform into electron-positron pairs separated then by the 

magnetic field. Such quanta can be produced in two ways
1
: 

– as the Bremsstrahlung of high energy electrons accelerated in  

a synchrotron, 

– at the inverse Compton scattering, i.e. at head-on collisions of 

laser quanta with high energy electrons. 

An interesting variant of that technique is the creation of pairs   

in situ, inside the investigated sample. This is important, when, on certain 

reasons, like high sample temperature, it is not possible to place the 

radioactive source in contact with the sample. For example, in the 

experiment by Hirade et al. [12] X-rays of 10–20 MeV, produced by the 

inverse Compton effect, transformed into e
+
e

_
 pairs when entered the 

investigated sample (Ta or Ge in this experiment). 

 

2.3. Slow positron beams 

In both processes, i.e. beta decay and pair production, the energy 

spectrum of positrons is continuous and extends over a broad range. In the 

case of  
22

Na that range is (0–550) keV, in 
68

Ge (0–1.9) MeV. In certain 

experiments one needs to have a monoenergetic beam of positrons. It can 

be produced due to the negative work function for positrons in some 

solids. The positrons from a conventional source enter the solid, 

thermalise, and some of them are re-emitted if they approach the surface 

in their diffusional motion. The energies of re-emitted positrons 

correspond to their work function, i.e. (1–3) eV [13, 14, 15]. Then, they 

can be accelerated to the needed energy by application of a voltage 

between emitter and accelerating electrode. The efficiency of slow 

positron emission is very low, 10
–3

–10
–4

 per one positron implanted into 

the medium. The most popular medium with negative positron work 

function is tungsten single crystal in the form of foil with the surface in 

(110) crystalline direction. The efficiency in this case can reach to 3·10
–4

, 

the energy of re-emitted positrons is 3 eV. The highest efficiencies are 

obtained using solidified noble gases, e.g. neon [16], however, this 

technique is not too convenient to use. 

                                                 
1
 Historically, the first high energy radiation used to produce e

+
e

-
 pairs were gamma 

quanta 2.6 MeV from natural radioisotope ThC’’.  
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Typical arrangement of the slow positron beam is shown in Fig. 1. 

Positrons from a 
22

Na source hit the W foil (1÷2) μm thick. At this 

thickness about 90% of fast positrons pass through, together with re-

emitted ones. They are accelerated by a small voltage and enter a weak 

magnetic field (5÷10) mT, produced by a long coil. This field is too weak 

to change considerably the direction of primary beta rays, but the slow 

positrons are deflected and guided in a helical motion along the coil axis. 

The beam of slow positron can be then accelerated (or decelerated) to  

a selected energy. 

 

 

 

 

 

 

 

 

 

 
Fig.1.  Slow positron source. 

 

It is also possible to form the short bunches of monoenergetic positrons, 

i.e. pulsed beams of particles. This technique will be described in Sec.3.1.2. 

 

2.4 Positronium beams 

Usually, in application to the investigations of condensed media, 

positronium is formed inside the medium under study, however, if one 

wants to observe the interaction of Ps with surfaces or molecules of gas, it 

becomes necessary to have free Ps in vacuum. It can be produced with 

high efficiency when the slow positron beam hits the surface of solid; it 

can pick up an electron and be re-emitted as Ps with particularly low 

energy. When the target is heated to the temperatures close to its melting 

point, the efficiency of Ps formation by positrons hitting the target with 

energies below 100 eV can approach 97% [17]. Particularly effective is 

the target made of germanium with the surface in (100) direction. 

In some experiments, like Ps Bose-Einstein condensation, gravitation 

study of antihydrogen, Rydberg states of Ps, one needs to produce 

thermalized positronium (in particular at very low temperatures). It can be 

done by implanting e
+
 beam with the energy of several keV  into ordered 

porous silica (see Sec.11.2). Ps formed in silica and emitted into the open 

primary + 

W 
foil 

-30 V 

slow e+ 

22
Na 
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pores thermalizes and diffuses to outside [18]. The efficiency of e
+
 - Ps 

transformation exceeds 50%. 

The positronium beam of tunable energy can be produced employing 

the photodetachment of Ps
_
, i.e. the bound state of positron and two 

electrons [19]. Ionizing potential of this negative Ps ion is 0.33 eV. In the 

setup described by Michishio et al. [20] the monoenergetic beam of 

positrons bombards the target of tungsten foil covered by a monolayer of 

Na.  The Ps
_
 ions emitted from this surface (efficiency about 1.5%) are 

accelerated by a static electric field. The Ps
_
 beam is then illuminated by 

1074 nm laser detaching the electron from about 50% of ions. 

 

 

3. METHODS OF POSITRONIUM OBSERVATION 

 

Fig. 2 shows the spectrum of pulse amplitudes produced by a germa-

nium detector registering the annihilation radiation.  

 

Fig. 2. Pulse amplitude spectrum of annihilation radiation registered by germanium  

            detector. A – two-quantum annihilation (single 511 keV line, broadened by  

            Doppler  effect), B – three-quantum annihilation (continuous energy spectrum  

          0–511 keV). Spectrum B is collected with very high statistics. 

A 

 

 

 

 

 

 

 

 

 

 

 

B 
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The gamma quanta of energy E  give the pulse amplitudes corres-

ponding to the total energy and continuous distribution related to the 

energy left by recoil electrons at Compton scattering. The spectrum A is 

for two-quantum annihilation, B – for three-quantum one. The pulse 

amplitude spectra produced by detectors are superpositions of the spectra 

type A and B; in the case of a 
22

Na source the spectrum contains 

additionally the pulses belonging to 1274 keV gamma rays. 

 

3.1.   Positron annihilation lifetime spectroscopy (PALS) 

3.1.1.  Lifetime spectrometer 

The distribution of positron lifetimes is measured using the delayed 

coincidence spectrometer, usually of “fast-fast” type. As a rule the 
22

Na 

source (about 10 μCi) is used. The birth of positron is signalized by 

registration of the 1274 keV gamma quantum from the 
22

Na source in the 

scintillation detector, the stop signal denoting the death of positron comes 

from the detector registering one of two 511 keV annihilation quanta. The 

simplified block scheme of the spectrometer is shown in Fig. 3. To avoid 

summing-up effects produced by scattered radiation the scintillation 

counters cannot be placed in face-to-face setting [21], but  rather at an 

angle like 90°. The signals from the counters are sent to the differential 

constant fraction discriminators (DCFD). They choose from the spectrum 

of pulse amplitudes only those corresponding to the energies around the 

selected one. In the start counter it is the energy 1274 keV, in the stop 

counter it is usually the energy of two-quantum annihilation radiation 

511 keV. When the three quantum annihilation dominates and produces 

the continuous gamma spectrum, that “energy window” should be 

broadened toward lower energies. Discriminators generate the timing 

signals to the time-to-amplitude converter (TAC). At the output of TAC 

one obtains the pulses with the amplitude proportional to time elapse 

between start and stop signals; these pulses are then recorded in 

respective channels of a multichannel amplitude analyser (MCA). 

Sometimes in the PALS spectrometers the pulse amplitude selection and 

timing process are separated (fast-slow spectrometer); they can contain also 

some extra circuitry like the units rejecting the events of pulse pile-up.  
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Fig. 3.  Block scheme of the delayed coincidence spectrometer (in the simplest  

            fast-fast version). HV – high voltage supply; SC – scintillation counter,  

            DCFD – differential constant fraction discriminator, DEL – delay line,  

           TAC – time to amplitude converter, MCA – multichannel analyser. 

 

To obtain the best time resolution of the spectrometer, the 

scintillators should have the rise time of the signal as short as possible. 

During long time the fastest scintillators were plastic ones (Pilot U, NE 

111). However, being built of low Z elements, they practically did not 

contain the full energy peak in the spectrum of amplitudes; the signals 

belonging to respective quanta were selected from the fragments of 

Compton continua. Introduction of BaF2 crystals [22] producing intense 

full energy pulses and very fast rising light component in the UV region, 

allowed easier selection of quanta, better timing and ensured higher 

efficiency of counting. 

Recently a new version of lifetime spectrometer appeared, in which 

DCFD discriminators are not used. The start and stop signals are analysed  

in a digital way. The front of the pulse from the scintillation counter is 

strobed with the frequency of several GHz and respective programs 

choose the appropriate moment for emission of timing signal. It allows to 

improve the resolution of spectrometer by about 20% [23]. 

 

3.1.2. Generation of the start signal 

In the standard spectrometers the START  signal comes from a gamma 

ray absorbed in the scintillator. Alternatively the START signal can be 

generated at the transition of positron through a thin plastic scintillator, 

before entering the sample [24]. Passing through the scintillator 0.5 mm 
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thick, positron loses about 140 keV of its energy; thus with a 
22

Na source 

(mean 
+ 

energy ~180 keV) the fraction of transmitted positrons would be 

substantially reduced. The method is better suited to such sources like 
68

Ga, with mean 
+
 energy about 650 keV. The advantage of such START 

signal production is 100% efficiency of positron registration, that speeds 

up the data collection. In the setup with positron transmitting detector, 

one sample only is needed, while in traditional version, two pieces of 

sample have to be placed on both sides of the source. 

Instead of a thin scintillator Shirai et al. [25, 26] propose to use a 

silicon avalanche diode. The signal produced when the positron 

penetrates the diode has the rise time of about 1.5 ns, i.e similar to that 

from the fast scintillator, thus diode detector does not deteriorate the 

resolution of the spectrometer. A disadvantage can be small surface of the 

detector (  5×5 mm). 

In the case of slow positron beams generation of the start signal 

needs other solutions. It can be realized in two ways: 

a) monitoring the positron by secondary electrons, 

b) applying the pulsed beams.  

The method a) was developed by Lynn, Frieze and Schultz [27]. 

Slow positrons, accelerated to the energy of several keV are directed to a 

nickel foil remoderator; secondary electrons ejected from the foil are 

detected by a channel electron multiplier, forming the start pulse. The 

remoderated positrons are transported to the sample chamber (Fig. 4). 

 Fig. 4. Experimental setup for the lifetime measurements with positron. 

 

In the method b) short pulses of positrons can be produced when 

their beam passes through a sequence of accelerating and decelerating 

fields. An example of such pulsating source, as designed in Aalto 

University [28], is shown below (Fig. 5). The beam of slow positrons 

SC 

TAC 

Channel 

plate 

detector 

Ni foil remoderator 

remoderated e+ beam 

start   stop 

sample 
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enters the prebuncher fed by radio frequency (RF) sine wave voltage  

33.3 MHz and its first harmonic. At the first part of oscillation period the 

positrons which entered earlier get less energy than those which arrived 

later, and thus in a drift tube 1 m long they catch up each other and 

become primarily bunched (focused in time). Then they are accelerated 

by 1 kV and pass through the “chopper” supplied by RF 16.6 MHz. The 

phase of oscillation in the chopper is matched to get the arrival of the 

bunch when the voltage at that device is near zero (twice per each cycle). 

The chopper is followed by next oscillator working at fifth harmonics, 

166 MHz, forming the final bunch. At the output the duration of positron 

bunch is less than 200 ps, the cycle of repetition of the bunches is the 

same as of the prebuncher, i.e. their spacing is 30 ns. The start signal is 

produced by the RF generator. 

Fig. 5.  Formation of the slow positron pulsed beam. 

 

There is to note that repetition rate of the system is much higher than 

the flux of positrons ( 10
4
·s

–1
). Thus, the term “bunch” cannot be 

understood literally, since the majority of cycles is empty and the 

remainder contains a single particle only. There is no production of the 

bunches of many particles, the role of buncher is to correlate precisely in 

time the arrival of particle at the output with the generated start pulse.  

 The situation described above appears at relatively weak flux of 

positrons, obtainable with a radioisotope as a primary source. When the 

positron beam is produced by the Bremsstrahlung from a powerful 

synchrotron accelerator, the positron flux at the output of
 
 installation, like 

ELBE in Dresden [29], can reach 7·10
8 

s
–1

. In this case the real bunches 

of many positrons are produced (about 60 moderated positrons per 

bunch), the duration of pulse is reduced to 5 ps. 

 

3.1.3.  Structure of spectrum 

The counting system has finite time resolution, i.e. for exactly 

simultaneous signals it produces the distribution of counts in time P(x), 

prebuncher       drift tube           chopper      buncher 

33,3 MHz 
+66,6 MHz 

-1kV 
16,6 MHz     166 MHz 

e+ 
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where x is the time shift observed experimentally. Thus, if the real 

distribution of lifetimes is f(t), the instrumental distribution N(x)   

 Bdt)t(f)tx(P)x(N +−=
∞

0

 (1) 

where x is the delay of stop signal after the start one (i.e. “the instrumental 

time”), t - the real time, B is the constant background produced by random 

coincidences. P(x-t)dx means the probability that the event which occurred 

at the moment t will be shifted by the spectrometer’s electronics to the 

interval ‹x,x+dx› (
+∞

∞−
= 1dx)x(P ).The full width at half-maximum 

(FWHM) of the P(x) curve is usually (160 ÷ 300) ps, its shape can be 

approximated by the Gaussian (or a sum of Gaussians).  

The positron in a definite state i annihilates with the rate 

characteristic for that state i (mean lifetime i = 1/ i). If in the sample 

positronium is formed, the distribution of annihilations in time contains at 

least 3 exponential components (Fig. 6) related to: annihilation of free 

positrons, para-Ps and ortho-Ps:   

 (2)

where Ii is the relative intensity of i-th component ( Ii = 1).  

 

Fig. 6. The positron lifetime spectrum and its structure (exponentials related to  

            particular annihilation processes, convoluted with instrumental resolution  

            curve). Solid line – ortho-Ps, dashed – para-Ps, dash-dot – annihilation  

           of free positrons, dots – random coincidence background. 
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Due to statistical weights of para and ortho states the ratio of 

intensities of respective components should be 1:3 (provided that there 

are no additional processes of Ps transformation). The lifetime of para-Ps 

in vacuum is S = 125 ps, and even if in the medium it is modified, it 

remains the shortest-lived component of the spectrum. Freely annihilating 

positrons (i.e. disappearing in collisions with electrons) in an organic 

medium produce the component with the lifetime 2 = (250÷500) ps; the 

longest lifetimes observed in the PAL spectrum are ascribed to ortho-Ps. 

The ortho-Ps in vacuum has its intrinsic lifetime T = 142 ns, but while in 

the medium it has an additional possibility to annihilate not with its 

“own” electron, but with an electron from surrounding molecules, which 

has an opposite spin orientation. This process, called pick-off [30], is a 

two-quantum one and leads to the shortening of o-Ps lifetime 3 = 1/ 3: 

 Tpo λλλ +=3  (3) 

where po  is the pick-off decay rate. The pick off process influences also 

the lifetime of para-Ps: 

 pos λλλ +=1  (4) 

The value of po for para- state, according to Dupasquier, is the same 

as for ortho state [31]. Due to the high value of s= 8 ns
–1

 the role of pick-

off in this case is marginal. 

 Positronium in condensed matter locates usually at “free 

volumes”. i.e. electron-free regions: local voids, cavities, intermolecular 

empty spaces etc. In the single crystals of simple compounds: ice [32], 

silica (quartz) [33], with low intensity in alkali-halides [34] a delocalised 

Ps in a Bloch state was observed too (see Sec. 3.2).  

 When Ps is localised in a void, the probability of the pick-off 

process depends on the overlap of its wavefunction with the surrounding 

bulk medium. The larger the free volume, the smaller is the pick-off rate 

and hence the longer the o-Ps lifetime. Details of the relation between 

void size and o-Ps lifetime are described in Sec. 5. 

 Ortho-Ps in solid can be trapped at sites of various size, thus it can 

produce several long-lived components, therefore the summation in Eq. 2 

should be made over all of them (i.e. the number of spectrum components 

is n+2, where n means the number of different Ps trapping sites)
2
.  

 

 

                                                 
2
  The source envelope adds to the spectrum an extra component. 
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3.1.4.  Spectrum analysis 

The analysis (decomposition) of a spectrum consists in determination 

of all i and Ii and is performed using standard programs, like 

POSITRONFIT [35]. Sometimes the free volumes have no identical sizes, 

but (like in polymers) represent a continuous distribution around an 

average value. In such a case the LT program [36] can fit to the 

experimental spectrum, beside the average lifetime, also the width i of 

the lifetime distribution approximated as log-Gaussian one.  

In the programs mentioned above the number of components is fixed 

a priori. In the MELT program [37] the approach is entirely different.  

A dense grid of several hundreds (or more) mean lifetime values is 

assumed and the result is a set of intensities ascribed to each point of the 

grid, the principle of statistical entropy maximum is used as  

a regularization factor. The quasi-continuous distribution of mean-

lifetimes can have an arbitrary shape; if it consists of distinct peaks, one 

can calculate the average mean lifetime and intensity for each peak. An 

example of the result of MELT calculations is shown in Fig. 7. 

In typical cases the spectrum containing 10
6
 coincident events is 

sufficient for three-component constraint-free analysis; it can be collected 

in approximately 1 h. The spectra for the MELT treatment need the 

statistics at least by one order of magnitude larger. 

 
 

 

Fig. 7. Discrete and quasi-continu-

ous lifetime spectra. Distribution of 

mean lifetimes obtained by the 

MELT procedure for poly(methyl-

phenyl-silylenemethylene) sample. 

Dots – fresh sample; open circles – 

after rapid cooling to 77 K and 118 

h storage.  (After Suzuki T. et al. 

[38]). 

 

 

3.2.  Momentum distribution of annihilating pairs 

3.2.1  Angular correlation of annihilation radiation (ACAR) 

In the coordinate system in which the e
+
e

-
 pair before annihilation is 

at rest, the two-quantum annihilation results in the emission of two 

gamma quanta of the same energy mec
2
 = 511 keV (exactly: mec

2
–B/2, 

MEAN LIFETIME, ns 

IN
T

E
N

S
IT

Y
, 

a
rb

. 
u
n

it
s
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where B is the binding energy of an atomic electron) and in opposite 

directions. If the pair has certain momentum p, the direction of emission 

deviates from the angle  by  = pt/mec, where pt is the transversal 

component of the momentum and in such a case an angular distribution of 

annihilation quanta is observed. For typical momenta of electrons from 

outer atomic shells, the halfwidth of angular distribution is of the order of 

0.5° (10 mrad).  

Let us choose the x axis along the direction of one of quanta. The 

transversal component can be arbitrarily oriented in yz plane (components 

py, pz). The arrangement measuring the angular distribution of quanta 

consists of two scintillation counters working in coincidence. Single 

channel analyzers select from the amplitude spectrum the pulses 

representing the full energy peak 511 keV. One of the counters is fixed, 

the other moves in the direction, say, z (Fig. 8).  

Fig. 8. Experimental set-up for the measurement of angular distribution of 

           annihilation quanta (one-dimensional version). SC – the scintillation  

           counter, SCA – the single channel analyser;  CC – the coincidence  

           circuit. HV supplies and (possible) amplifiers not shown. 

 

The length of scintillators in the direction y is made much larger than 

the expected span of the angular distribution, thus the coincidences are 

registered independently on the value py (and also of px, because the 

energy resolution of scintillation counters is too low to notice the Doppler 

shift of 511 keV quanta induced by the px component). The angular 

distribution is very narrow, thus the angle subtended by the scintillators 

must be reduced by placing in front of them the lead slits parallel to y 

axis, usually less than 1 mrad wide. Thus, such an experimental 

SC 

SCA SCA CC 

SCALER 

SC sample 

β+
 source 

θ 

Position control 

z 

x 
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arrangement registers the distribution of one momentum component only, 

pz (1D ACAR, “long-slit geometry”). If the medium is isotropic, one can 

transform the distribution of the pz component, N(pz), into the distribution 

of full momentum: 

 
z

z

z
dp

)p(dN
p)p(N −=  (5) 

where pz = mec . 

At the moment of annihilation free positrons are thermalized, thus their 

share in the total momentum of e
+
e

–
 pair is negligible and the pair 

momentum is determined almost exclusively by the electron. Due to the 

Coulomb repulsion of positrons by nuclei the annihilation occurs mainly on 

outer, valence electrons producing the main component of the width of the 

order 10 mrad (p  10
–2

 moc). A broader distribution of annihilation on inner 

shell electrons is of very low intensity and in most cases merges with 

background. 

The thermalized para-Ps annihilates as a whole, thus it should produce 

a “narrow component” of the width corresponding to the thermal energy 

(also convoluted with instrumental resolution determined by the slit width 

and thus slightly broadened). Such a narrow peak in the angular distribution 

is observed in the case of delocalized positronium in a Bloch state. Beside 

the peak around p = 0, the momentum spectrum contains also some side-

peaks located at , where  is the reciprocal lattice vector. Usually, Ps 

in solids is trapped in a limited volume and the width of the p-Ps momentum 

distribution is ruled by the uncertainty principle. In such, most common, 

case this component is (3-5) mrad wide (Fig. 9), but traditionally still named 

“narrow” one. 

 

Fig. 9.  Angular distribution 

of two-gamma annihilation 

radiation. Dots – delocalized  

para-Ps component in ice 

single crystal, the peak at 

5.6 mrad corresponds to Gz 

component of reciprocal latti-

ce vector [32]; circles – para-

Ps and diamonds – free posi-

tron annihilation components 

in p-terphenyl doped with 

anthracene. 
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Fig. 10. Momentum distri-bution N(p) of annihilating pairs in solid (dots, no 

              positronium)  and liquid (empty circles, 70 % of positronium) guaiazulene  

            [40]. The fragment belonging to para-Ps – dashed. 

 

The ortho-Ps decaying via three quantum emission is not visible in 

ACAR (it is not peaked at 180° and has a continuous energy spectrum).  

A two-quantum pick-off process, involving electrons from molecular bonds, 

should give a momentum distribution similar to that of free positron 

annihilation. It was found however, that these two distributions are not 

identical; usually the pick-off component is slightly narrower, e.g. in liquid 

benzene the widths for pick-off and for free annihilation are 7.25 mrad and 

9.57 mrad, respectively [39]. Fig. 10 shows the full momentum distribution 

(Eq. 5) for solid and liquid guaiazulene [40]. For a solid sample N(p) 

represents the annihilation of free positrons (no Ps); in liquid state a strong 

p-Ps component appears, the remainder is the sum for free and o-Ps pick-off 

annihilation, which is narrower compared with the annihilation of free 

positrons. 

 

3.2.2. Two-dimensional momentum analysis  

Recently, the one-dimensional ACAR devices are rarely used; single 

scintillation counters are substituted by position sensitive detectors of the 

size much larger than the width of pair momentum distribution (up to 50x50 

cm). In such an arrangement two components of pair momentum py, pz can 

be determined simultaneously (2D ACAR). The detectors can be Anger 

cameras [41] or Charpak wire-chambers with Jeavons gamma converters 

[42] placed in front of them [43]. The resolution obtainable with Anger 

cameras is (3÷5) mm, with wire chambers – (1÷1.5) mm, which at the 

distance sample – detector of   10 m assures an angular resolution of 



Positronium as a probe of small free volumes in crystals, polymers… 17

0.25 mrad. The positron sources used in ACAR measurements are (10÷50) 

mCi, thus by three orders of magnitude stronger than in PALS 

measurements. 

The 2D ACAR technique is used in probing the crystal structure and 

defects by positrons, not positronium, and is mentioned here for 

completeness only. 

 

3.2.3. Doppler broadening of 511 keV annihilation radiation line (DBARL) 

The longitudinal component of the pair momentum px causes the 

Doppler shift of both annihilation quanta. The conservation of that 

component gives: 

 xp
c

)(h

c

)(h
=

−
−

+ νΔννΔν
 (6) 

thus, the Doppler shift of quantum energy is: 

 
2

xcp
)h( =νΔ  (7) 

If the momentum distribution is isotropic, the distribution of energy 

in the annihilation line is identical with that of angular distribution of 

coincident 2  quanta. For the energy of outer electrons in atoms Eat, the  

corresponding maximal (px = ±p) Doppler shift of an annihilation 

quantum is:  

 at

ate
E

Emc
)h( 506

2

2
±=±=νΔ  (8) 

(in electronvolts). The energy shift by 1 keV is equivalent to 3,914 mrad  

in angular distribution [  = 2 (h )/mec
2
]. The best resolution obtainable 

with high purity germanium (HPGe) detectors is (1.0–1.2) keV FWHM 

for the 511 keV line. Thus, the profile of a Doppler line is the same as an 

angular distribution taken with a resolution of (4-5) mrad, in comparison 

to usual 1 mrad (or less) in ACAR technique.  

When the positron source is 
22

Na, the annihilation line in the 

spectrum registered by the detector is superposed on the background of 

1274 keV gamma ray Compton continuum and to facilitate the analysis of 

Doppler profile this background should be subtracted (see next section). 

In the early stage of DBARL technique, several attempts were 

undertaken to deconvolute the finite resolution of the detector and to 

reconstruct the true momentum distribution [44]. Currently, a simplified, 

qualitative approach is in use [45]. The -quantum energy distribution is 



Tomasz Goworek 18

characterized by two parameters: S which is the ratio of area under central 

part of annihilation peak to the total area under that peak, and W – the 

ratio of areas selected on the wings of the peak to the total area (Fig. 11)
3
. 

These parameters are sufficient if one wants to observe the changes in the 

spectrum only; e.g. increase of p-Ps intensity is seen as the increase of S 

parameter. The widths of line fragments, used in S and W definition, are 

arbitrary, but in common practice S contains about 50% of line area,  

W – about (6÷8) %. 

 

 

 

 

 

 

Fig. 11. S and W parameters mean the 

ratios of the areas in selected range of 

energy to the total area of the 511 keV 

peak. 

  

Operating the S and W parameters is commonly practicized in the 

cases when no positronium in the sample appears (metals, alloys); e.g. the 

plot in the coordinates S vs. W allows to identify the defects in the sample 

structure. The attempts to improve the deconvolution method are 

continued till now [46]. 

 

3.2.4.  Coincidence Doppler spectrometry 

 The background arising from the Compton scattering of the 1274 

keV gammas can be eliminated by registering the spectrum gated by the 

full energy pulses 1274 keV. A schematic diagram of an experimental 

setup is shown in Fig. 12a. The germanium detector registers the 

annihilation radiation spectrum, the scintillation counter (of much higher 

efficiency) - the gamma quanta of 1274 keV. In this version the whole 

spectrum of pulse amplitudes related to the interaction of the 511 keV 

quanta with the detector is recorded, including the Compton continuum 

(see Fig. 2A).  

 

                                                 
3
  Parameters S and W were used by W. Gustaw and K. Zaleski still in 1980 [47], in the 

positron study of titanium alloys and steel. 
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Fig. 12. a)  DBARL  coincidence spectrometer with background reduction;  

             b) two-dimensional DBARL spectrometer  511 – 511 keV. 

 

The lower part of the left side of the full energy 511 keV peak is 

slightly distorted, because on that side the  counting rate does not 

decrease to zero due to the presence of pulses produced at multiple 

Compton scattering. 

Another version of coincidence Doppler spectrometer is a two-

dimensional one (Fig. 12b). Two germanium detectors placed head-to-

head with the sample and source between them work in coincidence and 

the amplitudes of pulses are recorded in a rectangular matrix – the 

horizontal axis is for the amplitude of pulses from one counter, the 

vertical one – from the other counter [48]. A typical picture from this 

kind of spectrometer is shown in Fig. 13. Placing the counters at a 

certain distance from the source (15–25 cm) one can reduce further the 

background from the Compton continuum of 1274 keV  gamma rays. 

Along the diagonal on the diagram like Fig. 13 the Doppler shift in one 

counter is accompanied by an opposite shift in the other counter, thus 

the difference of energies of two quanta is equal to the doubled Doppler 

shift: 

 xcpEE =− 21 γγ  (9) 

GeHP 

MCA 
gate 1274 keV 

sample + source 
SC BaF2 

SCA 

GeHP GeHP 

PreamplPreampl

Two parameter 

analyser 

CC 

gate 

sample + source a)           b) 

Preampl

CC 
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Owing to the doubled shift, the momentum resolution is improved by 

a factor of 2 . The spectrum recorded along the diagonal is practically 

without background (peak to background ratio about 10
5
:1) and gives the 

opportunity to observe the momentum distributions of electrons from 

inner shells in spite of very low their contribution. 

 

 

3.3.  Age-momentum correlation method (AMOC) 

The method consists in simultaneous recording the lifetime and 

momentum of annihilating pair. In early years of positron spectroscopy, 

when the momenta were measured by the ACAR method (i.e. the angle 

was changed step by step) it was possible to record the set of lifetime 

spectra for several selected angles  only [49]. The advent of germanium 

detectors enabled to perform real two-parameter measurements [50]. The 

start signal is produced by a scintillation counter (BaF2 when the positron 

491      501          511   521      531 

491 

 

 
   

501

 
  

        

511

  

  
521

 

      
531 

 

Fig. 13. A two-dimensional picture of 

Doppler shifts at two-quantum anni-

hilation events in a FeCr sample. The 

size of picture corresponds to ±20 keV 

from the centre of two-quantum anni-

hilation line; in both coordinates. The 

arms of the cross are the Compton 

continua (mainly of 1274 keV gam-

mas).  The shades of grey shown in the 

inset mean the count numbers (from 

highest (top) to smallest (bottom).  

Courtesy of V. Sluge . 



Positronium as a probe of small free volumes in crystals, polymers… 21

source is 
22

Na, or a thin plastic when a high energy positron goes 

through). The stop 511 keV origins from other BaF2
 
being

 
in coincidence 

with a third counter, HPGe, registering the spectrum of annihilation 

quanta emitted in opposite direction to those which fell into the stop BaF2 

counter.  

In the two-parameter spectrum one axis is for the lifetime, the other 

for the energy of annihilation radiation. An example of a two-dimensional 

spectrum for fused quartz is shown in Fig. 14.  

Fig. 14. A two-parameter picture obtained by age-momentum correlation method 

              – fused quartz. Time units on the right of picture are 80 ps. (courtesy of 

            T. Hirade). 

 

Usually the data from AMOC experiments are presented as cross 

sections of a three-dimensional picture. At a fixed delay the Doppler 

broadened 511 keV peak describes the momentum distribution. For  

a given delay time t the Doppler profile  allows to determine the S 

parameter and the set of data is displayed as a function of positron age 

(delay), S(t). Alternatively, at a fixed gamma energy one can calculate the 
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average lifetime M
4
 and draw it as a function of energy: M vs. E  

(“Tsukuba plot” [51]). A typical S(t) plot for the case of sample in which 

positronium is formed is shown in Fig. 15.  

 

 

Fig.15. Typical dependence of S parameter on the positron age, as obtained by 

           the AMOC method.  

 

At the beginning of  time scale the value of S is large owing to the 

narrow p-Ps component, then dominant is the free annihilation with its 

broadest momentum distribution (small S), finally, at larger delays the 

momentum spectrum belongs to the decay of o-Ps with slightly smaller 

momenta. 

 

3.4.  Three-quantum annihilation 

Positrons, which have not formed positronium and are moving in the 

medium as free particles, annihilate mainly with the emission of two 

gamma quanta. The fraction f3 of positrons annihilating via 3  decay is 

determined by the ratio of cross sections for the respective annihilation 

modes, f3 = 3 / 2 . 

 υπσ γ /cr
2

02 =  (10) 

 α
υ

π
σ γ cr

)(
o

2
2

3
3

94 −
=  (11) 

where 0r  is the classic electron radius (r0 = 2.82·10
–13

 cm),  = 1/137 the 

fine structure constant,   – the positron velocity. The ratio of cross sections 

is 1/372; i.e. 0.27% of free positrons annihilate via 3  process. When Ps 

atom is formed, ortho-Ps in vacuum should annihilate with the emission of 3 

gamma quanta only, however the majority of o-Ps disappears via the two-

                                                 
4
   M means the average over whole time spectrum. 
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quantum pick-off process. The fraction of o-Ps decaying with 3  emission is 

equal to the ratio of decay constants in vacuum and in the medium. The 

relative intensity of 3  decays is then: 

 
0

3

3

3
372

1

τ
τ

PsoI
)P(

f −+
−

=  (12) 

where P is the probability of Ps formation, P = Ip-Ps+ Io-Ps; Ip-Ps and Io-Ps are 

the relative intensities of para and ortho components in the spectrum, 3 is 

the lifetime of o-Ps in the sample, 3
o
 – in vacuum (para-Ps does not 

participate in the 3  process). If there are no chemical interactions at posi-

tronium formation Io-Ps/P should be ¾, according to the statistical weights of 

the Ps states.  

The simplest way to determine the fraction of the 3  annihilation events 

is to measure the reduction of 511 keV peak intensity in the gamma 

spectrum observed with a germanium detector, compared to a “no-Ps 

containing” standard sample. If the positron source is 
22

Na, one can 

normalize the spectra to the same area under the 1274 keV peak, which is 

equivalent to the same number of 
+
 decays. The energy spectrum of 3  

annihilation is continuous, roughly triangular in shape, with a sharp edge at 

511 keV. Thus, the counts related to it are dispersed over the whole energy 

spectrum; this way they disappear from the 511 keV peak, thereby reducing 

its intensity. One should remember that any Ps-free standard contains 

0.27 % of three-gamma events originating from the decay of free positrons. 

The high energy edge of the 3  spectrum is not smeared out by Doppler 

effect, because in the three-gamma process the whole object annihilates with 

negligible momentum. 

One can determine the 3  annihilation intensity via the counting rate of 

triple coincidences in 3 scintillation detectors placed around the sample with 

positron source. If the angular spacings of the counters are equal, 120°, the 

annihilation quanta registered by these counters have the energies 341 keV 

and pulse amplitude selectors should be set to this energy (Fig.16). The 

emitted quanta are co-planar (with an accuracy of ~0.5°, like the co-linearity 

in two quantum annihilation), thus the random coincidence background can 

be determined by moving one counter out of the plane determined by the 

two others and the sample. The 3  fraction f3 is usually determined by 

comparing the observed rate for the sample under study to that rate in a 

medium in which Ps does not form, e.g. a metallic one, or better, the 

medium with high but well known 3  intensity. (the both spectra should be 

measured using the same source, geometry and with similar absorption 

coefficient of annihilation quanta). 
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Fig. 16.  Experimental setup for registration of three-gamma annihilation events. 

 

One can evaluate the 3  fraction from the equation (12) if the relation 

between IoPs and the intensity of the long-lived component in a PALS 

spectrum I3 is known. Applying the lifetime spectroscopy to determine f3 

one has to set a very broad energy window in the STOP channel of the 

spectrometer. Usually 

one assumes I3 =  IoPs =  

¾P; this would be valid 

when the efficiency of 

registration of all gamma 

quanta  was identical. 

However, the lower the 

quantum energy, the 

higher the efficiency of 

its registration, thus one 

can expect I3 > ¾P. On 

the other hand, a part of 

3  events is lost as the 

energy window in the 

STOP channel cannot 

reach down to zero ener-

gy. At a very broad win-

dow covering the low 

energy part of the spect-

rum the 3  fraction is 

usually overestimated. 

Fig.17 shows the com-

Fig. 17. A comparison of I3  intensities determined 

from the reduction of the 511 keV peak intensity 

and by PALS with very broad energy window in 

the spectrometer. Data collected for a set of porous 

Vycor glass samples (R. Zaleski, Ph.D. Thesis, 

UMCS Lublin 2005) 
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parison of IoPs determined from the reduction of the 511 keV peak 

intensity and I3 found from the decomposition of  a PALS spectrum. 

Finally, as a measure of the 3  decay fraction one can use the ratio of 

intensities in selected regions of the energy spectrum: in the region 

between the 511 keV full energy peak and the Compton continuum to that 

in the region of the 511 keV peak (“valley to peak ratio”). A continuous 

spectrum of 3  decays increases the counting rate in the “valley”. In the 

classic measurements with a 
22

Na source the intense background of 

Compton continuum belonging to the 1274 keV gamma line makes this 

kind of f3 estimate difficult. Much easier is such a measurement with 

positron beam, which produces the annihilation radiation only. 

   

 

4.  POSITRONIUM FORMATION AND TRAPPING 

 

4.1. The Ore model and blob model 

A simple mechanism of Ps formation was proposed by Ore [52]. It is 

described as one-act process and seems to be suitable for gaseous media 

at low pressure. As long as the positron energy is larger than the 

ionization potential Ei , or even the lowest electronic excitation potential 

E*, the chances of the reaction: 

 e
+
 + M  Ps + M

+ 
(13) 

(M means an arbitrary molecule) are negligible. At the moment of binding 

e
+
 and e

-
 particles the energy of 6.8 eV is released, thus the minimal positron 

energy necessary to Ps formation is Ei – 6.8 eV; this is  an endothermic 

process. Only the positrons from the range (E*, Ei - 6.8 eV) are able to form 

Ps. This range is called „Ore gap”. If the positron energy distribution is 

uniform from 0 to E*, the probability of Ps formation is: 

 P = (E*- Ei+ 6.8 eV)/E* (14) 

In the condensed matter the processes are much more complex; it is 

necessary to account radiation chemistry effects. The first step on this 

way of problem treatment was made by Mogensen [53] and Byakov [54], 

the idea was further developed in the papers by Tao [55], Ito [56] and 

Stepanov [57, 58]. 

Except the case of experiments with slow positron beams, the energy 

of positrons is much higher than the ionization potential of atoms in the 

medium which it penetrates. A high energy positron ionizes the medium; 
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in the most simplified version of the model, at the ionization place we 

have one electron
5
, one positron and one ion (such a set is called spur), 

electron recombination with an ion competes with Ps formation, without 

any threshold energy (contrary to the Ore model). The chances of  Ps 

creation depend on the distance d between e
+
 and e

-
 and the radius of 

Onsager sphere rc, i.e. the distance of two elementary charges at which 

their energy of Coulomb interaction is equal to the average energy of 

thermal motion kT: 

 rc =e
2
/(4 o kT) (15) 

where  is the dielectric permittivity (the particles are assumed as 

thermalized). The electron has a choice between two positive charges, 

thus the Ps formation probability is [55]: 

 )]/exp(1{
2

1
)exp()]/exp(1[

2

1
2 drdrP cPsc −−≈−−−= τλ  (16) 

The second exponential factor accounts for the possibility of positron 

annihilation as a free particle before binding into Ps. The positronium 

formation time Ps is short, particularly in liquids. In solid hydrocarbons 

the simulation by Garcia  et al. [59] estimates that time as 20 ps , thus this 

exponential can be assumed close to unity. In liquids the Ps formation 

probability strongly depends on solvatation processes. A solvated electron 

or positron has a drastically reduced mobility and therefore the 

probability of binding both particles into Ps becomes greatly diminished. 

In particular, the electron (positron) solvatation time in water is very 

short, below one picosecond [60]. 

This “spur model” was further modified. For typical non-polar media 

 is about 2, and at room temperature rc is approximately 30 nm, on the 

other hand, the distance at which the low energy (<500 eV) positron 

changes its direction of motion, due to the collisions, by more than 90° 

(the path of transport) is a fraction of nanometer. Due to those frequent 

changes of the direction of motion there is more than one electron and one 

ion in the vicinity of the last ionization place, thus at the end of track we 

have no simple spur, but a structure rich in particles called blob (Fig. 18). 

The blob disappears quickly, after electron – cation radical recombination 

or outdiffusion of various blob elements, a pair consisting of electron and 

positron can remain. If their distance is less than rc they cannot escape 

                                                 
5
 In the ionization act electron can receive the energy sufficient to cause secondary 

ionizations. When that energy is high such electron forms own ionization track  

( -electron).  
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each other and perform a diffusive correlated motion through the medium 

(free quasi-positronium, qPs).  

Fig. 18. Positron track in condensed matter. li – the path of ionization, ltr – the  

            path of transport (the size of objects does not correspond to real  

            proportions). 

 

In vacuum the Ps binding energy is 6.8 eV; after the collapse of the 

blob we have a pair whose energy is composed of the e
– 

energy 

(polarization of the medium, kinetic energy etc.), the e
+ 

energy (as above) 

and the energy of Coulomb interaction of these charged particles. 

Usually, the sum of these energies is less than 6.8 eV. The boundary bulk 

– vacuum represents then an energy step of the height U equal to the 

difference of pair energy in the bulk and outside, in vacuum,  thus 

corresponds to the Ps work function. If the e
+
e

–
 pair is near the surface 

and U is negative, Ps formation is energetically favourable, Ps would be 

emitted to the vacuum with the kinetic energy equal to that work function.  

If the region of “vacuum” is limited in all directions, it represents a 

void, being a potential well of the depth U. The energy balance is now 

slightly modified; on the side of void a positive term – the zero-point 

energy of trapped Ps appears. The centres of Ps formation are thus the 

empty volumes (or at least of negligible electron density) inside the bulk: 

voids, cavities.  

To be trapped in the potential well, Ps needs to lose some energy at 

entering the void, or at hitting the opposite wall and settle on a certain 

energy level in the well, otherwise it will go through the well untrapped. 
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The energy loss occurs via phonon creation or by excitation of internal 

oscillations of the molecular bonds. 

In the case of solids the value of U can be determined by the time of 

flight (TOF) method [61]. A schematic diagram of an experimental 

equipment is shown in Fig. 19. The pulsed beam of slow positrons is 

directed onto the sample; positronium atoms ejected from the sample pass 

by the lead slits with inserted sheet-like scintillators. Ps atoms decay in 

flight, some of them when in front of the slit. The integrated current 

signal in the scintillation counter is registered as a function of the time 

since the sample is hit by the incident positron bunch. The delay of signal 

is equal to the time of flight of Ps and for given base length allows to 

determine the velocity and the kinetic energy of o-Ps. The inset on the 

right of figure shows the results of TOF measurements by Nagashima et 

al.[62] for KJ crystal. The values of U found in the experiments of this 

kind lie in the range 1÷3 eV. 

Fig. 19. Experimental setup for time of flight (TOF) method measurements (PM 

             – photomultiplier). Inset: example of the current in the photomultiplier  

           registering the decays of o-Ps emitted from potassium iodide crystal  

           (after Ref. 62). 

 

The spur (blob) model is actual in the case of natural e
+
 sources; 

large energies assure the appearance of many ionization events. At low 
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positron energy (slow beams) the process of Ps formation is reduced to 

single positron-molecule interaction, i.e. the Ore model works. It was 

demonstrated by Eldrup et al. [63] observing the emission of Ps from the 

surface of ice bombarded by slow positrons. In the solid the upper EU and 

lower EL limits of Ore gap are: 

                                                        EU = E*-Q
+
, 

                                                    EL = Ei-6.8 eV – U 

where U and Q
+
 are the work-functions of Ps and positron from the solid, 

respectively. For ice Ei = 9.8 eV, U is estimated as (2±1) eV, thus the 

threshold of Ps formation EL is expected to be about 5 eV. The 

experiment confirms that value, the intensity of Ps emission reaches a 

maximum at about 6 eV and then decreases by a factor of two – the 

positron energy exceeds already the upper limit of Ore gap. 

 

4.2. The shape of potential well 

Due to the short range of atomic interactions the radial dependence 

of the potential is usually assumed as rectangular (stepwise) and, for 

simplicity, the geometry of a void as spherical. An exactly rectangular 

shape of the potential is a simplification: the electron density does not 

change in an exactly stepwise form; more appropriate would be to assume 

the Saxon-Woods potential [64]: 

 ]
]/)exp[(1

)/exp(1
1[)(

aRr

aR
UrV

−+
−+

−=   (17) 

where a describes the diffuseness of void limits. For a << R that potential 

transforms into a rectangular one. In the literature [65, 66] one can find 

calculations where the shape of potential has the form like tanh
2
r, or  

[1–exp(–r/R)], however such shapes seem to be unrealistic. In further 

discussions the rectangular potential will be used here as an 

approximation sufficiently accurate and easy in handling. 

 

4.3.  The smallest detectable voids 

With reducing the “empty void” size the zero point energy of  

a confined particle rises like reciprocal of the square of linear void 

dimensions; the energy gain following from binding the pair diminishes. 

At a certain size, '

minR , the energy of the level for a particle approaches 
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the upper rim of the well,  at the radii R below '

minR  there is no energy 

level for Ps in the well. In the case of a stepwise spherical potential the 

minimal void radius at which the energy level for Ps exists is: 

 
U

nm

Um
R

e

216.0

4

'

min ==
π

 (18) 

(for U in eV; positronium mass is 2me). 

 If one takes into account that Ps is not a structureless particle but a 

kind of hydrogen-like atom composed of two particles, there is another 

source of the lower limit of void radius needed for positronium. When an 

atom is confined in a spherical well its binding energy diminishes. This 

problem, for the case of hydrogen atom, was discussed by Sommerfeld 

and Welker as early as in 1938 [67] and applied to Ps by Bartenev et 

al.[68]. The wavefunction of hydrogen-like Ps in a rectangular (infinitely 

deep) well is: 

 ),()
2

exp()( nWAr ρ
ρ

ψ −=  (19) 

where =2r/na, a is the electron-positron distance (doubled Bohr radius 

a0) and W( ,n) is the degenerate hypergeometric function which can be 

written in the form of series: 
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where n is not an integer, its value follows  from the condition that W( ,n) 

has to be zero at the wall of the well, i.e. for r = R. The value of n found 

from this condition enters the expression for the Ps atom binding energy: 

 
22

0

4

16 n

em
E e

Ps ε
=   (21) 

The dependence of the binding energy on the void radius is shown in 

Fig. 20 [69]. This energy becomes zero at 1940.R
''

min = nm; at R < ''

minR  an 

atom-like structure cannot be bound. Free volumes of radii smaller than 
'

minR , or ''

minR  (or equivalent for geometries other than spherical) , cannot 

be the centres of Ps formation and their presence in the sample is not 

noticed in positronium experiments. 
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Fig. 20. Positronium binding energy as a function of the void radius (potential  

              infinitely deep). Four terms of the series (20) are taken into account [69].  

  

With increasing R the binding energy rises rapidly, and already at
''

minR = 0.5 nm it is about 6 eV, thus close to the value in open space and 

the effect of confinement can be neglected. One has to remember that the 

calculations presented above are for an infinitely deep well, for a finite 

one the numbers can be different.  

The role of confinement in other geometries – see Sec.6.3. 

 

*  *  * 

In metals positronium formation is not possible, due to 

positron screening by conduction electrons. However, one observes 

the positron trapping in defects, where the atoms are missing or 

their density decreased. To this class of defects belong vacancies, 

vacancy clusters, dislocations etc. This review is limited to 

positronium; respective data about positron trapping in metals, ionic 

crystals and semiconductors one can find in monographs [IV-VI]. 

 

 

5. ORTHO-PS LIFETIME IN A CLOSED EMPTY VOLUME 

 

5.1. The Tao-Eldrup model 

 The ortho-Ps trapped in a well annihilates by pick-off process with 

decay rate po or by intrinsic 3  decay T  (Eq. 3). Inside the well the pick-

off process does not occur (no electrons are there). The rate of decay by 

pick-off is a product of the probability P to find a positron outside the well 

in the electron-rich medium and its decay rate b in the bulk: 
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 b

po

po Pλ
τ

λ ==
1

 (22) 

The value of b is not given directly by the theory; one can try to 

estimate it using the annihilation cross section 2  for free positron and 

the electron density of the medium:     

 effeffb cnZrvnZ
2

02 4πσλ γ ==  (23) 

where r0, c, n are, respectively, the classic electron radius, the light 

velocity in vacuum, the density of molecules. Zeff is the number of 

electrons per molecule involved in the annihilation processes, which is 

not well determined by independent methods
6
. Thus, Zeff is not strictly the 

number of electrons, but rather an empirical parameter adjustable for each 

medium. Another approach, commonly used nowadays, consists in 

assuming b as a constant equal to the spin averaged Ps annihilation rate: 

 b = ¾ T + ¼ S  ¼ S = 2 ns
–1 

(24) 

 The penetration of positronium into the bulk P depends on the 

void geometry. The standard version of the discussion assumes the 

spherical void shape and stepwise radial dependence of the potential.  For 

spherical geometry: 

 
∞

=
R

out drrrP
22

)(4 ψπ  (25) 

where R is the potential well radius, out (r) – the radial wavefunction of 

Ps outside the well. For a particle in the well a whole ladder of energy 

levels can exist, however, at the size of free volumes appearing in bulk 

solids and liquids the spacings of energy levels for light particle in the 

well are much larger than the thermal energy kT at moderate 

temperatures, thus, even if there are several levels in the well, only the 

lowest one, 1s, is populated . For Ps, treated as a structureless particle, the 

wavefunction for 1s state outside the well is: 

 rrBrout /)exp()( κψ −=  (26) 

and inside the well:  

 rkrArin /)sin()( =ψ   (27) 

                                                 
6
  One can try to determine Zeff from the cross section in collisions with single molecules 

(gas phase), but in this case one obtains usually a very high Zeff , in aromatic molecules it 

can reach  values like 10
7
, which do not fit to the case of collisions in condensed matter. 
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where: 
24 /Emk e= ; 

24 /)EU(me −=κ , U is the depth of 

potential well, E – the energy of level (above the bottom of the well). The 

coefficients A and B depend on R, k and . The problem of a particle 

confined in a stepwise (rectangular) potential well is a textbook one; the 

value of P for a given R can be calculated, e.g. as it is described in [70]. 

To simplify the calculations Tao [71] proposed to substitute the real 

potential well of the depth U by an infinitely deep one. In an infinitely 

deep well the wave-function (r) does not penetrate to outside, thus in 

Tao’s conception the radius of an electron-free void was left equal to R, 

but the radius of the potential well was broadened by  (Fig. 21). The 

value of  is chosen to get the probability P to find Ps inside the electron 

rich medium the same as for a finite well depth: 

 

∞Δ+
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The value of  has to be found empirically, if the void radii are 

known from an independent source, and the values of the o-Ps decay 

constant come from positron lifetime measurements.  

Fig. 21. Radial wavefunction of Ps in a rec-

tangular potential well of radius R. Top – 

finite depth; bottom – infinite and broadened 

by  leaving the radius of an electron-less 

void unchanged.  
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In a series of papers by Eldrup et al. [72-77] the free volumes 

accommodating Ps in plastic crystals were identified as vacancies (see 

Sec. 6.4.1), thus their sizes could be determined from the crystallographic 

data as the Wigner-Seitz radii of molecules. These radii lie in the range 

(0.32 ÷ 0.38) nm. The best agreement between the radii determined from 

Eqs. 22, 29 and the Wigner-Seitz ones was obtained by Eldrup for  

 = 0.17 nm. At present the commonly accepted value is 0.166 nm. 

Fig.22 shows the relation lifetime-void radius according to the Tao-

Eldrup (TE) model. 

The  value is fitted to the data from a rather narrow, but typical for 

polymers, liquids and defected structures, range of radii (respective 

lifetimes are 2.5÷3.2 ns). The data for zeolites in Ref.[78] lying in the 

range (6÷9) ns are not fully reliable, due to strong and nonmonotonous 

lifetime dependence on temperature.  

One can compare the dependence o-Ps  vs. R  from the TE model with 

the calculations for a finite depth of a well, assuming that in the middle of 

indicated range of radii (R = 0.35 nm) the model and the calculation for 

finite well depth give the same result. Full agreement for that R is 

obtained when U is assumed 1.50 eV [69,79]. The result of calculation for 

this value of U is also shown in Fig. 22. 
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Fig. 22. The relation o-Ps lifetime vs. well radius. Tao-Eldrup model – dashed  

             line, exact solution for rectangular potential well of U = 1.5 eV  – solid  

            line [79].  
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 The Tao-Eldrup model is a first approximation, so there is the 

question what an accuracy we need at free volume size determination? If 

the 10% difference between the results for an infinite (TE) and more 

realistic well depth U = 1.5 eV we assume as still acceptable, then one 

can see in Fig. 22 that the TE model can be used for lifetimes in the range 

(1.8÷6.2) ns. With a shortening of the lifetime the discrepancy of finite 

and infinite well models rises rapidly, because in the infinitely deep well 

the energy levels exist at arbitrary small well radius, while it is not 

possible at finite U value. 

The value of the o-Ps decay constant in the bulk b is commonly 

assumed as the weighted average of decay rates of para-Ps and ortho-Ps 

in vacuum, i.e. 2 ns
-1

 (Eq.24). This approach leaves no place for electron 

density variation, which is a substantial disadvantage. However, in the 

majority of cases the formation of positronium is observed in molecular 

crystals and liquids, polymers, i.e. in organic media, having similar 

densities, being composed of similar elements – carbon, hydrogen, in 

much smaller quantity oxygen, nitrogen. For this class of media  

a universal value of b is acceptable, but e.g. for silica based materials  

a modification is probably necessary. 

 

5.2. Nonspherical geometries  

For elongated voids the approximation of free volume by a cuboid or 

cylinder is more appropriate. A respective equation for o-Ps confined in a 

cuboid is [80, 81]: 

 ∏
= Δ+

+
Δ+

−=
3

1

)]
2

sin
1

2
(1[

i i

i

i

i
bpo

a

a

a

a π
π

λλ  (30) 

where ai are the sides of the cuboid,  has the same meaning as for 

spherical voids. The cuboidal form of the void allows to apply Eq.30 to 

long channels or to the gaps in a layered structure, assuming one or two 

dimensions as infinite (for infinite ai the expression in round parantheses 

is unity). One can extend the Tao-Eldrup model also to the case of an 

infinitely long cylindrical free volume. For this geometry 
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where N is a normalization factor: 28.1)(/1
0

2

0 ==
Z

rdrrJN ;  Z = 2.41 is 

the first zero crossing point of J0(r) Bessel function (cylindrical Bessel 

function is given in the form of a series only). For the cylindrical channels 

of finite length one can use the combination of Eqs. 30 and 31. The  

Eqs. 30-31 contain the  parameter, which needs not to be identical with 

the one for spherical voids, however, the existing experimental data allow 

to assume that identity. 

Note that the regions of negligible electron density in solids are 

certainly not spherical, the potential is not stepwise, moreover, free 

volumes need not form separate cavities, being sometimes rather an 

irregular three-dimensional tangle between the molecules. The o-Ps 

lifetime gives often to us the radius of an equivalent sphere only. 

 

5.3. Two-particle structure of Ps 

In the discussion about the relation between the size of free volum 

and o-Ps lifetime, presented above, positronium was assumed to be  

a structureless particle. Attempts to account for the Ps structure were 

undertaken by Larrimore et al. [82, 83]. They have performed Monte 

Carlo calculations for two-particle electron-positron system confined 

within a hard sphere (i.e. U = ). In Fig. 23 the radial density distribution 

of e
+
 bound in the Ps structure (dots) calculated by these authors for  

a sphere radius 6 a.u. (0.265 nm) is shown; asterisks represent that density 

for a structureless Ps particle. The difference between the two variants is 

well visible.  
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Fig. 23. Radial distribution of positron density. Full symbols: positron in two- 

            particle structure of Ps, asterisks: positron in structureless Ps. Well  

            radius 6 a.u. (After Larrimore et al.  [82]). 
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Larrimore et al. compared the P values calculated as in Tao-Eldrup 

model and for an e
+
-e

-
 system assuming a rather realistic  = 3 a.u. (0.159 

nm, i.e. close to the commonly used 0.166 nm). In the range R = (5÷10) 

a.u. the values differed from those of the TE model by about 10-20 %. 

However, as long as the Tao concept of an infinite well and penetration 

parameter  are used, there is no essential difference between the Tao-

Eldrup model and the refined Larrimore approach: substituting in Eq. 29 

the sin r/r wavefunctions by the distributions calculated by these authors 

one has to modify respectively the  value to get the same P value as in 

the simple TE model (  is an empirical parameter only). 

 

* * * 

In this review we put aside the whole positronium 

chemistry, which for liquid media is a rich field of research.  

 

5.4, Positronium in a magnetic field 

Both, para- and ortho-Ps states have no magnetic moment, however, 

in the magnetic field the second-order Zeeman effect is observed; it 

follows from mixing the m=0 substates ortho and para [84]. The ortho 

substates with m=±1 are not mixed, insensitive to the magnetic field. The 

o-Ps part in a PAL spectrum consists now of two components: one 

quenchable by the field 3’,  the other – insensitive, 3. The admixture of 

singlet state shortens the lifetime of  the triplet one (admixture of triplet to 

the singlet gives a negligible effect, due to the very low value of Tλ ): 
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where )x(y 11 2 −+= /x is the mixing factor, x = 4 BB/ W ; B, B, W 

denote the Bohr magneton, magnetic induction and energy distance of 

unperturbed para and ortho states, respectively. 

 The effect of magnetic field can be easily observed by comparing 

the area under the fragment of PALS spectrum between two points 

selected on the tail of lifetime distribution, ta and tb (Fig.24) when the 

sample is in magnetic field and out of the field [85]. The ratio of areas R 

is: 
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The term 2/3 in the equation above relates to the m = ±1 components. 

The points ta and tb have to be chosen at sufficiently large delay to be sure 

that the tail of spectrum does not contain other components but o-Ps.  

An example of R as a function of magnetic field induction is shown in 

Fig. 25 [86].  

The hyperfine splitting of positronium ground state W in vacuum is: 

 
2

2

3

)0(
3

14
ψ

πα
cm

W
e

=Δ  (34) 

but in a medium it can be modified due to the change of electron density 

at the positron’s site 
2

)0(ψ  (contact electron density). We denote the 

ratio of electron density in positron’s site in the medium under study to 

that density for Ps in vacuum : 

 
2

2

)0(

)0(

vac

med

ψ

ψ
ζ =  (35)    

and then in Eq.32 the value of W has to be substituted by W.  This 

modifies the mixing factor, e.g. if  < 1, the mixing factor increases and 

the R dependence on the field B is compressed along  B axis. Such a case 

is shown in Fig. 25 [86], the best fit of the theoretical curve to the 

experimental data is for  = 0.8. 

The parameter  rules also the lifetime of para-positronium:  

 
22

0 )0(4)( ψζπλζλ crvacSS ==  (36)                         

(generally, this  need not to be identical with  from Eq.35, but a possible 

deviation is small [87]). In the majority of cases  is found less than unity, 

it means one should observe lengthening of the para-Ps lifetime 

compared to its vacuum value. In the ortho-Ps decay this effect is not 

visible, being shadowed by the dominant pick-off process. 

Fig. 24. The R parameter is the ratio of 

areas in the PAL spectrum between the 

points ta and tb in the presence of a mag-

netic field and without that field. 
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Fig. 25. R parameter as a function of magnetic field induction in p-terphenyl 

            doped with anthracene (single crystal). The continuous line is R  

              expected for  = 0.80 , dashed line is for  = 1[86]. The lifetime of the  

              3’ component decreases from 1.44 ns without magnetic field, to 0.89 ns  

              at B = 1.7 T (quenchable ortho-Ps substate with admixture of triplet is  

            called meikto-Ps), 
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The admixture of para- to ortho- state induces the two-quantum 

decays of that state and thus an increase of the intensity of the 511 keV 

peak in the  energy spectrum. The intensity of 511 keV decays in  

a magnetic field I511(B)  relative to that intensity without field I511(0) is:  
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Fig. 26. Relative increase of the 

511 keV intensity as a function of 

magnetic field B for porous zeosil 

( =1) [88]. The solid line repre-

sents the equation (37). 
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where I3 is  the intensity of o-Ps component. Fig. 26 shows the increase of 

total area under the 511 keV peak with the magnetic induction B for 

porous zeosil [88]. In this medium the intensity of the longest-lived 

component is 30 % and the lifetime 140 ns, thus the share of 3  decays is 

particularly high. 

 

5.5. Positronium in an electric field   

The probability of Ps formation depends on the electric field in the 

sample. In the simple version of spur model [55] the Eq.16 is modified to: 

 )exp()
2

1(1
d

r

kT

eDr
P cc −+−=  (38) 

where D is the electric displacement field. The theory for a more realistic 

case of Ps formation in the blob containing many ionization products is 

given by Stepanov and Byakov [89]. An electric field can reduce the Ps 

intensity, down to about half of that observed without the field. The 

electric field effect was observed by Brandt and Wilkenfeld [90] and 

some other authors. Examples of the influence of an external electric field 

are shown in Fig. 27 [91, 92]. In phenanthrene in the range to about 

30 kV/cm the decrease of I3 intensity is almost linear (Fig. 27), dI3/dE is 

about 2.9 cm/MV, similar to that reported by Brandt and Wilkenfeld [90]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 27. Relative o-Ps intensity in the electric field. Dots – teflon (polymer), 

               open diamonds – phehanthrene (crystal). I0 means the o-Ps intensity 

             without electric field. Compiled of the data from Ref.91 and  92.  
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Fig. 28. The R parameter (defined as in the case of magnetic field) as a function 

            of electric field strength E in polypropylene (according to [93]). The  

            abscissa axis is drawn as a square root of electric field. 

 

 

At very strong electric fields one observes a reversed effect (Fig. 28) 

– the intensity of longest-lived component rises to the values higher than 

without field [93]. According to Bisi et al. [93] this process is ruled by the 

Ore mechanism. A strong electric field can accelerate the slowed down 

positrons back to Ore gap making possible the ionization of atoms with 

simultaneous Ps formation. 

The sensitivity of positronium formation to the electric field acting in 

the sample allows to use positron methods to investigate the fields 

generated during irradiation, or e.g. to observe the pyroelectric effect. 

This effect consists in the generation of an electric field in a dielectric at 

the change of temperature. As an example of pyroelectric medium one 

can give solid phenanthrene. At 345 K an order-disorder phase transition 

appears (in this case disorder consists in two possible molecular 

positions). Above this point there is no pyroelectric effect, while below it 

one observes the sample polarization at the change of temperature. 

Polarization of the sample is 

 =
2

1

)(

T

T

dTTpP  (39) 

where T1 and T 2 are initial and final temperatures, p(T) is the pyroelectric 

coefficient. In phenanthrene this coefficient is peaked just below the 

phase transition point and comes to zero at 30ºC–40ºC; electric field 

generated in this solid can reduce the o-Ps intensity by 50% [92].  
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The lifetime of o-Ps is almost insensitive to the presence of sample 

polarization, the reduction of lifetime, if any, does not exceed 5%.  

 

 

6.  POSITRONIUM IN MOLECULAR CRYSTALS 

 

From the viewpoint of positronium formation one can distinguish 

three groups of molecular crystals, in which: 

– no positronium within the whole range of solid phases (in liquid 

one Ps can exist), 

– positronium can be formed if the crystal structure is perturbed, 

– positronium is formed at any temperature in natural free spaces 

existing in the structure. 

 As a representative of the first group can serve anthracene. Its PALS 

spectrum contains one exponential component only up to 5 K below the 

melting point 490 K [94]. In the range of 5 K below the melting point 

long-lived components begin to appear due to growing number of defects 

and finally in the liquid phase the o-Ps component reaches the intensity of 

about 30%. 

 

6.1.  Doped organic crystals 

In many tightly packed crystalline structures  positronium does not 

form – no empty regions exceeding in size Rmin given by Eq. 18. 

However, perturbations of the structure can increase the small free 

volumes to the extent sufficient for positronium accommodation. As an 

example of such a perturbation can serve the introduction of foreign 

molecules (guests) crystallizing together with the main component (host). 

When the guest molecules are smaller in size than the host, there is an 

enlarged free space in their neighbourhood, larger than that in the neat 

crystal. For example, in neat p-terphenyl at room temperature positronium 

does not form; in the PALS spectrum one observes a single exponential 

component only (annihilation of free positrons) and the momentum 

distribution does not contain the narrow component. However, the 

admixture (less than one percent) of three- or four-ring polynuclear 

aromatic molecules is enough to cause the appearance of both mentioned 

components [95, 96, 97]. Fig. 29 shows the dependence of the long-lived 

component in PALS and narrow component in ACAR as a function of 

admixture concentration (3-ring anthracene or 4-ring benzofluorene). 
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Fig. 29. Intensities of the para- and ortho-positronium  as a function of the guest 

            molecule concentration in p-terphenyl host. Guests: diamonds –  

            benzofluorene, circles – anthracene; full symbols are for long-lived  

             component, open symbols – for  a narrow component in ACAR (×3).  

           From [97]. 

 

If we accept the mechanism of Ps formation proposed by Stepanov 

(see Sec. 4), and denote Pp the probability of formation of the correlated 

e
+
e

–
 pair (quasi-free positronium, qPs) after the blob collapse and K – the 

trapping rate of qPs to the voids, we receive the form of spectrum as 

below: 

CH2 CH2 

b
ip

h
e
n
y
l 

  p
-t

e
rp

h
e

n
y
l 

   p
p
’-

q
u
a
te

rp
h
e

n
y
l 

  n
a
p
h

th
a

le
n

e
 

 a
n
th

ra
c
e

n
e

 
  p
h
e
n

a
n
th

re
n
e

 
  c
h
ry

z
e
n
e
 

   fl
u
o
re

n
e

 
   b
e
n
z
o
fl
u
o
re

n
e

 



Tomasz Goworek 44

)exp(
4

3
])(exp[)(

)exp()1()exp(
4

1
)(

3

32

3
2

32

3
2

221

32

1

t
K

K
PtK

K

K
P

tPt
K

KP
tf

pp

p

p

λ
λλ

λ
λ

λλ
λ

λ

λλλ
λλ

λ

−
+−

++−
+−

−

+−−+−
+−

=

   (40) 

The terms 1, 2, 4 look like typical exponential decays of para-Ps, free 

annihilation, ortho-Ps, respectively. An additional third term describes 

qPs annihilation before binding into Ps trapped in a well. The average 

e
+
–e

– 
distance in qPs is of the order of 0.5 nm [58], therefore the positron 

has in its vicinity plenty of electrons located closer than the electron 

belonging to the pair and it annihilates mainly with them, like in the case 

of free e
+
 annihilation. This term for K<< 2 is almost identical with the  

free annihilation component, for K   the lifetime shortens, but the 

relative intensity tends to 0. Due to these properties the qPs annihilation 

term is difficult to observe experimentally and there is no firm proof of its 

appearance. According to Eq. 40 the long-lived or narrow component 

intensities are: 

 
K

K
II maxN, +−

=
32

3 λλ
 (41) 

where Imax is ¾Pp for the long-lived component and ¼Pp for the narrow 

one. For moderate concentration of guest molecules the trapping rate K is 

proportional to that concentration, K = c. The solid curve in Fig. 29 

represents the function from Eq. 41 fitted to the experimental data. Note 

that the impurity induced long-lived component in p-terphenyl becomes 

visible already at an admixture concentration of the order of 10
–4 

(in the 

case of hydrogen fluoride HF in ice this limit can be shifted further down, 

to 10
–6

 [98]). The reciprocal of  can be assumed as the formation time if 

free volume is available everywhere (c = 1), like in liquids. From Fig. 29 

one obtains that time  1 ps, thus, consistent with the radiation chemistry 

data. 

In p-terphenyl with an anthracene admixture the guest molecule can be 

located in 16 nonequivalent positions in the crystal cell [99], and essentially one 

could expect 16 different long-lived components. The experiment shows one 

component (I3, 3) only, thus respective lifetimes must be very close to each other 

and we observe an average of them. One can estimate qualitatively the relation 

between the void size and the parameters characterising the annihilation process. 

The molecules of p-terphenyl are elongated and the rule “shorter guest – longer 

o-Ps lifetime” seems to be well proven.  

 



Positronium as a probe of small free volumes in crystals, polymers… 45

Fig. 30. Ortho-Ps lifetimes for various host-guest pairs. Thick line – host, thin 

            line – guest. 

 

Fig. 30 shows the host-guest pairs with respective lifetime values. 

For example, if the guest in p-terphenyl lattice is a three-ring polynuclear 

molecule, the o-Ps lifetime 3 is about 1.4 ns, while if it is four-ringed one 

– about 1.1 ns. The size of free volume determines the o-Ps lifetime and 

also the width of the p-Ps component in an ACAR spectrum; longer 

lifetime – narrower p-Ps component. This correlation is visible in Fig. 31.  

 

Fig. 31. Halfwidth of the narrow  

(p-Ps) component in ACAR vs. ortho-

Ps lifetime. Asterisk – anthracene 

+ 1% naphthalene. Dots: host –  

p-terphenyl, guests from left to right: 

benzofluorene, crysene, fluorene, 

anthracene, carbazole; double dot – 

acenaphthylene polymer [97]. 

 

 

6.2. Temperature and pressure effects  

In some cases there is no positronium in pure crystals at low 

temperatures, but by increasing the temperature we can get small free 

volumes extended to the size that enables Ps accommodation. A classic 

example can be the naphthalene crystal. Naphthalene was probably the 

first organic solid in which Ps was observed and the temperature 

dependence of its formation investigated [100,101]. A stepwise change of 

the Ps yield was observed at the melting point, but between melting and 
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room temperature no changes were seen. However, with further lowering 

of the temperature the intensity of the long-lived component diminished  

(Fig. 32) reaching zero at  220 K [102].  
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Fig. 32. Temperature dependence of the o-Ps intensity and lifetime in naphtha- 

            lene [102]. The values of 3 below 230 K are not shown due to large  

            uncertainity and scatter of values when I3 is below 1%. 

 

The sigmoidal dependence of the intensity I3 on temperature suggests 

a thermal activation of Ps accommodating defects, then their concentra-

tion should be:                                                       

 )/exp( kTHc v−∝  (42) 

where Hv = Ev+pVv is the activation enthalpy of defects (the term pV can 

be usually neglected). The slope of Arrhenius plot: ln[I3/(I3max- I3)] vs. 1/T 

allows us to determine the enthalpy, which for naphthalene is found to be 

Hv = 0.2 eV (Fig. 33). 

One could suppose that in this case vacancies serve as the centres of 

Ps formation and their concentration corresponds to the equilibrium state. 

However, for vacancies the formation enthalpy should be equal to the 

sublimation heat Ls which is 0.7 eV. Moreover, the molecular volume of 

naphthalene is about 0.173 nm
3
 [103] and for such a volume the Tao-

Eldrup model (and its modified version with finite U) predicts the lifetime 

of 2.7 ns, while in the experiment the observed lifetime is close to 1 ns.  
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Thus, in naphthalene the free volumes accommodating Ps cannot be 

vacancies. It seems that Ps is hosted in free volumes formed by 

intermolecular spaces. The thermal motion of molecules or even of single 

atoms in the molecule induces a variation of these volumes and this 

locally increased volume can be sufficient to trap Ps. This supposition is 

confirmed by X-ray studies [103]; mapping the electron density (atom 

localization) in the crystal cell of naphthalene becomes impossible above 

240 K due to excessive molecular motion. The free volumes rise also 

owing to thermal expansion of the crystal structure. A similar temperature 

dependence of the Ps yield was seen in biphenyl [104] and chrysene 

[105]. In both cases the activation energy of Ps traps was  0.2 eV.  
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Fig. 34. Temperature dependence of the o-Ps intensity in biphenyl (crosses),  

            p-terphenyl (asterisks) and pp’-quaterphenyl (dots) [104]. 

 

The same effect appeared also in other polyphenyls, like p-terphenyl 

or pp’-quaterphenyl (Fig. 34), but at much higher temperatures [104].  

Fig. 33. Arrhenius plot for naph-

thalene (R. Wasiewicz, Ph.D. 

Thesis, UMCS Lublin 1985). 
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An Arrhenius plot for quaterphenyl gives an unrealistic value of the 

activation enthalpy of 2.4 eV.  

 If the centres of positronium trapping are intermolecular free 

spaces, they have to exist at low temperatures too, but their sizes lie 

below the minimal radius (equivalent radius) 'Rmin
. With the increase of 

temperature they expand and if they have a certain distribution of sizes 

the number of them exceeding the threshold R value increases too. In this 

case the concentration c in Eq. 42 relates only to these free volumes 

which found themselves above the threshold and the concentration need 

not to be described by an exponential of Hv /T. In such a case the larger 

value of dI3/dT would be not the effect of higher Hv, but rather of 

narrower distribution of free volume sizes. If this supposition is true the 

concentration c(T) would be described rather by an erf (T–T*) function, 

not an exponential.   

At a depth of the potential well equal to 1.5 eV (as it is needed to 

justify the  value in the Tao-Eldrup model), the '

minR  is 0.177 nm.  

In p-terphenyl the o-Ps component begins to appear at about 370 K.  

An extrapolation of the set of R values (Fig. 35), calculated for finite 

well depth (see solid line in Fig. 22) from the experimental lifetime values 

down to 370 K, gives '

minR = 0.186 nm, not far from that expected for 

U=1.5 eV. 
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 If positronium is located in small thermally expanding volumes 

(like in biphenyl or naphthalene) one can expect that under pressure their 

sizes decrease, the energy of the Ps level in the well shifts up, and 

according to Eq.18 at certain Rmin the level disappears; Ps trapping 

becomes impossible and the PALS spectrum does not contain the long-

Fig. 35. Radius of free volumes 

active in Ps formation in p-ter-

phenyl as a function of tempera-

ture. Radius R was calculated as-

suming finite potential well depth 

U = 1.5 eV. Vertical dashed line 

indicates the threshold of Ps 

appearance in p-terphenyl. 
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lived component any more. An experiment of this kind was done e.g. for 

biphenyl [106] and naphthalene [107]; one of these results is shown in 

Fig.36. 
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6.3. Positronium in lamellar structures 

As representatives of molecular solids in which the positronium is 

formed at arbitrary temperature, can serve alkanes. The normal alkanes 

(n-alkanes) are saturated hydrocarbons CnH2n+2 (for short – Cn) in the 

form of carbon chains. Their molecules can appear in various geometric 

forms (conformers). At low temperatures  they have the form of straight 

zig-zag chain (all-trans arrangement of C–C bonds), at higher 

temperatures the concentration of non-planar conformers rises: one or two 

last bonds are turned out the C–C zigzag plane (end-gauche and double-

gauche conformers), two linear fragments linked by gauche-trans-gauche 

fragment (kink conformer) etc.(Fig. 37).  

 
 

 

 

 

Fig. 37. Conformers of n-alkanes, from 

top to bottom: all-trans, end-gauche, 

kink, double gauche. Hydrogen atoms 

are not shown. 

  

Fig. 36. Pressure dependence 

of the o-Ps intensity and life-

time in naphthalene, at room 

temperature [107]. 
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In the liquid (and gaseous) phase the carbon chains are flexible, the 

molecules can appear in various, curly forms, containing a great number 

of gauche bonds. Alkane crystals form a lamellar structure; within the 

lamella the molecules are packed in parallel and the spacing between 

lamella layers is 0.125 nm in even-numbered, 0.195 nm in odd-numbered 

[108] molecules. In solid even numbered long-chain alkanes the o-Ps 

lifetime rises slowly with temperature (Fig. 38).  

 

 

 

 

 

 

 

Fig. 38. Temperature dependence of the o-Ps lifetime in rigid phase of n-alka- 

              nes: C16 (triangles), C18 (crosses), C19 (dots), C20 (diamonds), C21  

              (empty circles), C23 (asterisks). 

 

The o-Ps lifetime values for odd-numbered chains lie along an 

analogous curve, but shifted upwards (about 150 ps) relatively to the 

curve for even-numbered ones [109]. The difference of lifetimes between 

these two groups of alkanes is an indication that Ps is trapped in the 

interlamellar spaces. Inside the lamella the molecules are too tightly 

packed to leave sufficient free space to accommodate the Ps atom. An 

additional argument in favour of such Ps location is an increase of the o-

Ps lifetime in mixed alkanes. X-ray investigations show that with adding 

an admixture of alkane with different chain length (shorter or longer than 

the chain of main component) the width of the interlamellar gap 

increases. Fig. 39 presents the temperature dependence of the lifetime for 

neat n-eicosane C20 and with an admixture of n-octadecane C18. At the 

octadecane content 4% the lifetime increases to the values like in odd 

numbered alkane, the the admixture of 10% gives a further  extension of 

the lifetime. 
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Fig. 39. Temperature dependence of the o-Ps lifetime 3 in: pure C20 (dia- 

            monds), pure C19 (dots), C20 + 4% C18 (crosses), C20 + 10% C18  

            (triangles). 

 

As a next example supporting the concept of Ps location in the inter-

lamellar gap can serve the lifetime spectrum of n-hexatriacontane C36. 

The X-ray scattering measurements for this alkane near room temperature 

prove the coexistence of two solid phases [110]. The PALS measurements 

at 303 and 313 K analysed by the MELT routine (Fig.40) show two o-Ps 

peaks, thus belonging to two phases [111].  

 

Fig. 40. Distribution of mean lifetimes in n-hexatriacontane C36 measured at  

             303 K. Peaks from left to right: para-Ps, free annihilating e
+
, two ortho- 

            Ps peaks of two coexisting phases (MELT program analysis [111]). 
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The peak at about 1.2 ns is typical for low-temperature rigid phase, 

the other one, located at 1.8 ns, can belong  to the other phase. The X-ray 

measurements show that the interlamellar gap in that phase is 0.36 nm, 

more than twice of that in ordinary shorter chain even alkanes, which 

explains such a large lifetime value. 

The structure of solid long-chain aliphatic alcohols CnH2n+1OH looks 

similar to that of alkanes: the long molecules are arranged in lamellae. 

The o-Ps lifetime rises slowly with temperature, dI3/dT is about 1.5 ps/K, 

reaching about 1.4 ns near the melting point.  

If Ps in alkanes locates in the interlamellar gap, its accommodation 

place has the peculiar shape of a slit in the otherwise tight structure. In a 

perfect crystal two dimensions of such a void would extend to infinity, 

and even if the real structure is disturbed by defects, only one dimension 

– namely the gap width - forms a strong confinement. The calculations 

described in Sec. 4.2 give the lower limit for Ps existence in three-

dimensional (spherical) confinement, 2Rmin slightly below 0.38 nm, while  

the gap d in even numbered alkanes is bare 0.125 nm and in odd-

numbered – 0.195 nm, but positronium may still exists there. The 

geometry of free volume with confinement in one dimension only leads to 

the results entirely different than for spherical geometry. Reduction of slit 

thickness d toward zero means that the Ps structure approaches that of a 

two-dimensional hydrogen-like atom. Such a structure was discussed by 

many authors, e.g. by Zaslow and Zandler [112]. According to the theory, 

"flat hydrogen" is four times smaller than three-dimensional one, and its 

binding energy is four times larger. The interlamellar gap in alkanes is of 

non-zero size, however in even-numbered ones its thickness is close to 

two Bohr radii (i.e. less than average distance 3ao of particles forming the 

Ps atom). The problem is analogous to that of an exciton (electron+hole 

system) in quantum well in layered solid [113]. In this case the binding 

energy increases monotonically with decreasing the well thickness, from 

three-dimensional non-confined structure to two-dimensional one, bound 

four times stronger, like in the case of hydrogen. At the gap thickness 

existing in even-numbered alkanes one can expect the binding energy 

about 1.5 times larger than that of free Ps atom. 
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6.4. Positronium in orientationally disordered crystals 

6.4.1.  Plastic crystals 

Other class of media in which positronium appears at arbitrary 

temperature are solid plastic crystals. The plastic phase is characterized 

by an orientational disorder of molecules in all spatial directions (only the 

translational symmetry of their centers of mass is preserved). The 

molecules of plastic crystals have a nearly spherical, globular shape. With 

lowering the temperature such plastic crystals undergo a first order solid-

solid phase transition introducing the ordering of  orientations (the “rigid 

phase”). This class of crystals was investigated extensively by Eldrup, 

Sherwood et al. [72-77] including  succinonitrile, camphene, adamantane, 

pivalic acid, cyclohexane and cyclooctane. The rigid phase of these 

crystals shows the existence of one long-lived component only, with  

3  1.5 ns, but in the plastic phase with the rise of temperature an 

additional, longer-living component begins to grow, reaching a saturation 

intensity  close to the melting point. This component was ascribed 

successfully to o-Ps trapped in vacancies. 

In some cases the sum of intensities of two long-lived components 

was found constant, temperature independent. Thus, the total probability 

of Ps formation did not change, the rise of temperature enhanced the 

transitions of o-Ps from the “bulk” states to the vacancies only. 

Neglecting the possibility of detrapping one receives: 

 3 = 1/( b + K
’
) (43) 

 4 = 1/ V (44) 
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where b, V, K
’
, I are the decay rate of o-Ps in small defects (dominating 

in the rigid phase), the o-Ps decay rate in vacancies, the bulk-vacancy 

transition rate, total intensity of o-Ps, respectively.  

Fig.41 shows the fragment of experimental results published by 

Eldrup et al.[72] for succinonitrile. The solid lines representing the 

calculations according to Eqs. 43, 45 fit to the experiment very well.  

The slope of Arrhenius plot 

of ln K
’
 vs. 1/T should give the 

enthalpy of defect formation Hv. 

In the case of adamantane and 

bicyclooctane the enthalpies were 

found very close to the value of 

sublimation heat Ls, as it should 

be for vacancies; for others they 

are (0.5–0.7) Ls [114]. As a rule 

the consistency of Hv and Ls is 

observed in the crystals with not 

too high plasticity. 

The data about the volumes 

of vacancies in plastic crystals 

known from crystallography, and 

4 lifetimes measured by Eldrup 

et al. have created the base for 

the Tao-Eldrup model (exactly 

for the determination of the  

 parameter). However, there are 

some exceptions from the simple 

relation: void volume – o-Ps life-

time, proposed by this model. To 

the exceptions belongs methane, 

which also exists in the plastic 

phase in the range from 20.5 K to the melting point (91 K). The 

temperature de-pendence of o-Ps lifetime is similar to that in the crystals 

listed above, however for the molecular volume of 0.129 nm
3
 [115] one 

can expect the o-Ps lifetime in a vacancy to be about 2.4 ns, while such 

lifetime is observed already in the brittle phase and grows to 2.9 ns in the 

plastic one near the melting point [116]. It can be the result of very soft 

structure of that solid. The studies by Brillouin scattering [117] indicate 

that the CH4 molecules in the plastic phase of methane rotate almost 

freely, the properties of this phase are liquid-like, thus, methane can be 

Fig. 41. The  ortho-Ps lifetime 3 and 

relative intensity I4 in succinonitrile 

as a function of temperature (from 

M. Eldrup et al. [72]). The lifetime 4 

was fixed, 4 = 2.45 ns. 
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the case analogous to solid helium: Ps zero-point motion of positronium 

forces an additional free volume. This effect will be described in detail in 

the Section 7. 

 

6.4.2 Rotator phase 

In the alkanes with odd-numbered carbon chains 9  n  39  and  

even-numbered ones in the range 22  n  40 a “rotator” phase exists in 

the temperature interval from 1 to 12 K below the melting point. In the 

rotator phase the translational symmetry of the long molecular axes in the 

crystal is preserved, yet the molecules can rotate round these axes 

(orientational disorder limited, in comparison to plastic crystals). Due to 

mechanical properties of phases the low-temperature one is called 

“brittle” or “rigid”, the rotator phase is “waxy”. In the rotator phase the  

o-Ps lifetime is evidently longer than that in the rigid one (Fig. 42) due to 

the presence of nonplanar conformers.  
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Fig. 42. Top – temperature dependence of the o-Ps lifetime in the range of 

            rotator phase for several odd-numbered n-alkanes (C17, C19, C21),  

            bottom – temperature dependence of the crystalline axis a for the  

            n-alkanes shown above. Crystallographic data from [118]. 
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They are mainly of end-gauche and kink type, their concentration 

rises with the length of chain (and temperature), e.g. for C17 the 

concentration of kinked molecules is about 8%, while for C29 it 

approaches 70% [118]. Mismatching the kink conformers and all-trans 

ones leads to the creation of free volumes inside the lamella. The 

nonplanar character of kink conformers forces an increased spacing of 

neighbouring molecules, which is seen in crystallographic data – increase 

of the crystal cell in the direction of the a axis, perpendicular to the 

molecular chain plane. In Fig. 42 the correlation of 3 lifetime and  length 

of the a axis is clearly visible. The shape of free volume near the kinked 

molecule is expected to be elongated, approximately half of the molecule 

length (the “kink” can move along the molecule, but its average position 

is in its centre).  For a given alkane both parameters, 3 and a, rise with 

temperature. At a fixed average length of the void, an increase of its 

volume can appear owing to the increase ofits cross section only. It is 

possible at a high concentration of kink conformers, when one can find 

two such molecules side-by-side. This gives an enlarged free volume 

(Fig.43); the number of such pairs rises with temperature. 

 

With increasing length of the carbon chain the o-Ps lifetime in the 

rotator phase rises, but only up to certain maximal value, identical with 

the lifetime in the liquid phase and independent on the chain length.  

An example is shown in Fig. 44. The lifetime 3 in C30 does not change at 

melting, while the phase transition rotator – liquid is well marked as the 

skip of intensity I3 [119]. 

 In fact, there are five versions of the rotator phase in alkanes. In 

some of them, depending on temperature, one can observe different 

rotator phases, e.g. phases RI or RII for 22  n  26, and phases RIII, RIV 

for 27  n  30. However, the PALS method is not sensitive enough to 

detect these differences. Lifetime 3 and intensity I3 change with the 

structure modification; a more radical rebuilding of the structure should 

result in more distinct changes of these parameters. The enthalpy of 

transition can be a certain measure of structural modification. The 

Fig. 43. Increased free volume at 

high concentration of kink confor-

mers. 
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enthalpy of transition rotator – rigid crystal is about (30÷50) kJ/mol 

depending on chain length, while e.g. of the transition RI – RII in C25 it 

is 0.2 kJ/mol only [120]. 
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Fig. 44. Temperature dependence of o-Ps lifetime in n-triacontane C30. From  

            Ref. 119.  

 

The phase transitions can be induced by pressure too. Application of 

pressure to the sample in rotator phase leads to the same effect as 

lowering the temperature. In alkanes increasing the pressure by 1 MPa is 

equivalent to decreasing the temperature by 0.25 K. The lifetime and 

intensity obtained for different values of temperature and pressure for n-

nonadecane are compared in Fig. 45.  

The rotator phase is observed also in even numbered long-chain 

alcohols with n  12, while in alkanes with n  22. In alcohols it appears 

only at cooling the sample from the melt; in heating runs this phase is not 

present. Like in alkanes, the rotator phase contains a large concentration 

of nonplanar conformers (end-gauche and kink ones). It results in an 

increased o-Ps lifetime compared to the low-temperature rigid phase, but 

the intensity of o-Ps is smaller than in both neighbouring phases. This can 

be explained by an increased dielectric permittivity  of the rotator phase 

[121]. 
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Fig. 45. A comparison of pressure (at 302 K, dots) and temperature (at << 0.1 MPa,  

           open circles) dependences of  o-Ps lifetime and intensity  in n-nona- 

             decane C19. The temperature abscissa is inverted, scaled 1K = 4 MPa.  

           Melting point of C19 is 304 K. 

38 40 42 44 46 48 50 52
TEMPERATURE, 0C

18

20

22

24

26

28

I 3
, 

%

1.2

1.6

2

2.4

2.8

: 3
, 
n

s

 

Fig. 46. Temperature dependence of the o-Ps lifetime and intensity in n-hexade- 

             canol-1. Full symbols – temperature up, open symbols – temperature  

            down. The hysteresis of about 1.5 K is seen. 
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In the simple version of the spur model a larger  means a reduction 

of the Onsager sphere radius (Eq.15) and diminishing of the Ps formation 

probability. A typical dependence of the o-Ps lifetime and intensity on ri-

sing and decreasing temperature is shown for the case of n-hexadecanol-1 

[122] in Fig.46. 

 

6.5. Positronium in solid phases of long chain alkanes 

When an odd numbered chain contains over 25 carbon atoms, new 

solid phases, preceding the rotator phase, appear. In the alkanes with 

n  25 there is a phase denoted as IV, which is visible in PALS by an 

increase of 3 lifetime by about 0.2 ns (Fig. 47), this increase is due to  

a large concentration of end-gauche conformers; shortened molecules 

increase the average width of interlamellar gap.  
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Fig. 47. The o-Ps lifetime and intensity in C25 as a function of temperature. 

            (B. Zgardzi ska, Ph.D. Thesis UMCS Lublin, 2008) 

 

 In even numbered alkanes next phases appear from n = 36 

upwards. The crystalline structure of these high-n alkanes can depend on 

the way of sample preparation: crystallization from the solution, 

solidification of the melt etc. At heating the samples obtained by 

crystallization one observes the transition from the low-temperature 

monoclinic phase to the phase C, also monoclinic but with much larger 
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tilt angle. For the chain length of n ranging from 38 to 44 the transition is 

well visible, although the step of I3 at the transition point decreases with 

increasing n and above n = 46 disappears; I3 changes smoothly with 

temperature. Phase C is characterized by the Ps intensity much lower than 

in the rotator phase (which appears up to C38, but not for longer chains), 

and also by shorter o-Ps lifetime (Fig. 48). 
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Fig. 48. Temperature depen-dence of o-Ps lifetime and intensity in n-tetra- 

              contane C40 (dots; melting preceded by the C phase). For comparison  

              similar dependence for C30 is shown (open symbols, melting preceded  

            by rotator phase). From Ref. 111 and 119. 

 

In PALS measurements, an increase in the o-Ps lifetime is usually  

a signal of growing disorder. For example, in alkanes the number of 

intramolecular defects (gauche bonds introducing nonplanar form of 

molecules) rises with the chain length. A relatively shorter lifetime in 

phase C indicates a reverse effect. Contrary to the rotator phase, in which 

for long chains the o-Ps lifetime is practically independent on temperature 

and equal to that in the liquid,  in phase C that lifetime rises continuously 

from about 2.4 ns to 2.8 ns near the melting point. The step of 3 at 

melting, invisible when the preceding phase is the rotator one, for the 

transition C  liquid is well marked [111]. Better ordering is confirmed 

by Kim et al. [123] who have investigated the gauche bond density mg 

(the number of such bonds per one molecule) by IR spectroscopy. In the 
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rotator phase of C36 mg = 0.7, whereas for C phase in C40 it surprisingly 

goes down to about 0.4. The C phase is thus better ordered than the 

rotator one. In C38 and next even numbered alkanes the solid-solid 

transition becomes diffused, the transition region covers several K, and 

finally for n 50 it is seen as a change of the d 3/dT only; an analogous 

smooth dependence on temperature is seen in mg [123]. 

 

 

7.   POSITRONIUM IN LIQUIDS 

 

7.1. The bubble model 

Positronium in condensed media needs a sufficiently large free 

volume to be localized there. In liquids the natural intermolecular empty 

volumes can be estimated e.g. from the sound velocity [124]; their sizes 

calculated by Ujihira et al. [125] are  found below 0.1 nm. Even if one 

accounts the stochastic fluctuations of molecular positions, the probability 

of the appearance of voids exceeding 0.2 nm is very low, i.e. there are no 

free volumes which can accommodate Ps atom (see Eq.18). On the other 

hand, already the early experiments with liquid helium [126, 127] have 

shown that in this liquid positronium exists and the o-Ps lifetime is 

unexpectedly long, 3 = 91 ns (large values of this lifetime were seen also 

in other cryogenic liquids). To explain such long lifetimes, Ferrell [128] 

has proposed the bubble model. The pressure exerted by zero-point 

motion of Ps creates a spherical cavity (bubble) around it, the equilibrium 

radius R is determined by the minimum of energy: 

 [ ] 03/44)( 32 =++ pRRRE
dR

d
Ps πσπ  (46) 

where EPs is the Ps energy in the bubble,  – the surface tension, p – the 

external pressure. 

The bubble model was further developed by Roelig [129] and 

Buchikhin et al.[130]. The trapping of Ps in voids looks differently in 

solids and liquids. In solids Ps needs preexisting regions of low (zero) 

electron density to appear as a stable structure, while in liquids it 

produces its own cavity – the bubble. Thus, positronium in liquids is not 

strictly a probe; annihilation experiments bring the information about the 

extent of perturbation of the medium in the vicinity of the Ps atom, not 

about the unperturbed structure. 

There is a rich set of experimental data about the o-Ps lifetime in 

organic liquids, measured by Mogensen and Jacobsen [131], however, at 
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the room temperature only; the data about temperature dependences are 

much more limited. Having the bubble radius estimated from the Tao-

Eldrup or similar model one can try to find the surface tension at the 

curved bubble surface. The ratio of surface tension of droplet  to that at 

flat surface of liquid  is given by Tolman [132]: 

 
R/21

1

δσ
σ

+
=

∞

 (47) 

where , called Tolman’s length, is the difference of radius determined by 

vacuum-bulk boundary and the radius at which acts the surface tension. 

The value of  is positive, the surface tension acts somehow slightly 

“behind” the surface. If so, the surface tension of a droplet is smaller than 

for flat surface, while of the bubble – larger [133,134]. The Eq. 47 can be 

written as: 
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where  means curvature (positive for droplets, negative for bubbles). 

The Eq. 46 contains the term EPs(R) which can be calculated by 

standard quantum mechanical methods [135], however, this way we have 

no analytical formula which could be inserted into Eq.4 6 and 

differentiated. Certain approximations are necessary.  

One of possibilities is to apply the same mathematical trick as in the 

Tao model [71]. i.e. to substitute the well of depth U by an infinite one 

but with the radius broadened by  chosen to give the same value of the 

Ps energy [136]:  

 ),(),( ∞+= ηREURE PsPs  (49) 

In this approximation 
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Fig. 49 shows the comparison of EPs calculated exactly for three 

different rectangular potentials U = 1.0; 1.5; 2.0 eV  with these values for 

infinite depth and  fitted to get identical values as for a finite depth 

version at R= 0.4 nm (i.e. in the middle of a radius range appearing in the 

case of Ps in liquids). The deviation of EPs calculated from Eq. 50 from 

the value expected for a realistic well depth in the R range (0.35–0.46) 

nm, i.e. the lifetimes (2–6) ns, does not exceed 2 %. 
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Eq. 46, neglecting the term related to pressure (smaller by two orders 

of magnitude at normal pressure), is now: 
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After differentiation we get the fourth degree algebraic equation. If 

we assume, following the existing literature data, U = 1.0 eV and  the 

radii according to the Tao-Eldrup model, then for alkanes near the 

melting point we obtain the Tolman’s length 0.05 to 0.06 nm, i.e. of the 

order of atomic radius [137]. The surface tension of the Ps bubbles is 

increased 1.4 to 1.5 times compared to a flat surface. 

The minimum of energy in Eq. 51 is very flat and shallow with 

respect to the thermal energy kT, thus one should not expect a precisely 

fixed radius but a fluctuating one; such fluctuations can be responsible for 

the effects observed by Gregory and Chai in hexane [138]. 

 

7.2 Molten alkanes and alcohols 

An interesting property of liquid alkanes is an identical o-Ps lifetime 

near the melting point independently on the length of the carbon chain. 

With the rise of temperature that lifetime rises too, the dependence of 3 

on the temperature above the melting point is very similar for all alkanes 

under study, from heptane C7 to hexatriacontane C36 (Fig.50),  

with a slight tendency to decrease the slope d 3/dT with increasing 

molecular length [137].  

Fig. 49. Ps energy in  a rectan-

gular potential well [136]. 

Continuous lines are calcula-

ted for well depth U = 1; 1.5 

and 2 eV. The dashed lines – 

for an infinite depth and the 

well broadened by  to match 

the exact calculation at R = 0.4 

nm. From top to bottom the  

values are 0.105; 0.124 and 

0.158 nm. The ordinate is in 

units of Ps energy in an 

infinite, not broadened well 

E(R, ). 

     2 eV 
  1.5 eV 
1 eV 
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Fig. 50. The o-Ps lifetime in n-alkanes as a function of temperature above their 

            melting points. Symbols explained in the figure [137]. 

 

The rise of 3 with temperature reflects the common property of 

liquids – decrease of surface tension. An exception is water: in spite of 

decreasing surface tension the o-Ps lifetime also decreases [139, 140]. 

Stepanov et al. [141] propose to explain this behaviour as the effect of 

exponential increase of the rate constant of the Ps oxidation reaction by 

intratrack OH radicals and H3O
+
 ions. 

In the cases described above, the pressure over the liquid sample was 

produced by own saturated vapour, always well below the atmospheric 

one. An exception is the case published by Jacobsen et al.[142] , where 

the sample in a closed vessel was heated up to the critical point. In 

neopentane (2,2-dimethyl propane) the temperature and pressure at 

critical point are 433.4 K and 3.13 MPa, respectively. The o-Ps lifetime in 

the sample near the critical point reached 20 ns and at further heating was 

changing very little (Fig. 51). Above the critical point there are no 

“bubbles”, the o-Ps lifetime depends on the number of collisions per time 

unit. The dependence of decay constant on temperature below 413K is 

well described by the function 3 = Aexp(–bR), where R is the bubble 

radius determined by Eq. 46. Analogous measurements were performed 

by Jacobsen et al. [143] for sulphur hexafluoride. 
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Fig. 51. The o-Ps lifetime in neopentane as a function of temperature . The arrow  

             indicates the critical temperature. From: F.M. Jacobsen, Risø Report   

            433. 

 

When over the sample an inert gas is present, it dissolves in liquid. 

The solubility is proportional to the gas pressure (Henry’s law; valid at 

molar concentrations of solute not exceeding ~3%). Dissolved gas 

changes the surface tension of liquid, that reflects in observed o-Ps 

lifetime. Having the bubble radius calculated from Tao-Eldrup (or other) 

model one can determine the surface tension as a function of pressure.  

As an example the system alkane (nonadecane) + argon is shown in 

Fig. 52. The pressure dependence of  can be described by the function: 

                                   )exp( CpBA −+=σ  

Particular case of oxygen atmosphere will be described in Sec.9. 

In liquid primary alcohols (1-alkanols) the o-Ps lifetime dependence 

on temperature above the melting point is similar to that in alkanes: 

monotonous I3 rise, weakly dependent on the length n of carbon chain. 

Along the homologous series the change of I3 intensity with temperature 

shows some peculiarities: in the shortest chain alcohols I3 is almost 

independent on temperature, but then dI3/dT increases systematically with 

rising chain length n. Usually the o-Ps intensity in solid phase is larger 

than in liquid one, but that step diminishes with n up to the change of its 

sign at n = 16 [137]. 
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Fig. 52. Pressure dependence of the o-Ps lifetime (top) and surface tension  

            (bottom) in nona-decane + argon system 

 

7.3.  Supercooling 

In the case of the supercooled liquids the PALS spectroscopy allows 

to observe the rate of transition liquid-solid. For example, in butanol 

[144] directly after rapid cooling from 188 K (5 K above the melting 

point) to distinctly lower temperatures, the o-Ps lifetime in supercooled 

liquid is shortened due to increased surface tension (Fig. 53). The liquid is 

not stable and (at fixed temperature) solidifies, the o-Ps lifetime and 

intensity decrease to the values observed in the solid phase.  

The lower the temperature, the faster is the transition, however, in 

the case of butanol the half-time of transition reaches a minimum (0.1 h) 

at about 146 K. At supercooling to still lower temperatures the transition 

time rises again, at 120 K it exceeds 10 h. This can be due to the large 

viscosity of butanol being still liquid (several scores of K below the 

melting point) and thus slowing down the rearrangement of molecules.  
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Fig. 53. Top: temperature dependence of the o-Ps lifetime in supercooled  

              butanol. Diam-onds are for the liquid directly after cooling; the lower  

              solid curve is the lifetime after termination of transition. Triangles and  

              dotted line denote  the lifetimes for the sample solidified at 173 K and  

              then cooled down. Bottom: half-time of the transition. (based on [144]). 

 

Development of solidification after rapid cooling from 188 K to 

173 K is shown in Fig. 54. Due to high rate of transition it was necessary 

to reduce the time of data collection to 12 min per point (at still lower 

temperatures the time of data collection was reduced further). Resulting 

low statistics forced to quit the spectrum decomposition and assume as a 

measure of the o-Ps intensity the total count number Q above 2 ns. The 

dependence Q vs. time in Fig. 54 can be described by the function: 

 CBtAQ
n +−= )exp(  (52) 

where C is the final count number in the solidified sample; the exponent 

is found equal n = (4.2 ± 0.2). Eq. 52 has the form of Avrami function 

[145]. Exponent n = 4  in Avrami function is the maximal one and means 

that there are no limitations of solidification in all three dimensions and 

the preexistence of nucleation sites is not needed.  
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Observation of the phase transition at 123 K shows that the decrease 

of lifetime stops at 1.42 ns, while the lifetime in the solid, as measured 

with the sample solidified at 173 K and cooled to 123 K (triangles and 

dashed line in Fig. 53), should be  1.25 ns. In the range from 120 K to 

135 K the transformation process stops before full solidification. This 

effect is known as "frustration". The sample consists of solid domains and 

liquid regions. Intermolecular interaction by hydrogen bonding of the 

butanol molecules can, at so low temperatures, suppress the rearrange-

ment into regular crystal [146]. In the measurements analogous to that 

shown in Fig. 54, but performed at 123 K,  the exponent in Avrami 

function dropped to n = (2.5±0.3), indicating limitations in the transfor-

mation process. This value of n is close to that found in Ref. 146 by 

Raman spectroscopy: n = 2.7. Both measurements, PALS and Raman 

spectroscopy estimate that at 123 K the solid fraction is over 70%. 

 

7.4. Definition of void radius 

The Tao-Eldrup equation gives the relation between void radius and 

o-Ps lifetime.  The situation looks simple in the case of liquids, where the 

spherical shape is a natural one. However, the radius is rather poorly 

defined, in the majority of cases it is simply an equivalent radius only. 

Even in spherical voids, precising the void definition is important when 

the transition region from large to negligible electron density is 

comparable to  parameter. In the papers by Eldrup et al. [72-77] on 

plastic crystals the Wigner-Seitz molecular radius was used, i.e. the radius 

of a sphere, which volume is equal to the volume of elementary crystal 

cell divided by the number of molecules per cell (not the radius of 

roughly globular molecule alone). Another approach is proposed by Zhao 

Fig. 54. Area Q of  the tail of 

lifetime spectrum (t > 2 ns) in 

butanol as a function of time 

after lowering the temperature 

to 173 K. 
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and Ujihira [147] for liquid crystals and Jasi ska et al. [148] for 

crystalline solids. The well radius is assumed by them as the radius of 

maximal sphere tangent to surrounding atoms. This in turn needs to 

define the atomic radii. In Refs.147,148 the atomic radius was assumed as 

a distance from the centre to the maximum of electron density at the 

outermost orbital of free atom. For anthracene, azulene, acenaphthylene, 

the radii of inscribed spheres were found below 0.12 nm [148], thus lie 

well below Rmin (Eq. 18) for potential depth U < 3 eV. Even if the atomic 

radii are not chosen properly the result helps to explain why in these 

solids positronium is not observed (until melting). 

There is to stress, that in the discussion about positronium in liquid 

the term “radius” is used in several different meanings: vacuum-bulk 

dividing radius, surface tension radius (difference of these two radii is just 

the Tolman length), Ps potential well radius (following from the 

approximation of real potential shape by a step-wise one). The values of 

radii are very similar, but not identical, and in the scale of a fraction of 

nanometer the use of one “universal” radius can lead to inaccuracies. 

 

 

8.   POSITRONIUM IN POLYMERS 

 

8.1. Size and number of free volumes 

 The disordered structure of polymers creates a variety of free 

volumes. Fig.55 shows the comparison of the PAL spectrum in an 

acenaphthylene monomer and in the same medium after beginning of 

polymerization. An intense long-lived component appears already at a 

mean molecular mass 352, i.e. about twice of that for a monomer, when 

dominant molecules are dimers, while in monomer there is no posi-

tronium at all (further poly-

merization does not influ-

ence substantially the inten-

sity of that component). 
 

 

Fig. 55. Lifetime spectrum of 

acenaphthylene monomer, mo-

lecular mass M=152 (dots) and 

of the same sample after be-

ginning of polymerization, 

M = 352 (open symbols). 
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The structure of empty volumes in polymers is more complex than in 

crystalline solids. One has to account for the fact that two types of these 

volumes exist: pre-existing static holes and dynamic ones caused  by 

vibrations, rotations of chain elements, molecular relaxation etc. 

According to the terminology used in polymer science, the latter ones 

only are called “free volume”. It means that a certain amount of the 

volume characterized by negligible electronic density is not accounted for 

as free volume. Positron and positronium lifetimes are of the order of  

10
–10 

– 10
–9 

s, thus static holes and dynamic ones existing the time longer 

or comparable to the lifetime of positron probe can become trapping sites 

for positronium.  

The concept of free volume, which appeared in theories as early as 

1930s [149] and was developed further in ’50s, plays an important role in 

the description of many properties of polymers, like viscosity, elasticity, 

glass transition, mechanical properties,  gas permeability etc. The classic 

polymer studies deal with mainly macroscopic, bulk properties, while 

positron lifetime spectroscopy is a unique technique allowing to 

determine the individual free volume hole sizes and concentrations. 

It is important to know not only the average size of free volume 

holes, but also their distribution. In the amorphous structure of a polymer 

the lifetime spectrum becomes complex, a continuous distribution of void 

sizes is expected and thus also a continuous distribution of annihilation 

rates s( ). The PALS spectrum has now the form: 
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(the convolution of the spectrum with the resolution function P(t) is 

omitted for simplicity), th is the decay constant for smallest free volume 

detectable by positron method. The sum in the second term describes the 

annihilation of p-Ps and of free positrons. The use of a discrete 1 in the 

case of p-Ps is a good approximation, while a discrete value of 2 for free 

positrons in organic media is still disputable (if they are really free, not 

trapped or bound to molecules, only one discrete value of 2 should 

appear). 

In the most simplified version of spectrum processing the continuous 

s( ) is substituted by two (or even one) discrete components and analysed 

in classic way using e.g. the POSITRONFIT program [35]. More 

realistically the shape of s( ) can be reconstructed using the MELT 

program [37] described in Sec. 3.1. In this case all components, including 

p-Ps and free positron  annihilation are in the form of quasi-continuous 
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distributions (the procedure cannot fit discrete s). The MELT cal-

culations need very high statistics and  10
7
 coincidences or more have to 

be collected in the spectrum. One has to remember that in the programs 

like MELT the regularizer value, i.e. entropy limit is chosen by the person 

processing the spectrum, thus the final result can slightly depend on his will.  

Usually the s( ) function has the form of bell shaped peaks (see 

Fig. 40 [111]), thus Kansy [36] came up with an idea to assume a priori  

that the  spectrum consists of some log-Gaussian peaks (lifetime p at 

maximum,  the width of Gaussian) plus some discrete components. This 

way one can obtain a quite good spectrum description at even moderate 

statistics of measurement. 

Standard polymer investigations by positron methods consist in 

observation how the polymer structure changes with temperature, 

pressure or interaction with gases. The sensitivity of Ps spectra in 

polymers to temperature and pressure was noticed in the earliest papers 

on positron annihilation. Bell and Graham [4] have observed the decrease 

of o-Ps yield and shortening of o-Ps lifetime in Teflon with lowering 

temperature, while De Zafra and Joyner [103] demonstrated the 

broadening of narrow component in ACAR under high pressure.  

Lengthening of the lifetime with temperature is related to the 

expansion of a polymer. The dimensions of voids rise much faster than it 

would follow from the thermal expansion coefficient. The latter 

characterizes the sample as a whole, in which the free spaces occupy  

a small fraction of the total volume. At various polymer treatments the 

majority of volume change occurs just in “free spaces”. At gas swelling of 

the polycarbonate (see below) the total sample volume increases  

by 0.95%, while the free volume – by 14.3% [150] . The “hole fraction”  

h = Vf/V (Vf – the total free volume, V – the sample volume) lies in the 

range from 0.06 to 0.28. Particularly large free volumes appear in 

polymers whose chains contain bulky elements such as cyclic structures 

or side branches, preventing close approach of chains. 

Application of high pressure reduces the free volumes and increases the 

density of occupied one too (keeping in mind that “occupied” volume 

contains also some empty regions), thus both lifetimes, of o-Ps and of free 

positrons, diminish with pressure, as can be seen in Fig.56 presenting the 

data by Dlubek et al. [151] for PTE fluoroelastomer. 
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A characteristic feature of polymers is the phase transition from 

glassy (brittle) state to soft (rubbery) one. At the transition point Tg the 

expansion coefficient changes by a factor of 5. The PALS measurements 

as a function of temperature show the distinct change in the slope of the 

o-Ps lifetime or of the S parameter at Tg (Fig.57). 

 

Fig. 57. Left: temperature de-pendence of the o-Ps lifetime in polyisobutylene  

            polymer. Based on the data from [152]. Courtesy of Frans H.J. Maurer. Right:  

                temperature dependence of S parameter in Epidian 5 + terphene-maleic anhydride. 

 

With the increase of temperature the o-Ps lifetime in the rubbery 

phase rises initially fast, but then above (1.2÷1.5)Tg  the slope of 

temperature dependence is again strongly reduced, although in the macro 

scale no reduction of thermal expansion is observed. Winberg at al.[152] 

have found that at this temperature range the polymer behaves like a 

liquid, the o-Ps lifetime (thus void radius) is ruled by the surface tension. 

Fig. 56. Pressure dependence of 

o-Ps (circles) and free positron 

(dots) lifetimes for PTE fluoro-

elastomer (compiled from 

[151]). 
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At lower temperatures this expansion by molecule displacement is not 

possible due to high viscosity of the medium. Liquid-like behaviour 

occurs when the relaxation time becomes comparable or shorter than the 

o-Ps lifetime. It is interesting to note that the effective viscosity in the 

scale of Ps bubble found by Winberg et al. was smaller by several orders 

of magnitude than the macroscopic one. The macroscopic viscosity is 

related to the medium as a whole that is composed of very large entangled 

molecules, while the Ps atom interacts with a small fragment of the 

polymer chain, and in this case the viscosity is like for a monomer 

multiplied by the number of chain elements involved in displacement; this 

number is very low (this kind of behaviour we have observed in the case 

of long chain alkanes, where the size of Ps bubble practically does not 

depend on the chain length). 

Assuming the void shapes as spherical (“equivalent spherical”), one 

can use the Tao-Eldrup equation to obtain the free volume hole 

distribution W(R) = s( ) d /dR. However, one has to remember, that the 

function W(R) above is the product of a real R distribution V(R) and 

trapping probability K(R). For spherical voids [153] : 
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The trapping probability K(R) is zero below Rmin. Hence, the positron 

methods do not bring information about those smallest voids. For larger 

radii Deng and Jean [153] postulate, in analogy to the trapping of free 

positrons [154], the linear dependence of trapping rate on the trap radius 

 K(R) = 1 + aR (55) 

(a = 80 nm
–1

). Eq. 55 represents rather the first two terms in expansion of 

K(R) into a series, whereas for large R the trapping rate cannot rise to 

infinity. 

In Eq. 40 it is assumed that the positronium atom once trapped 

cannot escape to another void or to the bulk. Yu et al. [155] have 

calculated the tunnelling rate between the voids and found it sufficiently 

large that Ps could sample many voids during its lifetime. However, Yu’s 

results were found inconsistent with other data, particularly concerning Ps 

diffusion in polymers [156]. Calculations of the Ps transfer rate from one 

potential well to another by Baugher et al.[157] have shown that the rate 

given by Yu et al. is valid only for the wells of equal diameter, i.e. when 

the energies of the Ps states in both wells are identical, but even a slight 
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difference in radii cuts off the tunnelling; in the case of polymers with a 

wide variety of void sizes and shapes, tunnelling seems to be of minor 

importance. On the other hand, one cannot neglect entirely the transitions 

from one void to another, keeping in mind how easily Ps transfers from 

small to large voids in plastic crystals [72]. In larger voids the zero-point 

energy is smaller, thus these voids are for Ps energetically favourable. 

If the total free volume fraction h is known, one can determine the 

number of free volumes per volume (or mass) unit: 

 Nh = h/Vh (56) 

where Vh is an average void volume,  Vh = 4 R
3
/3. In a classic way  one 

can estimate the fraction h from the measurement of sample volume as a 

function of temperature and pressure (PVT method) and applying the 

Simha-Somcynsky statistical equation of state [158]. An example of this 

approach is the study by Dlubek et al. [159] of  CYTOP, a heterocyclic- 

ring-containing fluoropolymer. The PALS measurements of o-Ps lifetime 

and h were performed as a function of temperature and pressure. The 

result for Nh
 
is shown in Fig.58. With increasing temperature the void 

density decreases slightly, but it rises with pressure; at 200 MPa almost 

twice, while their sizes are reduced. This can be explained by an 

assumption that the voids are not spherical, but well elongated and 

application of pressure divides them into fragments. 
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Fig.  58. Void density in CYTOP polymer as a function of temperature (open  

              circles) and pressure (full circles). From M. niegocka, Ph.D. thesis,  

            UMCS Lublin 2008 (and [159]). 
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 When only PALS data are available, Kobayashi et al. [160] 

proposed an empirical equation for the free volume fraction: 

 h = C I3 Vh (57) 

where  I3 means long-lived component intensity. Thus CI3 means simply 

the number of voids per volume unit. The value of constant C is usually 

obtained by fitting the PALS data at the glass transition point Tg  to the h 

estimated by the PVT method. For polyvinylacetate Kobayashi et al. give 

C = 3.08 nm
–3

, for polymethylmetacrylate (PMMA) Maurer and Schmidt 

[161] propose C = 2.28 nm
–3

. The idea of I3 proportionality to the number 

of traps is still often used, however, it can be acceptable when that 

concentration is low (see mixed crystals [97], or vacancy component in 

plastic crystals [72]). The study by Maurer and Schmidt [161] shows that 

while above Tg the equation (57) gives approximately the same slope h(T) 

as the PVT method, below Tg the temperature dependence is much better 

described by the relation: 

 h = B0 + B1Vh (58) 

the intensity I3 does not appear in this version at all. The gas diffusion 

measurements by Okamoto et al. [162] show also a better correlation of 

diffusion characteristics with hole size Vh, than with the product I3Vh. 

Many polymers are not entirely amorphous, their structure  can be 

semi-crystalline (e.g. polyethylene, polystyrene). The structures can be 

very complex and depending on sample preparation. For example, 

polystyrene can contain crystalline fragments of four different phases, in 

two of them the chains are arranged in all-trans conformation, two other 

form helical structures trans-trans-gauche-gauche [163]; there are phase 

transitions between various structures. The crystallites have no well 

defined boundaries separating them from amorphous neighbourhood. 

The measurements by Nakanishi et al.[164] have shown that the o-Ps 

intensity I3 changes linearly with the degree of crystallinity in poly(ether-

ether-ketone), a similar result was obtained by Lind et al. [165] in 

polypropylene. This can be an indication that in the crystalline part 

positronium does not form; it locates in the amorphous part only. If so,  

one can expect a proportionality of h to I3 as a measure of crystallinity 

degree. The supposition that Ps cannot be formed in the crystalline phase 

is an excessive simplification. In the papers cited above the spectra were 

decomposed into three exponentials (one only for o-Ps). In the four-

component fit one can try to ascribe the shorter of the o-Ps components to 

the crystalline phase, the longer – to the amorphous one. Serna et al.[166] 
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estimated the probabilities of Ps formation as 0.15 and 0.43 in the 

crystalline and amorphous regions of polyethylene, respectively.  

However, the o-Ps spectrum composed of two peaks is observed also 

in entirely amorphous structures. In this case one can suppose that two 

groups of cavities are present, or the shorter-lived component belongs to 

the channels interconnecting larger cavities 

 

8.2. Applications 

The PALS technique is particularly useful as a tool of controlling the 

modification of polymer structure during technological processes. As an 

example one can mention the positronium study of gas permeation 

through the polymer, which is in large extent determined by the sizes and 

density of the free volume holes. For example, the PALS method was 

used in the tests of contact lenses which should be permeable for oxygen 

and nitrogen [167] .  

Glassy polymer membranes are used for gas separation, e.g. H2 from 

hydrocarbons, alkanes from olefins, water from isopropanol etc. The 

dimensions of holes, determining the permeability can be modified by 

various kinds of treatment. The sizes of individual free volumes can be 

reduced by application of high pressure up to 200 MPa when the polymer 

is in liquid-like state and then decreasing the temperature. The increase of 

the free volume holes can be made by exposing the sample to a gas 

atmosphere of several MPa at room temperature and then decreasing the 

pressure at very low rate (rapid depressurization leads to another 

interesting effect of polymer foaming). Particularly effective from this 

point of view is the sorption of CO2, swelling and plasticizing the 

polymer [168-171]. If a polymer is in its rubbery state, at application of 

high pressure of CO2 the lifetime and intensity rise, but after gas 

evacuation these parameters return to their initial values. If the polymer is 

glassy, the increased voids remain also after the gas removal. Swollen 

structure is out of equilibrium, but the relaxation times can be extremely 

long. In poly[1-trimethylsilyl]-1-propyne (PTMST) swelling by 

supercritical CO2 increases the radii of free volumes to 0.7 nm (respective 

o-Ps lifetime is 9.2 ns!) and the relaxation time is estimated as about  

30 years [171]. 

Swelling shifts the glass transition point down. The polymer 

treatment by gas sorption can introduce also other effects; supercritical 

CO2 induces crystallization of semi-crystalline polymers. 
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The PAL spectroscopy is useful also in the study of polymer 

degradation from the viewpoint of two contradictory aspects: rapid 

degradation of polymer waste is interesting in the environement 

protection, slowing down this process is important when the durability of 

product (construction elements, protective coatings) is needed.  

Oxygen plays a main role in the degradation of materials. Ito et 

al.[172] observed the effect of oxydation in pure polyethylene exposed to 

air in 373 K. The reaction of oxygen with thermally produced radicals 

create the carbonyl groups. Due to the affinity of positrons to oxygen-

containing polar groups the formation of positronium is reduced. The 

decrease of the o-Ps component intensity with exposure time is visible in 

PALS spectra; the S parameter in DBARL decreases too. The samples of 

polyethylene containing antioxidant (octadecyl 3-(3’,5’-di-tert-butyl-

4’hydroxyphenyl) propionate do not show any change of I3 and S during 

30 days. Even in natural conditions (air atmosphere, room temperature) 

the effect of degradation of polyethylene is well visible in the scale of 

several months, as can be seen in Fig. 59 [173]. 

The effects of degradation are important in the case of films, 

membranes, coatings, i.e. the objects of small thickness, thus the use of 

positron beams of controlled energy is the most appropriate; it is 

described in Sec.11. 
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Commercially available polymers contain various additives (like 

antioxidants mentioned above), which vary from one producer to another. 

Such additives, usually unknown to the user, can be also electron or hole 

scavengers and bring further complication to the interpretation of the 

positronium intensity. The list of factors influencing I3 can go on and on. 

Generally, the intensity of long lived component  is a result of a great 

Fig. 59.  Ageing of polyethylene. 

Decrease of the o-Ps intensity 

with time. Courtesy of W. Osoba. 
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number of processes, material properties, external influences, thus, the 

assumption that it can be a measure of the number of free volume holes 

only is a simplification 

The presence of sufficiently large free volume is necessary but not 

sufficient to bind an e
+
e

-
 pair into a Ps atom. If e.g. the affinity of electron 

(or positron) to the molecules of the medium is large, it can be 

energetically favourable to not form the Ps bound system. As it was 

shown by Ito et al.[174] the high electron affinity of pyromellitic 

dianhydride causes that polyimides containing this radical show no 

positronium formation (to this group of polyimides belongs the popular 

Kapton). 

  

 

9.   THE ORTHO-PARA CONVERSION 

  

The lifetime of o-Ps in condensed matter is determined mainly by the 

pick-off process. In the case of free volumes in crystalline solids or 

polymers three quantum annihilation can be neglected, as introducing the 

correction of the order of 1%. However, when the pick-off rate is small, it 

has to be taken into account. Such a situation can appear in media with 

relatively large free volumes, like porous materials; this problem will be 

discussed later, in Sec.10. 

Among other processes influencing the o-Ps lifetime, the most 

common is ortho-para conversion due to the interaction of Ps with para-

magnetic molecules. In particular, such a process occurs in the presence 

of oxygen. The ground state of O2 molecule is a triplet state, the collisions 

of o-Ps with O2 lead to spin exchange; after the conversion of o-Ps into 

 p-Ps rapid two-quantum decay occurs.  

This effect is best pronounced in two cases: in liquids (due to 

dissolved oxygen) and in porous membranes permeable for gases and 

adsorbing oxygen molecules [175]. In the last case the effect of 

conversion is strong when polymers contain large voids, like poly[1-

tromethylsilyl]-propine (PTMST). The o-Ps lifetime in this polymer 

shows two components, the longer-lived of them exceeds 10 ns; 

respective free volumes (~0.7 nm) assure high permeability of this 

medium for gases. Fig. 60 shows the lifetime in PTMST as a function of 

gas pressure [176]. Oxygen pressure of 1 bar reduces the lifetime from 

13 ns to 2.5 ns, while non-paramagnetic nitrogen has practically no 

influence on the o-Ps lifetime. 
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Fig. 61. Temperature dependence of the o-Ps lifetime in: top – cyclohexane [69]  

            and bottom – n-heptadecane (B. Zgardzinska, unpublished). Dots –  

             sample isolated from oxygen, empty circles – the sample in atmospheric  

            air.  Melting points indicated by vertical dashed lines. 

 

The influence of oxygen on the o-Ps lifetime in liquids is 

demonstrated in Fig. 61 showing the o-Ps lifetime in cyclohexane and  

a representative of n-alkanes, n-heptadecane, as a function of temperature 

in two cases:  

Fig. 60. The longest-lived com-

ponent in the PALS spectrum 

of PTMST as a function of 

pressure: dots – oxygen, open 

circles – nitrogen [176]. 
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– the sample was degassed and over it the own saturation vapour  

only was present; 

– the sample was in contact with the air at normal pressure.  

It is seen that in liquid cyclohexane contacting with the air the o-Ps 

lifetime is shortened by about 0.8 ns, moreover, the lifetime  shortening is 

observed even in the plastic solid phase (see Sec. 6.4.1) down to 10 K 

below the melting point, indicating the easy penetration of oxygen also 

into the disordered solid.  In the rotator phase the effect of oxygen 

penetration is not observed; the o-Ps lifetime begins to shorten above the 

melting point only. The scale of lifetime reduction by ortho-para 

conversion in alkanes, both even-numbered (C28) and odd- ones (C17), is 

much smaller than that found in cyclohexane, about 0.3 ns.  

 

 

10.  POSITRONIUM FORMATION ON TRAPPED EXCESS 

ELECTRONS. IRRADIATION EFFECTS 

 

Still in 80’s it was found that after cooling from room temperature to 

that of liquid nitrogen or similar, the o-Ps intensity in polymers increases 

gradually with time [177-179]. Fig. 62 shows the rise of o-Ps intensity in 

polypropylene, after cooling from room temperature [180].  
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At 80 K an increase of I3 more than twice compared to the initial 

value is observed after reaching the saturation state. The effect of I3 

growth with time was seen also in some crystalline organic solids, like 

cyclohexane [79], long chain alkanes [181] etc. During the growth of the 

o-Ps intensity no changes of the lifetime were observed. Wang et al. [182] 

proposed to explain the rise of the o-Ps intensity as induced by irradiation 

Fig. 62. The rise of the o-Ps 

intensity with time in poly-

propylene after cooling 

from 300 K to 80 K [180]. 
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products. High energy positrons in ionization acts produce excess 

electrons and some of them are trapped in the polymer structure. At low 

temperatures the molecular motions are frozen and a trapped electron can 

survive in such a trap for very long time. Since the moment of cooling the 

sample to the temperatures below about 150 K, continuous irradiation by 

positrons from the positron source initiates an accumulation of trapped 

electrons. With the elapse of time the subsequent positrons injected into 

the sample meet more and more trapped electrons and the probability of 

binding with them into Ps atom rises. The o-Ps intensity growth is thus 

determined by the dose of positrons absorbed in the sample. The 

proportionality of o-Ps increase to the density of localized electrons was 

clearly demonstrated by Hirade et al. [183]. An external source of -rays 

irradiated the poly-methylmetacrylate (PMMA) sample in which the 

PALS spectrum was measured; the  supplied dose rate was several kGy/h 

(in this case the dose from positron source was negligible compared to the 

external gamma source). The density of trapped electrons was determined 

by electron spin resonance (ESR) measurements. In polyethylene the rise 

of o-Ps intensity by 1% corresponds to an accumulation of 4·10
14 

electrons per gram.  

A further validity test of this mechanism of the o-Ps intensity growth 

is demonstrated by sample illumination. The depth of electron traps is 

estimated as (0.5–3.0) eV, thus visible light should be sufficient to make 

the traps empty. After illumination the o-Ps intensity returns to the initial 

low value, like for non-irradiated sample. The experiments of this kind 

were performed by Hirade et al. [183, 184], Ito et al. [185] with polymer 

samples, and followed by other authors applying the light to throw 

electrons out the traps in alkanes [186, 187]. Fig. 63 shows the intensity 

of the o-Ps component in C17 n-alkane as a function of time at 200 K, the 

sample was irradiated by a positron source of 0.3 MBq. After about 20 h 

the intensity reached a maximum – twice of that at the beginning of  

treatment. At continuation of measurement the intensity I3 began  to 

decrease slowly. The measurements were repeated and after 68 h the 

sample was illuminated by LED diodes of wavelength at the maximum 

0.95 m (near infrared) which restored the initial value of intensity – all 

excess electrons were thrown out the traps. The depth of  traps in alkanes 

seems to depend on the chain length. 
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Fig. 63. The o-Ps intensity in n-heptadecane C17 as a function of irradiation 

              time. Open circles – in darkness, full circles – 68 h in darkness and then  

            illuminated by 0.95 m LED. Temperature 200 K.[187] 

 

In C17 the photon energy of 1.3 eV was sufficient to empty the traps, 

while in n-hexane C6 Shantarovich et al [188] have found that the visible 

light does not remove all trapped electrons. The dependence of the I3 

intensity in high density polyethylene HDPE on the wavelength of 

illumination was investigated by Nahid et al. [189] using optical high pass 

filters. Pietrow and Wawryszczuk [190] observed that at illumination of 

n-heptane C7 by LEDs of various wavelengths. The reduction of the I3 

intensity begins already at 2000 nm, full emptying the traps needs the 

light of  < 500 nm (Fig.64). Analogous measurements for cyclohexane 

one can find in Ref. 66. 
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Fig. 64. Reduction of o-Ps intensity in  

n-heptane C7 after illumination by LEDs 

as a function of light wavelength [190]. 

Temperature 133 K. 
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 Effectiveness of electron trapping depends on temperature as can be 

seen in the case of n-heptadecane C17 [187]. The sample was cooled to 

130 K and stored for 20 h to reach the maximum of I3 and then the 

temperature was increased. Up to about 190 K the intensity of o-Ps 

increased further, and then decreased rapidly due to thermal collapse of 

the traps destroyed by activation of intramolecular motions (Fig. 65). At 

room temperature electron trapping is not observed.  
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Fig. 65. The o-Ps intensity in n-hepta-ecane C17 as a function of rising  

              temperature after reaching satura-ion at 130 K [187]. Measurements in  

            darkness. 

 

The rise of I3 between 130 K and 190 K observed in n-heptadecane 

(Fig. 65) and other alkanes, can result from either an increase of trapped 

electron density or greater positron mobility facilitating its migration to 

the traps. In order to check the mechanism of I3 rise with temperature, the 

sample of heptadecane was kept at 130 K up to reaching the saturation of 

I3 and then the temperature was increased  stepwise to 185 K (Fig. 66); 

the o-Ps intensity rose immediately to the value corresponding to that 

temperature like in Fig.65. After 10 h storage, the temperature returned to 

130 K and the o-Ps intensity returned too [191]. 

The time constant of electron accumulation was about 8 h, while the 

time needed to change the temperature by 55 K was less than 15 min, (the 

time of spectrum accumulation directly after the change of temperature 

was reduced to 15 min too), thus the density of trapped electrons could 

not change substantially and the increase of I3 is due entirely to increased 

mobility of positrons. 
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Fig. 66. Changes of o-Ps intensity in n-hepta-decane at stepwise changes of  

            temperature after preliminary stor-age  to saturation at 130 K. Open  

             symbols are for the time of spectrum collection reduced to 15 min. From  

            [191]. 

 

With prolonged irradiation of the sample, a slow decrease of I3 

intensity appears, as it is seen in Fig.63 The observed intensity is the 

result of two competing processes with participation of excess electrons: 

trapping and combining with radicals, which also accumulate as  

a consequence of irradiation [192]. At room temperature some radicals 

are still long-lived, thus the decrease of  I3 is not shadowed by trapping 

effect and can be observed, in particular in many polymers. With further 

increase of temperature the effect of radicals disappears too [193]. 

When the annihilation of o-Ps in a polymer needs two components to 

describe the PALS spectrum, only the longest of them ( 4, I4) changes 

with time, the shorter one is stable. 

An interesting systematic study of Ps quenching by radicals was 

presented by Dlubek et al.[194] in the case of a series of poly( -olefins). 

These linear polymers were synthetized as containing the  side branches 

of the length from 3 to 20 methylene groups. The decrease of I4 intensity 

at e
+
 irradiation (time scale of the order of 2 h only) was strongest for 

propylene side branch, then diminished systematically with lengthening 

the branch and for n = 18 and 20 the decrease was substituted by I4 rise 

(measurements at room temperature), 

The number of trapped electrons per unit dose can lie in very broad 

limits for various polymers, e.g. I3 in PMMA is much less sensitive to 

irradiation than in polyethylene [183].  
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In the crystalline hydrocarbons the effect of electron accumulation 

appears in the low temperature “rigid” phase only. No such an effect in 

partly disordered phases: rotator phase of alkanes and plastic phase of 

cyclohexane. Also in the case of multicomponent mixed alkanes the 

disordering of structure introduced by various molecule lengths reduces 

the electron trapping effect. For an average length n = 19, at the width of 

molecule length distrubution −= 212 /

n ))nn(c(nΔ equal 2, the 

trapping effect comes to zero [195]. Accumulation of excess electrons is 

not observed also in n-alkanols-1. 

 

 

11.   EXTENSIONS OF TAO-ELDRUP MODEL. POROUS MEDIA 

 

11.1. The role of excited states. 

Already at early stage of positron spectroscopy it was noticed that the 

lifetimes measured for large voids do not fit the simple Tao-Eldrup 

predictions. One of attempts to improve the consistency of the model and 

experiment was done by Shantarovich et al. [196], modifying the shape of 

potential well (rectangular, but deepened near the walls). More realistic 

approach consists in taking into account the population by Ps the energy 

levels in the potential well, lying higher than the ground level [197, 198]. 

With the increase of free volume radii, besides the zero-point level, also 

other levels begin to appear and in favourable conditions become 

populated. One can easily extend the Eq.30 for cuboid to describe the  

o-Ps annihilation rate from individual state (n1, n2, n3) for arbitrary 

number of halfwaves ni between the walls: 
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(Eq. 59 is equivalent to a similar equation given by Gidley et al.[199], 

where xi = ai+2 ). In porosimetry the rectangular geometry is rarely 

used, but it is easier in calculations (sine wavefunctions instead of more 

complex ones). 

In a spherical well the levels with non-zero angular momentum  

l begin to appear for the radii R> /2(meV)
½
. The wavefunctions for the 

states with momentum l are Bessel ones jl(r). Thus, maintaining the   

Tao-Eldrup concept of broadened infinitely deep well and spherical 

geometry, we can write [198]: 
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where Xnl is the nth node (zero crossing point) of Bessel jl(r) function. 

Broadening of the well is written here as ’. For the ground state ’ =   

because the  wavefunction j0(r) is the same as sin r/r appearing in the 

Tao-Eldrup model, but for other states it can have other values (the same 

concerns the rectangular voids, Eq. 59).  Fig. 67 shows the values of the 

lifetime to annihilation )/(1 T

nl

ponl λλτ +=  for several low lying levels in  

a spherical well assuming ’ = .  

 

Fig. 67. The o-Ps lifetime to annihilation from lowest energy levels in the  

              rectangular potential well (spherical voids): 1s  (solid line), 1p (dashes),  

            1d (dots), 2s (dash-dot) 

 

As long as the spacings of Ps levels in the well are much larger than 

kT, the equilibrium population of the levels above the lowest one is 

negligible and simple Eq. 29 is still valid. The spacings of the levels 

decrease with the void radius like 1/R
2
, and at room temperature, for  

R exceeding 1 nm, the population of upper levels has to be accounted. 

The shape of the o-Ps lifetime spectrum depends now on the population 

of various levels. 

For the states other than the lowest one we distinguish two lifetimes: 

the mean time to annihilation nl and the time of  residence in the state (nl) 

– let call it “dwell time” D. At the moment of falling into the void the Ps 

energy corresponds to the upper rim of the potential well and, to be 
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trapped, Ps needs to lose at least a part of the energy by interaction with 

the surrounding bulk. Further acts of interaction (excitation and 

absorption of phonons, excitation of molecular vibrations etc.) lead to  

thermalization of positronium. If the equilibrium has not been achieved 

yet, the high-lying states are over-populated. Reaching equilibrium means 

that Ps changes its state many times before annihilation, D « nl .  

If the R value is discrete (or the width of the R distribution is very 

narrow) one can state that positronium is thermalized, when the decay 

rate calculated by fitting the exponential to the tail of experimental 

distribution stops to depend on the delay above which it is observed (i.e. 

the measured o-Ps lifetime becomes independent from the choice of the 

initial point in the analysis of the long-lived part of the spectrum). The 

experimental data for ultrafine silica powders give the time to full 

thermalization rather long: 10 ns [200], 20 ns [201]; in the case of aerosil 

[202] up to 50 ns. 

If there is no equilibrium, in an extreme case when D» nl, one should 

see a separate exponential component for each of the involved levels.  

In the state of equilibrium a Boltzmann-like distribution can be 

assumed, and for given R one should expect one exponential component 

with average pick-off rate po: 

 
−

−

=

q

qq

q

qqq

po
kTEg

kTEg

)/exp(

)/exp(λ
λ  (61) 

where gq is the statistical weight of the qth state, Eq – its energy. The 

energies of states enter Eq. 61, thus their values are important for final 

result. In the model proposed in [136], where the potential well of finite 

depth is substituted by infinite one broadened by , they should be: 
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for Eq in eV and R in nm. The energies calculated for finite well and 

infinite one as a function of R are shown in Fig. 49. The  parameter 

diminishes with deepening the potential well. For the case of silica the 

TOF measurements [62] give U  3 eV; thus for the ground state in the 

well  should be 0.084 nm. In Fig. 68 the 3(R) dependences calculated by 

accounting various numbers of levels are shown, assuming the 

equilibrium population at room temperature. With lowering temperature 

the relation o-Ps lifetime vs. pore radius tend to the Tao-Eldrup model. 
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Fig. 68. Relation o-Ps lifetime vs. spherical pore radius, calculations  included:  

           1 (TE model, solid line), 10 (dashed), 100 (dotted), 1000 (dash-dot)  

            energy levels Parameters  and  assumed equal to 0.166 nm  

            (calculations by R. Zaleski). Room temperature. 

 

The model taking into account the population of higher located levels 

of Ps in the rectangular potential well we will call “Extended Tao-Eldrup 

model” (ETE). 

As a rule, the higher is the level location, the shorter is the respective 

lifetime. With an increase of temperature the population of higher located 

levels rises. Direct consequence of the population of excited levels is the 

decrease of the o-Ps lifetime with rising temperature, as can be seen in 

Fig. 69 for porous Amberlite.  

 

Fig. 69. The o-Ps lifetime in 

Amberlite XAD7HP as a fun-

ction of temperature. The solid 

line is the result of calculation 

with Eq. 61, assuming pore 

radius of 2.65 nm.  Courtesy 

of R. Zaleski. 
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Accounting the Ps annihilation from higher levels in the well [197], 

PALS and related techniques opened a new method of porosimetry. 

Very often the pores have the form of capillaries (cylindrical 

channels). In the case of cylindrical geometry the radial wavefunctions 

are Bessel Jm(r) ones and instead of Eq. 60 we receive [198] 
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(Znm are the nodes of Jm function). The decay constants from Eq. 63 enter 

to the Eq.61. The motion along the infinite capillary axis is not quantized, 

thus the energies are: 
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The average energy of axial motion Eax should be kT/2, the same for 

all states, thus in Eq. 61 it is cancelled, if one neglects the fact that it is an 

average energy only.  

When the structure of pores is described as a bundle of capillaries, 

their average radius is 2V/S, where V, S are total pore volume and surface 

area, respectively. Note that the V/S ratio is the same for a capillary of 

either circular or square cross section when a1 = a2 = 2R, thus insensitive 

to the details of geometry. However, it is not valid for the PALS method; 

the o-Ps lifetime is not the same for the two discussed shapes. For 

moderate sizes of transverse section the lifetime of o-Ps can be by about 

20% longer for a square section than for a circular one. 

In Eq. 61 the expressions for q and Eq contain the constants  and  

introduced due to the calculation of both values using the Tao-Eldrup 

approach. Essentially these constants should be different for each energy 

level, but this fact will complicate the calculations to an entirely 

unpractical level. Thus, the question arises, if a universal value for all 

these parameters can be found, giving sufficiently good approximation. 

For the first time such an attempt was presented for porous Vycor glass of 

relatively narrow pores [204]; the value of  =  = (0,191 ± 0.008) nm 

was obtained. Gidley et al [199] have found for silica films the value 0.18 

nm. A precise test was performed by Kallmann et al. [205] for cylindrical 

pores etched in Vycor glass. For a rich set of radii they stated that quite 

good agreement of the data from the classic nitrogen adsorption method 

and PALS is obtained for  =  = 0.193 (Fig. 70). The version assuming 

an equilibrium population and an universal  parameter is now commonly 
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used. The value of "universal"  given above is fitted to silica based 

materials and need not to be exactly correct for others, e.g. porous 

polymers. 

Fig. 70. The o-Ps lifetime in porous Vycor glass; the pore radii were determined  

              by the liquid nitrogen adsorption. The solid line from the calculations   

            using Eqs. 61, 63,64 for ’ =  = 0.193 nm. Room temperature.  

            Courtesy of  R. Krause-Rehberg. 

 

The anihilation of o-Ps while cascading through higher energy levels 

makes the decay curve nonexponential with the initial slope more 

inclined. A semi-classic approach to this problem can be found in the 

paper by Dauwe et al. [206]: the decay rate is assumed proportional to the 

number of Ps collisions with the walls of void per time unit; the higher 

the energy – the more collisions per time unit, therefore faster decay 

(probability of annihilation per one collision assumed to be constant, and 

energy independent).  

It is important to state that the positron methods can probe closed 

pores as well as open ones, while these first ones are not accessible for 

standard adsorption or intrusion methods. Classic silica gels and porous 

Vycor glasses belong to the materials with open pores. In such a case the 

length of a pore plays an important role: if the pore is short, o-Ps can 

diffuse out and escape into vacuum, and then its lifetime has little 

common with the pore diameter. According to the calculations by Eijt et 

al. [207] the escape of o-Ps is efficient when the distance from the Ps 
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formation point to the outlet of pore is less than 1 m. Fortunately, in the 

porous media like those mentioned above the pore length is much larger. 

Even at unfavourable etching conditions of Vycor glass: low temperature 

323 K, short time 20 min, the thickness of etched layer (and then the pore 

length) was found equal about 24 m [208], i.e. a value much longer than 

the escape length.  

During the diffusive walk along the pore the newly formed o-Ps 

thermalize and in the case of short pore channels is emitted into the 

vacuum with an energy distribution expected to be Maxwell distribution. 

However, the reduction of the particle energy in the pore is limited by the 

uncertainty principle, thus the thermalization at very low temperatures is 

possible only when the pore diameter is sufficiently large.  Mariazzi et al. 

[209] have measured the velocity distribution of Ps escaping from the 

pores by TOF method. The samples were of silicon electrochemically 

etched to produce the pores of diameter from about 5 nm to 20 nm. When 

positrons were implanted into the sample with the energy of 10 keV, the 

produced Ps needed about 10–20 ns to leave the pores; at the energy of 20 

keV that time rises to about 100 ns. The results obtained in this 

experiment (Fig. 71) indicate that o-Ps emitted from the pores contains 

two components, one of them corresponds to actual thermal energy, the 

other is equivalent to the temperature over 1000 K.  
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Fig. 71. Time of flight spectrum  of o-Ps escaping from the pores of silica,  

              (5÷8) nm dia. [209]. Sample temperature 150 K, positron implantation  

             energy 7 keV.  Ps energy distribution contains two components,  

             corresponding to temperatures (145±10) K and (1260±15) K.   

 

Positronium precursor, qPs (see Sec.4 ) is formed in the bulk and in 

its diffusive motion can find itself near a void surface and be emitted into 

small intermolecular free volume or into the pore. In silica or glassy 
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media the intermolecular voids are abundant, the o-Ps lifetime observed 

in them, 2, is of the order of 1.5 ns. The probability of Ps location in a 

pore depends on specific pore surface area (total pore surface per mass 

unit) S. The calculations of the fraction  of o-Ps annihilating in pores 

were first performed by Brandt and Paulin [210] and modified later by 

Venkateswaran et al. [211]:  

 ])1(1[
2

3 )/2(22

43

4 ββββκ −++−=
+

= e
II

I
 (63)  

where  is a dimensionless parameter proportional to pore surface  

S :  = S (D 3)
1/2

/3,  – the bulk density, D – the Ps diffusion coefficient; 

3 is the o-Ps lifetime in the bulk material. An example of the fraction  of 

Ps annihilating in the pores at various specific pore surfaces in Vycor 

glass is shown in Fig. 72 [212]; the surfaces are from 12.5 to 350 m
2
/g. 

The Ps diffusion coefficient found in the experiments of this kind is  

(2÷5)10
–5

 cm
2
/s.  
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Fig. 72. Fraction  of ortho-po-sitronium annihilating in the pores as a function  

            of specific pore surface area in Vycor glass [212]. 

 

11.2. Ordered porous structures 

In porous media the pore radii have a rather broad distribution. 

However, there are structures in which the radii are uniform; all 

cylindrical channels are of the same diameter. To this class of media 

belong ordered silicas  MCM-41, SBA-15, FSM16 and analogous ones 
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[213]. The MCM-41 is synthesized using the long cylindrical micelles of 

a surfactant, which, on addition of a silica source, reorganize themselves 

into a bundle of parallel channels with hexagonal symmetry. Typical 

surfactants are alkyltrimethylammonium bromides; the silica source is 

tetraetoxysilane (TEOS). Exceptionally large pore radii, up to 6 nm can 

be obtained when the surfactant is supplemented by trimethylbenzene 

[214]. At basic pH values the condensation of silica occurs around 

previously formed organic micelles (template) giving the structure as 

shown in Fig. 73. 

 

Fig. 73. Structure of MCM-41 ordered silica (drawing by R. Zaleski). left – with  

            micella template; right – after removal of the template. 

 
 Removal of the surfactant by calcination yields the final hexagonal 

pore structure. The pore diameter is easily adjustab-le by changing the 

alkyl chain length and composition of the surfactant. The PALS method 

allows to observe the structural chan-ges of the raw material during the 

process of template removal. The formation of a porous structure in 

MCM-41 with octa-decyltrimethylammonium tem-plate can be observed 

in PALS spectra measured as a function of annealing tempe-rature [215]. 

The spectra shown in Fig.74 were decomposed into 6 exponentials. 

Up to 400 K the dominant component was the 3.5 ns one, resembling that 

in liquid alkanes and ascribed to the positronium annihilation in the 

template. There is also a very long-lived component (100 ÷ 110) ns 

belonging to Ps annihilation in the spaces between the grains. Very 

characteristic is the stepwise appearance of a new component at  

(400–420) K whose lifetime rises with temperature from about 20 ns to 

43 ns at 550 K (diamonds in Fig. 74). This final lifetime corresponds to 

the empty long cylinder of radius 1.52 nm, it means all template is already 

removed. The diameter of the evacuated volume is constant and thus the 

rise of lifetime describes the fragmentation of micelles and the expansion 

of gaps between the fragments. 



Tomasz Goworek 94

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.74. Temperature dependence of 

three longest o-Ps lifetimes in raw 

MCM-41. Template removal. From 

[215] and R. Zaleski, Ph. D. Thesis. 

 

 

Using the ETE model for cylinders of finite length one can calculate 

the length of these empty gaps, rising gradually with temperature as 

shown in Fig.75. The formation of pores is accompanied by the growth of 

Fig. 75. Removal of the template. Average 

length of the gap between the frag-ments 

of the template as a function of tempera-

ture. Picture by R. Zaleski. 
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110 ns component  which is produced by o-Ps  atoms escaping from the 

pores to surrounding intergrain vacuum due to short pore length (small 

sizes of MCM grains). 

In the calculations of the o-Ps lifetime in large pores, described 

above, the processes of pick-off and intrinsic decay only are accounted. 

Already at R = 2.3 nm the pick-off probability becomes equal to the 

intrinsic one. For larger voids pick-off becomes a second-rank process, 

and other effects neglected at small radii can come to prominence. 

 

 

12.  SURFACES, FILMS, MEMBRANES, COATINGS 

 

Describing the positron annihilation at pore formation in MCM-41 

we neglected the interaction of o-Ps with surfaces. In some cases this can 

be an important factor changing the lifetime characteristics, in particular 

when the pore surface is coated with a conducting material. For example, 

after template calcination, i.e. burning out the cylindrical micellae, a 

certain amount of carbon is deposited in the form of spots on the walls of 

the silica skeleton, giving the sample a characteristic brownish hue. 

Liquid nitrogen adsorption indicates that the specific surface area can 

exceed 1000 m
2
/g, at the same time the o-Ps lifetime spectrum for such a 

sample shows a weak and rather short-lived component. In the case of 

cetylpyridinum chloride template the long-lived component was found to 

be about 3.5 ns only [216]. The carbon deposits can be removed by 

oxygen flow through the sample at 750 K. With prolonged oxygen 

treatment the content of carbon decreases, but pore area and volume 

experience only a slight increase, i.e. the porosity parameters do not 

change too much. However, in the PALS measurements one observes 

radical changes of the lifetime; in well purified samples the long-lived 

component is close to 110 ns [216]. The carbon on the walls not only 

quenches positronium, but also reduces its formation probability (Fig.76). 

Conventional positron sources (radioactive materials) are not suitable 

to the study of thin  layers, due to continuous energy spectrum of 

positrons, extending from 0 to (0.5 ÷ 1.0) MeV, and thus giving a broad 

distribution of their ranges, from the surface to almost 1 mm.  To study 

thin foils one has to stack them to get a total sample thickness of the order 

of 1 mm. If there is a layer of material under study on a substrate, the 

measurement is still possible provided the thickness of layer is over 20 

m thick and the lifetimes are much longer than those in the substrate (or 

the substrate is entirely free of positronium). 
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The observed long-lived component is then of low intensity, but the 

lifetime is easy to determine – all positrons penetrating the nonporous 

substrate decay rapidly, without disturbing the long-lived part. Such 

measurements were performed e.g. by Itoh et al. [217] with porous silicon 

where a quite intense component with the lifetime of 25 ns was observed. 

The porous structure of silicon depends strongly on the method of 

preparation, thus a large scatter of data is observed, for example 

Shantarovich et al. [218] observed the lifetime of 7.1 ns; while Dannefaer 

et al. [219] - up to 90 ns. 

The introduction of slow positron beams opened the way to positron 

annihilation  studies of defect profiles. Controlling the positron energy  

E one can choose the mean depth at which the positron annihilates. The 

average positron range is: 

                                                   z = A E
n
 

where the constant A was found empirically to be A =400/  in angstroms 

for energy E in keV and density  in g/cm
3
; n = 1.6. The stopping profile 

of monoenergetic positrons is: 

 ])/(exp[)( 0

0

1
m

m

m

zz
z

mz
zP −=

−

 (64) 

where m = 1.9 and z0 is related to the average range z  by the equation: 

                                                z = z0 (1+1/m) 

Fig. 76.  The PALS spectra of 

MCM-41 [216]: a – directly af-

ter template pyrolysis, b – after 

6 h oxygen treatment, c – after 

10 h (and more). 
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(  is the Euler gamma function, (1+1/m)  is about 0.85). The distribution 

of ranges for several positron energies is shown in Fig. 77. 
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The simplest way to observe the defects in thin layers using a slow-

positron beam technique is to apply the DBARL method, giving the 

values of S and W parameters
7
.  

Monoenergetic positron beams are particularly useful in the studies 

of membranes. An industrial membrane is often composed of several 

layers. For example, the membrane separating water and isopropanol 

contains three layers of polyamide skin, a modified polyacrylonitrile 

porous membrane and a support. A determination of pore size and 

distribution is possible when the positron range is fitted to the thickness 

of layers [220]. 

A similar situation appears in the case of coatings, e.g. Cao et al. 

[221] have studied the degradation of aircraft coating due to UV 

exposition. The coating consisted of polyurethane topcoat, epoxy primes 

and the aluminium surface treatment layer optimizing primer adhesion. It 

was found that UV irradiation  decreases the S parameter in all layers, 

that means a reduction of void sizes or of their concentration. Authors 

propose to explain it as the result of increasing the number of cross-links 

in the epoxy layer. 

Positron methods allow to distinguish open and closed pores. For 

example, to reduce the RC time constant in very fast integrated circuits, 

the insulating layers should have possibly low dielectric constant. One 

can substitute the bulk insulator by the same but porous. One of such 

                                                 
7
 The technique of variable energy positron beam is very often used in the version with 

positrons (not positronium), trapped in structural defects of conducting materials [VII].  

Fig. 77. Distribution of positron ran-

ges in silicon for monoenergetic po-

sitrons of energy 2, 5 and 10 keV. 
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insulators developed by IBM is methyl-silsesquioxane (MSSQ) with 

addition of porogen. As a porogen the poly( -caprolactane) based 

polymer (PCL) is used. During thermal treatment of such films a 

decomposition of the porogen and volatilization of the resulting fragments 

occurs, leaving closed nanopores [222], whose sizes can be determined by 

the PALS method. With increasing porogen content the isolated 

individual voids connect, forming a channel open to the film surface. 

Ortho-positronium, which was trapped in voids, now can migrate along 

such a channel and escape into vacuum. When outside of the film, its 

lifetime is 142 ns, so the appearance of such a lifetime is an indication of 

pore interconnectivity. The o-Ps in open vacuum annihilates via three-

quantum emission, thus the intensity of such decays can be a measure of 

the escape probability. 

Considering the relation between o-Ps lifetime and the pore size one 

should take into account the adsorption of residual gases, particularly at 

very low temperatures. Adsorption and then desorption at increased 

temperature can produce a non-monotonic shape of  vs. T dependence. A 

drastic example of such effect was demonstrated e.g. in the paper by 

Uedono et al.[223]. The effect of lifetime changes due to surface covering  

can appear also in the case of grafted pores. 

 

 

SUMMARY 

 

Positronium studies  represent a fragment of more broad positron 

spectroscopy, operating the neutral particle of small mass, thus being a 

non-destructive probe of the matter which it penetrates. Location of Ps in 

the regions of negligible electron density (vacancies, intermolecular 

spaces, pores) gives the possibility of an insight into subnanometric 

irregularities of the structure. The most useful is positronium in two 

cases: 

– in polymers the “free volumes” are important  for macroscopic 

physical properties of these media. Positronium allows to 

determine the sizes of individual voids, their distribution and 

concentration, 

– in porous media positronium probes not only open, but also 

closed pores. The investigations can be performed at arbitrary 

temperature. 
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Positronium techniques are now at the stage of practical  application, 

however, they still need to improve the models describing the relation 

between annihilation processes and the structure of matter. The study of 

fundamental properties, e.g. of the behaviour of confined particle are also 

important. 
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