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Abstract

Positronium collisions with rare-gas atoms are treated using the free-electron-gas approximation

for exchange and correlation potential. The results confirm the absence of the Ramsauer-Townsend

minimum in elastic scattering cross sections, but show lower cross sections in the lower-energy

region when compared to previous pseudopotential calculations. This is explained by a more

attractive ab initio correlation potential as compared to the previously used empirical potential.

The results in the thermal energy region agree very well with most swarm measurements for all rare

gas atoms. At higher energies the results are compared with beam experiments, and agreement

for heavier rare gas atoms, Ar, Kr and Xe, is found to be very good. For He and Ne some

discrepancies wth beam measurements are observed. This is explained by a poorer performance

of the free electron gas potentials, based on the statistical Thomas-Fermi model, for systems with

fewer electrons.

PACS numbers:
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I. INTRODUCTION

Studies of positronium (Ps) collisions with atoms and molecules reveal interesting phe-

nomena. In particular experiments of Laricchia et al [1–6] performed during the last eight

years have shown that electron scattering and Ps scattering cross sections, when plotted as

functions of the projectile velocity, are very similar for a variety of targets at energies above

the Ps ionization or breakup threshold at 6.8 eV (v=0.5 a.u.). More recent experiments [5]

on Ps scattering from Ar and Xe show a small cross section below the threshold which led to

a speculation that there might be a Ramsauer-Townsend minimum in scattering of Ps from

these rare-gas (Rg) atoms similar to that for electron scattering by heavy Rg atoms [7].

The similarity above the ionization threshold has been explained using the impulse ap-

proximation [8]. Calculations [9, 10] using a pseudopotential model have also been successful

in reproducing the agreement above the threshold, but exhibit a larger cross section than

experiment at lower velocities for the heavier rare-gas atoms. Other recent calculations in

which the Ps-atom system is enclosed in a hard spherical wall have also led to larger cross

sections below the ionization threshold for Rg atoms [11]. A number of other calculations

[12–16] for Ps scattering by the Rg atoms have been done and these have been summarized

in ref. [11]. These calculations all have resulted either in positive scattering lengths or in

no indication of the Ramsauer-Townsend minimum. The Ramsauer-Townsend minimum

usually occurs when the scattering length is negative, so that the s-wave scattering phase

shift grows initially, then bends down due to a long-range attractive interaction and passes

through 0 modulo π. This what happens in electron scattering by heavy Rg atoms: Ar, Kr,

and Xe, and positron scattering from all Rg targets. However, because of the relative weak-

ness of the van der Waals interaction compared to the polarization interaction, the scattering

lengths for Ps scattering by these atoms is positive, and the Ramsauer-Townsend minimum

does not occur for these targets [9]. Therefore, the overall picture of Ps-atom scattering is

quite different from the electron scattering in the low-energy region. This is in stark contrast

to the intermediate energy range from the Ps ionization threshold up to projectile velocities

about 2 a.u. Here the Ps-A scattering is mostly controlled by the electron-atom exchange,

which makes its cross section very similar to that for electron-atom scattering.

It appears that there is some discrepancy between experiment and theory for Ps scat-

tering by Rg atoms below the ionization threshold. On the other hand, recent calculations
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[11, 16] indicate that perhaps previous pseudopotential calculations [9] overestimate the Ps

cross section in the low-energy energy region, and more calculations, incorporating more

accurately exchange and correlations, are required.

A substantial deficiency of the pseudopotential calculations is that they do not include

short-range correlation effects in an ab initio way. To account for the long-range correlation,

the van der Waals potential with a short-range cut-off is usually introduced in the form

Vcorr = −CW

R6
[1− exp[−(R/Rc)

8]] (1)

where CW is the van der Waals constant, and Rc is an adjustable cut-off radius. While the

long-range Ps-atom interaction is included properly in this way, the short-range correlations

could be significantly underestimated. The total potential for the Ps-atom interaction might

become therefore too repulsive, which would lead to a too rapid decrease of the scattering

phase shifts at low energies.

In order to correct this deficiency, in the present paper we apply recently developed

free electron gas (FEG) exchange and correlation energies [17] to calculate local scattering

potentials for Ps collisions with Rg atoms. The FEG correlation potential is free of adjustable

parameters and exhibits a strong attraction at short distances. We have previously used

this model to investigate Ps-N2 scattering [18] and were able to reproduce the resonance

structure seen experimentally there and obtained good agreement with experiment above

the ionization threshold, although again, at lower velocities the calculated cross sections

seem to be substantially larger than the experimental.

Such local model exchange and correlation potentials have been used fairly extensively

in electron-atom and electron-molecule scattering. One of the most common is the Hara

free electron gas exchange potential (HFEGE) used first for e−-H2 scattering [19]. The FEG

model for the Ps-molecule scattering potential in refs. [17, 18] is similar to the HFEGE

model except that there is an additional contribution to the exchange potential due to the

positron interaction with the target electrons. The correlation potential of refs. [17, 18] is

similar to the correlation potential for electron scattering derived by O’Connell and Lane

[20].

These local approximations can take into account the attractive nature of the exchange

potential [21] which occurs due to the Pauli exclusion principle and the creation of a Fermi

hole [22, 23]. However, the local potentials cannot take into account the antisymmetric
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character of the total wavefunction with respect to interchange of the projectile and target

electrons. This feature is often incorporated by enforcing orthogonality between the scat-

tering wave-function and the bound orbitals of the target atom or molecule. Morrison and

Collins [24] have investigated the effect of enforcing orthogonality when using the HFEGE

potential in electron-molecule scattering. In general it was found that enforcing orthogo-

nality gave better agreement with exact static exchange calculations. Based on this result

it might be expected that the orthogonality requirement should also have an effect on Ps

scattering by atoms and molecules. In fact it was the main goal of refs. [9, 10] to model this

orthogonality requirement through the use of a repulsive pseudopotential that is found by

reproducing electron and positron scattering phase shifts.

Another method of enforcing orthogonality in electron or Ps scattering has been proposed

by Mitroy et al. [25, 26] through the use of an orthogonalizing pseudopotential (OPP) first

introduced by Krasnopolsky and Kukulin [27, 28]. In the present paper we develop the OPP

for Ps scattering with Rg atoms and add it to our FEG exchange and correlation potentials.

In this way we can attempt to take into account and study the effect of the Pauli principle

on Ps-Rg scattering at low to intermediate velocities.

The rest of the paper is organized as follows. In Sec. II we briefly describe the FEG

local and exchange potentials and derive an expression for the OPP. In Sec. III we present

our results for the lighter rare gas atoms, He and Ne. In Sec. IV we present our results for

the heavier rare-gas atoms Ar, Kr and Xe. Lastly, in Sec. V, we present our conclusions

and outlook. Atomic units are used throughout unless stated otherwise. As it has become

customary since the discovery [1] of similarities between electron and Ps scattering, in most

cases we present the Ps scattering cross sections as functions of velocity rather than energy,

although in the thermal energy region we will also use the energy scale.

II. POTENTIALS

In this section we describe the theory for calculation of the exchange and correlation

potentials using the FEG method of [17] and the inclusion of orthogonality using the OPP.

The FEG potentials are local, but the OPP is non-local. To obtain the radial equations for

the Ps center of mass motion, we write the total Ps wave-function in the form

Ψ(re, rp) = G(R)ψ(t) (2)
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where the Ps center of mass is related to the positron and electron coordinates by R =

(re + rp)/2 and we define the relative coordinate as t = re − rp.

When the Schrödinger equation governing the Ps + atom collision is averaged over the

ground state Ps function, given by

ψ(t) =
1√
8π
e−t/2, (3)

the static potential vanishes and we obtain the equations for the function G(R) that describe

the Ps center of mass motion

[∇2
R + p2]G(R) = 4VXC(R)G(R) + 4γP̂G(R) (4)

where VXC is the local exchange plus correlation potential derived in [18], and γP̂ is an

orthogonalizing pseudopotential as defined in [14, 15, 26]. In the remainder of this section

we describe the FEG local exchange and correlation potentials and derive the expression for

the OPP kernel.

A. FEG exchange and correlation potentials

In the FEG method the exchange and correlation energies are functions of the Fermi

momentum kF . The dependence on position is given by the Thomas-Fermi relation in which

the Fermi momentum depends on the target charge density ρ(r),

kF (r) = [3π2ρ(r)]1/3. (5)

As described in ref. [17] we evaluate kF at the center of mass of the Ps atom so that r

= R. The exchange and correlation potentials are then summed to give the total local

approximation to the scattering potential. To calculate the charge densities we have used,

for all rare-gas atoms except Helium, the Hartree-Fock wave functions of Mann [29]. For He

we have used the two parameter wave function of Green et al. [30] that closely approximates

the Hartree-Fock wave function.

In order to take into account the long range behavior of the correlation potential we have

used the long range form

VW (R) = − CW

(R2 +R2
c)

3
(6)
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where the cutoff parameter Rc is adjusted to match smoothly to the FEG correlation po-

tential below some transition radius Rt at a scattering velocity of v=0.01 a.u. For He we

have used Rc=1.65 a.u which gives Rt=1.95 a.u. For all other atoms we have chosen Rc =

1.3 a.u. which gives Rt = 2.72 a.u. for Ne, 3.09 a.u. for Ar, 3.27 a.u. for Kr and 3.36 a.u.

for Xe. The values of CW used in the present calculations are for He 13.37 a.u. [15]. For

Ne, Ar, Kr, Xe the values are 26.48, 98.69, 146.71 and 227.38 a.u., respectively [31]. These

values are the same as those used by Swann and Gribakin [11].

Another common method of including correlation is by using the empirical potential

(1) with an adjustable cut-off radius Rc. This form has been used in the pseudopotential

calculations for various targets of refs. [9, 10] as well as the calculations of Swann and

Gribakin for Rg targets [11].

In Fig. 1 we show the absolute value of the exchange and correlation potentials for each

atom at a Ps velocity of 0.01 a.u. The potentials depend very weakly on the Ps velocity.

Due to the rapid rise of the charge density as r → 0 the strength of the potential increases

rapidly in this region.

An interesting feature of the exchange plus correlation potential is that at intermediate

values of R it becomes repulsive. This is shown in Fig. 2. This is due to the exchange

energy becoming positive for small kF , see ref. [17]. Due to this effect the potential does

not reach its asymptotic form until relatively large values of R. It should be noted that,

although the total potential becomes repulsive for a small range of intermediate values of

R, it eventually becomes attractive again. The value of R at which the potential becomes

attractive again increases as the size of the atom increases. For He and Ne this transition

occurs at the relatively small distances of 2.83 a.u. and 3.53 a.u., respectively. For the larger

atoms Ar, Kr and Xe the transition occurs at the larger distances of 4.61 a.u., 5.07 a.u. and

5.77 a.u., respectively.

B. Orthogonalizing Pseudopotential OPP

As mentioned above we use the OPP to enforce orthogonality between the electron in Ps

and the occupied target atom orbitals, φnlm. The OPP is defined by the projection operator
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[26]

γP̂ = γδ(rp − r′p)
N∑
i

|φi〉〈φi|. (7)

which is added to the exchange and correlation potentials VXC and leads to the non-local

term. The delta function ensures that the OPP affects only the electron coordinate em-

phasizing in this way the dominant role of the electron constituent of Ps in the scattering.

The strength parameter γ in these equations is made large enough so that orthogonality is

enforced and the scattering calculations are converged in the sense that further increase of

γ leads to a negligible change in the phase shifts and cross sections. The sum is over the N

occupied orbitals of the target atom.

For simplicity we derive the OPP kernel K(R,R′) for He, the generalization to the heavier

Rg atoms is then relatively straightforward. For He the OPP of (7) includes only one term

due to the occupied 1s orbital and the non-local term in (4) is given by∫
K(R,R′)G(R′)d3R′ =

∫ ∫
ψ∗(t)φ1s(re)φ

∗
1s(r

′
e)ψ(t′)G(R′)d3t′d3r′e. (8)

In order to facilitate evaluation of the integrals in Eq. (8), we change coordinates from

(r′e, t
′) to (rp,R

′) which is similar to that used by Fraser [32, 33]. The Jacobian of this

transformation equals 64. This follows from the relations

t = 2(R− rp); t′ = 2(R′ − rp) (9)

and

re = 2R− rp; r′e = 2R′ − rp. (10)

Furthermore we make the expansions

ψ∗(2|R− rp|)φ1s(|2R− rp|) =
∑
l

(2l + 1)

4π
Al(R, rp)Pl(cos θRrp) (11)

and

φ∗1s(|2R′ − rp|)ψ(2|R′ − rp|) =
∑
l′

(2l′ + 1)

4π
A∗l′(R

′, rp)Pl′(cos θR′rp). (12)

The coefficients Al(R, rp) are calculated numerically as suggested by Fraser [32, 33]. From

Eq. (8) we obtain∫
K(R,R′)G(R′)d3R = 64γ

∑
ll′

∫ ∫ (2l + 1)(2l′ + 1)

(4π)2
Al(R, rp)A

∗
l′(R

′, rp)

×Pl(cos θRrp)Pl′(cos θR′rp)G(R′)drpdR
′. (13)
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Now we use the spherical harmonic addition theorem, perform the angular integration

over rp and make the partial wave expansion

G(R) =
∑
LM

FL(R)

R
YLM(R̂) (14)

to obtain the radial equations

[
d2

dR2
− L(L+ 1)

r2
+ p2

]
FL(R) = 4VXC(R)FL(R) + 4γ

∫
KL(R,R′)FL(R′)dR′ (15)

where VXC is the local exhange plus correlation potential and the L-dependent kernel is

given by

KL(R,R′) = 64RR′
∫
AL(R, rp)A

∗
L(R′, rp)r

2
pdrp. (16)

In the case of an atom with more than one occupied orbital we must evaluate the sum

over the occupied orbitals of the target atom. Each orbital may be written as

φnlm(r) = Rnl(r)Ylm(r̂). (17)

We may now obtain a radial equation like that of (15). Noting that θrr′ = θRR′ and

using properties of the spherical harmonics and the Wigner 3-j symbols we obtain for the

L-dependent kernel

KL(R,R′) = 64RR′
∑
nll′

Cll′L

∫
Anll′(R, rp)Anll′(R

′, rp)r
2
pdrp. (18)

where Anll′ is the Legendre expansion coefficient in

ψ(2|R− rp|)Rnl(|2R− rp|) =
∑
l′

(2l′ + 1)

4π
Anll′(R, rp)Pl′(cosθRrp) (19)

and

Cll′L =
(2l + 1)(2l′ + 1)

4π

 l l′ L

0 0 0


2

. (20)

The radial equations (15) are solved iteratively. The phase shifts and cross sections are

converged for values of γ > 3 a.u. We have used γ = 20 a.u. in all calculations. We also

note that the OPP acts as a repulsive potential that forces the wave function to be small at

small values of R for all values of L. This is unlike the electron-atom scattering case where

the orthogonality affects only the symmetries corresponding to the occupied atomic orbitals.
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III. PS SCATTERING BY HE AND NE

In this section we consider scattering of Ps by the lighter Rg atoms, He and Ne.

In Fig. 3 we show the phase shifts for Ps scattering by He and Ne using the FEG exchange

and correlation potentials with and without inclusion of the OPP. Without the OPP the

scattering exhibits a low energy resonance, in P wave for He and in D wave for Ne. When the

effect of orthogonality is included by adding the OPP to the FEG potentials the resonance

disappears due to the repulsive nature of the OPP.

In Fig. 4 we show the cross sections for elastic scattering of Ps by He and Ne using our

FEG exchange and correlation potentials with and without the OPP as well just the exchange

potential with the OPP, but without correlations. The cross section near zero velocity is

only slightly larger than the results of [11], but is a fair amount larger than the experimental

results above the ionization threshold. Note that after adding of Ps ionization cross sections

to the elastic cross sections, the disagreement with the experiment would become even worse,

although the ionization cross sections for these targets (with peak values 1.5 × 10−16 and

3× 10−16 cm2 for He and Ne respectively [35]) are not large.

In Fig. 5 we show the phase shifts for Ps-He and Ps-Ne scattering at velocities below

the ionization threshold and compare the present results with the calculations of Swann

and Gribakin [11] and, for He, with the calculations of Barker and Bransden [36]. In this

calculation we have used the correlation potential of Eq. (1) with Rc = 2.5 a.u. which has

also been used in the calculations of Swann and Gribakin [11]. Our phase shifts decrease

more rapidly than those from other calculations, and this leads to a larger scattering cross

section at velocities near 0.5 a.u. It appears that the OPP overestimates the repulsive effect

of orthogonality for these lighter target atoms at intermediate velocities. It could be also

possible that our local exchange potential, based on the statistical Thomas-Fermi model,

is too approximate for atoms with a few electrons, like He and Ne, and underestimate the

effective attraction due to exchange.

When solving the radial equations (15) at low Ps velocities (v < 0.1 a.u.) we have often

encountered some instability in the S-wave phase shift due to the large non-local OPP term.

In order to extrapolate the S-wave phase shift to low velocities we attempted to use the

modified effective range expansion [9, 37–39] for the phase shift

tan δ0 = −Ap− r0A2p3/2 + πγ4p4/15 + 4Aγ4p5 ln |2pd|/15 +O(p5), (21)
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where p = 2v is the Ps center of mass momentum, A is the scattering length, r0 and d are

other parameters depending on the short-range interaction, and

γ4 = 2mCW , m = 2 a.u.

It is well known, however, that for long-range potentials δl as a function of p is nonanalytical

at p = 0 [37]. (This explains the logarithmic term in expansion (21)). Moreover, this

expansion has a very small (if not zero) convergence radius, therefore inclusion of higher-

order terms there leads to a spurious behavior of δl(p). This is particular relevant when

the parameter γ4 is large, like in the case of Xe when it equals 920 a.u. In this case the

p4 terms becomes larger in absolute magnitude than the p3 term already at p = 0.17 a.u.

(E = 0.2 eV). A more reasonable approach would be to expand δl(p) about the point where

this function is analytical. Assuming that this point is close to the origin and reexpanding

δ0 again in powers of p, we obtain the following polynomial extrapolation formula

δ0 = −Ap+Bp3 + Cp4 +Dp5, (22)

where all coefficients are treated as fit parameters. We could have included the term p2

as well, but Eq. (21) suggests that this term is insignificant. Calculations for all rare gas

atoms show that indeed Eq. (22) works much better for extrapolation to lower p than Eq.

(21). The fit parameters and cross section at v=0 for He and Ne are shown in Table I. For

comparison we also show results of previous calculations and experiments for the scattering

length and cross section at v=0 in Table II.

Using the present FEG model for the correlation potential we obtain the scattering lengths

of 1.77 a.u. and 1.87 a.u. for He and Ne, respectively. These are in quite good agreement

with the many body theory values, 1.70 a.u. for He and 1.76 a.u. for Ne, of Green et al.

[16]. They are slightly larger than the recommended values of ref. [11], 1.60 for He and 1.65

for Ne. When correlation is neglected we obtain the scattering lengths of 1.87 a.u. and 2.08

a.u. for He and Ne respectively. These are also in good agreement with the frozen target

values, 1.86 a.u. for He and 2.02 a.u. for Ne, of ref. [11].

Mitroy and Ivanov [14] have employed the OPP in low velocity calculations for Ps scatter-

ing with several closed shell atoms. Using the stochastic variational method, they obtained

frozen target scattering lengths of 1.84 a.u. for He and 2.02 a.u. for Ne. These compare well

with the present results of 1.87 a.u. for He and 2.08 a.u. for Ne. When the van der Waals
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interaction is included the stochastic variational method results in scattering lengths of 1.57

a.u. for He and 1.55 a.u. for Ne. These are somewhat smaller than the present values of

1.77 a.u. for He and 1.87 a.u. for Ne. This difference may be attributed to the fact that

Mitroy and Ivanov use a different model for the van der Waals interaction.

In Fig. 6 we show the momentum transfer cross sections for Ps scattering by He and Ne

compared with the many body theory calculations of [16] and various experimental swarm

measurements. These are based on observation of Ps thermalization in a gas environment

and describe the Ps-Rg interaction at thermal energies. For He the earlier results of Na-

gashima et al. [54, 55] are in much better agreement with the theory than those of Skalsey

et al. [56]. More recently Engbrecht et al. [57] attempted to determine the energy de-

pendence of the momentum transfer cross section in the region between 0 and 0.8 eV from

measurements of Ps energy as a function of time. The shape of their curve is consistent

with the theoretical results. However, the absolute magnitude of the cross section is even

lower than that of Skalsey et al. To resolve this controversial situation, experimental results

in the energy (velocity) range joining the regions of beam and swarm measurements are

certainly warranted. For Ne both swarm measurements agree with the theory, but again,

measurements in the gap corresponding to the velocity range between 0.2 and 0.5 a.u. (1 to

7 eV) would be beneficial.

IV. PS SCATTERING BY AR, KR AND XE

In Fig. 7 we show the phase shifts for Ps scattering by Ar and Xe using the FEG exchange

and correlation potentials with and without inclusion of the OPP. Again, without the OPP

the scattering exhibits a low energy resonance, in P wave for Ar and in D wave for Xe. For

Xe there is also an F -wave resonance that is prominent at low velocities. When the effect of

orthogonality is included by adding the OPP to the FEG potentials, the resonances again

disappear due to the repulsive nature of the OPP.

In Fig. 8 we show the cross sections for Ps scattering by Ar and Xe compared with

experimental measurements and the calculations of [11]. In the present calculations we

use the OPP potential with the FEG exchange potential and with either no correlation,

FEG correlation or the correlation potential with cutoff of Eq. (1). We have also added the

ionization cross sections above the ionization threshold to the FEG exchange and correlation
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plus OPP cross section using the binary encounter approximation of [10] to obtain the total

scattering cross section. The present total cross sections above the ionization threshold are

slightly larger than the experimental results and previous pseudopotential calculations of

[10]. However, at velocities below the ionization threshold the present cross sections are

quite different from the pseudopotential results. The pseudopotential results [9] exhibit a

peak in the cross section in this region whereas the present calculations do not. This peak

was explained [9] by a rapid decrease of the S-wave and the P -wave phase shifts in the

low-velocity region. Looking at the present results for the phase shifts, we conclude that the

pseudopotential calculations either overestimated the Pauli repulsion or underestimated the

attraction due to short-range correlations, or both.

In Fig. 9 we show the phase shifts for Ar and Xe at velocities below the ionization

threshold using the correlation potential of Eq. (1) with a cutoff radius of Rc=2.5 a.u.

for Argon and Rc= 3.0 for Xenon. The present phase shifts are a fair amount larger than

the previous pseudopotential calculations which indicates that the overall FEG exchange,

correlation and OPP is more attractive than the pseudopotential. This might be expected

since the pseudopotentials of refs. [9, 10] are determined by fitting to electron and positron

static-exchange scattering phase shifts, therefore the only attractive potential included is

the empirical correlation potential of (1) which is much weaker at small R than the FEG

correlation potential.

Therefore it is interesting to compare the FEG correlation potential with the form of Eq.

(1). In Fig. 10 we compare the FEG correlation potentials with the potential of Eq. (1) with

Rc=2.5 a.u. for Ar and Rc=3.0 a.u. for Xe. At small values of R the FEG potential becomes

very strongly attractive while the correlation potential of Eq. (1) goes to zero. However, at

small values of R the short range repulsion of the OPP masks the attractive effect of the

exchange and correlation potentials. At intermediate values of R, however, the potential

of Eq. (1) is slightly more attractive than the FEG correlation potential. This leads to

a smaller cross section at low velocities and, in the case of Xe, to a Ramsauer-Townsend

minimum.

In general we see relatively good agreement with experiment for the heavier rare-gas

atoms both above and below the ionization threshold when using the FEG exchange and

correlation potentials plus the OPP. The worse agreement for the lighter atoms, He and Ne,

may be due to the FEG model being not as appropriate for systems with fewer electrons.
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In Fig. 11 we present our cross section and phase shifts for scattering of Ps by Kr. We

obtain similar results to that of Ar and Xe.

As we did for He and Ne, we have fit the low velocity S-wave phase shift to the polynomial

expansion of Eq. (22), and we present the fit parameters for Ar, Kr and Xe in Table III. For

comparison we also show results of previous calculations and experiments for the scattering

length and cross section at v=0 in Table IV. When using the FEG potentials plus OPP, we

have obtained the scattering lengths of 1.95 a.u. for Ar, 1.98 a.u. for Kr and 1.86 a.u. for

Xe. The recommended values of [11] are 2.0 a.u. for Ar, 2.3 a.u. for Kr and 2.6 a.u. for Xe.

The recommended values are becoming larger with the size of the atom whereas our FEG

plus OPP results are quite close to one another, and in fact the result for Xe is smaller than

Ar and Kr. The scattering lengths from the stochastic variational method including the van

der Waals interaction method are 1.79 a.u. for Ar [14], 1.98 a.u. for Kr and 2.29 a.u. for

Xe [15] which are also somewhat smaller than the recommended values of [11].

Our present scattering lengths without including correlation are 2.60 a.u. for Ar, 2.84

a.u. for Kr and 3.16 a.u. for Xe which may be compared with the frozen target calculations

of [11], 2.81 a.u. for Ar, 3.11 a.u. for Kr and 3.65 a.u. for Xe. In both cases the scattering

lengths are increasing with the size of the atom, but the present results are somewhat

smaller than the frozen target results. The frozen target stochastic variational phase shifts

are 2.85 a.u. for Ar, 3.18 a.u. for Kr and 3.82 a.u. for Xe which are again larger than the

present results. The difference here might be due to the effect of the strongly attractive

FEG exchange potential in the present calculations.

Recently Shibuya and Saito [58] have proposed a method to convert measured Ps anni-

hilation rates into total and partial Ps scattering cross sections in the Ps energy range 0-80

meV. They applied this method to Ps-Xe scattering and obtained scattering phase shifts

at thermal energies shown in Fig. 12. Their scattering length is 2.06 a.u. for Xe which

is quite close to our present value of 1.86 a.u. Based on this result, they claim that “the

positron plays the more important role during Ps-Xe collisions in the ultralow-energy re-

gion. This differs from the understanding that electron exchange plays the dominant role in

the intermediate-energy region”. We agree that the low-energy scattering is controlled by a

repulsive potential, but as we see through the use of the OPP, the repulsion is due to the

effect of orthogonality between the electron in Ps and the electrons in the atomic target,

so the scattering is still controlled mostly by electron exchange, although the cross section
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is quite different from that of e−-Xe because of different long-range interactions in the two

processes.

By extrapolation to higher Ps energies, Shibuya and Saito have also found a peak in the

total Ps-Xe cross section near 0.4 eV that has a very large magnitude of (430 ± 100) 10−16

cm2. This peak is significantly higher than that obtained in our previous pseudopotential

calculations [10] and that found by Blackwood et al. [12]. We also note that the result of

[12] was later found to be in error due to a numerical inaccuracy [59] and there is, in fact,

no peak. The cross section of Shibuya and Saito in the E = 1 eV region is also much higher

than that obtained in beam measurements [5]. In particular these measurements give the

cross section 9 × 10−16 cm2 at E = 1.7 eV whereas Shibuya and Saito obtain 200 × 10−16

cm2 at E = 1 eV. Such a striking disagreement can be, at least at large extent, explained by

the extrapolation procedure used by Shibuya and Saito. They use the effective range theory

expansion, Eq. (21), for δ0 and similar expansions for δ1 and δ2 [37]. As was discussed

in Sec. III, these expansions are very badly divergent already for E = 0.2 eV, even with

γ4 = 460 a.u. in Eq. (22), used by Shibuya and Saito, instead of actual γ4 = 920 a.u. for

Xe. The parameters of Shibuya and Saito produce for partial cross sections at E = 0.4 eV

(v = 0.12 a.u.) σ1 = 162 × 10−16 cm2 and σ2 = 249 × 10−16 cm2 leading to the total cross

section exceeding 400×10−16 cm2 which is not supported by any theory.

In our present calculations using FEG exchange and correlation potentials plus the OPP

we actually see a minimum in the Ps scattering cross section at low energies (velocities). To

understand this we show in Fig. 12 the present phase shifts for Ps-Xe scattering compared

with the results of Shibuya and Saito [58] and our previous pseudopotential results [10] for

Ps energies of 0-80 meV. Our present S-wave phase shift decreases the most slowly of the

three and our P -wave phase shift is quite negligible at these ultra-low energies. In fact the

present P -wave phase shift is slightly positive in the thermal energy range, and becomes

negative at a Ps energy of 256 meV. This means that the P -wave phase shift is very small in

the low energy region and the slowly decreasing S-wave phase shift is dominant which leads

to a minimum in the cross section before the P -wave and other higher partial waves begin

to grow and the cross section starts to increase at higher velocities. Our present results

seem more consistent with the beam measurements, but once again we see that further

measurements in the 0.2-0.5 a.u. (E=1 to 7 eV) range are warranted.

We also see from Table III that the scattering length is very sensitive to the correlation
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potential. In fact, when using the empirical correlation potential of Eq. (1) with Rc = 3.0

a.u. for Xe, we obtain a negative scattering length indicating the presence of a Ramsauer-

Townsend minimum. However, calculations with a more reliable correlation potential, the

measurements of Shibuya and Saito, and all other calculations of Ps-Xe scattering sug-

gest that the existence of the Ramsauer-Townsend minimum in Ps-Xe scattering is highly

unlikely.

In Fig. 13 we show the momentum transfer cross sections for the heavier Rg atoms Ar,

Kr and Xe using the FEG exchange and correlation potentials with the OPP. We also show

the calculations of Swann and Gribakin [11] using Eq. (1) with two different values of cutoff

radius, Rc. For Ar these values are Rc = 2.5 and 3.0 a.u. and our present cross section

lies between these. For Kr and Xe the cutoff radii are larger, Rc=3.0 and 3.5 a.u. and our

cross sections are smaller than the calculations of [11]. Since a larger cutoff radius leads to

a weaker correlation potential, this seems to indicate that the Ps-Rg interaction in our case

is effectively more attractive than that of Swann and Gribakin.

For Ar the experimental results are quite varied, but we obtain relatively good agree-

ment, while for Xe our momentum transfer cross section is in excellent agreement with the

measurement of Shibuya et al. [61].

Lastly, in Fig. 14 we compare our Ps scattering cross sections with electron scattering

cross sections for the heavier rare gas atoms Ar, Kr and Xe. We see a strong similarity

between the electron and Ps total cross sections above the ionization threshold confirming

observations [1–4, 6]. Below the threshold the Ps cross sections are larger but exhibit

a minimum like the electron cross sections. This minimum is different in nature: in Ps

scattering it is due to the slow decrease of the S-wave phase shift at low Ps velocities, while

for electron scattering it is a Ramsauer-Townsend minimum.

V. CONCLUSION AND OUTLOOK

We have applied the exchange and correlation energies of Ps in a free electron gas [17]

to construct local exchange and correlation potentials describing Ps-atom interaction. To

take into account the effect of antisymmetry of the total wavefunction with respect to inter-

change of the Ps electron and the target electron, we can impose the orthogonality of the

Ps electron orbital to the occupied orbitals of the target atom. In order to model the effect
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of orthogonality we have added an orthogonalizing pseudopotential (OPP) [25–28] which

leads to a short range, non-local repulsive potential. The constructed potentials were then

used to calculate phase shifts and cross sections for Ps scattering by Rg atoms at low to

intermediate Ps velocities.

The use of just the attractive local potentials leads to shape resonances at low Ps velocities

that are not seen experimentally. The addition of the OPP to the local potentials removes

the resonances and generally leads to good agreement with beam experiments [1, 5, 34],

especially for the heavier atoms Ar, Kr and Xe. For He and Ne the cross sections are too

large compared with experiment in the low-energy region which may be due to the FEG

potential not being as appropriate for such smaller systems since it is based on the statistical

Thomas-Fermi model.

At velocities below the ionization threshold the cross section is very sensitive to the

intermediate and long range correlation potential. This is because the exchange and cor-

relation potentials are masked by the OPP at small values of R. In fact for Xe we can

get a Ramsauer-Townsend type minimum in the cross section if the correlation potential is

attractive enough in the region of intermediate R. This sensitivity illustrates the necessity

of accurate determination of the exchange and correlation potentials in this region.

The use of the local FEG exchange and correlation potentials with the OPP, in general

leads to smaller cross sections and better agreement with results of beam measurements

than previous pseudopotential calculations. In the thermal energy region, inaccessible to

beam experiments, our results are compared with swarm experiments measuring the Ps

momentum transfer cross sections from observation of Ps moderation in gases. An excellent

agreement with measurements of Nagashima et al. [54, 55] for He, Ne, and Ar, with Skalsey

et al. [56] for Ne, and with Shibuya et al. [58, 61] for Xe, has been obtained. However,

the extrapolation of the Ps-Xe phase shifts, obtained by Shibuya and Saito [58] to higher

energies leads to strongly overestimated (by an order of magnitude) total cross sections.

This is due to the failure of the effective range expansion, Eq (21), at higher energies.

We conclude that our model provides a good description of Ps scattering by Rg atoms,

especially the heavier atoms Ar, Kr and Xe. Our calculations confirm the positive sign of the

scattering length and the absence of the Ramsauer-Townsend minimum in Ps scattering by

heavier rare-gas atoms. However, the S- and P -wave scattering phase shifts decrease with

energy significantly slower than in the previous pseudopotential calculations. This leads to
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a minimum, albeit of not Ramsauer-Townsend type, in the cross section as a function of

energy and significantly improves agreement with the beam experiments in the energy range

below the Ps ionization threshold.

The next important step would be a generalization of the present model to Ps-molecule

scattering. A particular interesting case is Ps-N2 resonant scattering treated in [18] without

incorporation of the OPP. Since there is no occupied πg orbital in N2, inclusion of OPP should

not affect the Πg resonance in e-N2 scattering. However, Ps-N2 scattering is different since

electron partial waves there are mixed. Therefore the OPP in this problem can contribute

noticeably.
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TABLE I: Zero velocity cross sections (in units of 10−16 cm2) and fit parameters (in a.u.) of Eq.

(22) for Ps scattering by He and Ne for several correlation models.

Atom, method σ(v=0) A B C D

He, FEG 11.04 1.77125 -0.28699 1.02897 -0.71451

He, FEG + Eq. (1), Rc=2.5 a.u. 9.08 1.60567 -0.53912 1.18288 -0.60647

He, FEG, no correlation 12.31 1.87035 0.33931 0 -0.20284

Ne, FEG 12.28 1.86786 -0.33038 1.24721 -0.92570

Ne, FEG+ Eq. (1), Rc=2.5 a.u. 9.09 1.60738 -0.39811 1.23919 -0.89430

Ne, FEG, no correlation 15.21 2.07906 0.642976 0 -0.47386
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TABLE II: Zero velocity cross sections (in units of 10−16 cm2) and scattering lengths (in a.u.) of

previous calculations and experiments for Ps scattering by He and Ne.

Atom, method σ(v=0) A

He, Spherical cavity, frozen target [11] 12.17 1.86

He, Spherical cavity, Eq. (1) Rc=2.5 a.u. [11] 8.13 1.52

He, Spherical cavity, Eq. (1) Rc=3.0 a.u. [11] 9.12 1.61

He, Stochastic variational, frozen target [14] 11.91 1.84

He, Stochastic variational,van der Waals [14] 8.67 1.57

He, Static exchange [40] 12.44 1.88

He, Static exchange [41] 11.40 1.80

He, Static exchange with van der Waals [36] 9.12 1.61

He, Kohn variational, static exchange [42] 10.41 1.72

He, R-matrix, static exchange [43] 12.84 1.91

He, R-matrix, 22 Ps states [43] 11.65 1.82

He, T-matrix, model static exchange [44] 3.73 1.03

He, T-matrix, 3 Ps states, model exchange [45] 2.91 0.91

He, T-matrix, 1 Ps state, 3 He states [46] 6.70 1.39

He, T-matrix, 2 Ps states, 3 He states [46] 6.51 1.36

He, T-matrix, static exchange [47] 13.11 1.93

He, T-matrix, 3 Ps states [47] 12.97 1.92

He, T-matrix, 2 Ps states, 3 He states [47] 6.51 1.36

He, Diffusion Monte Carlo [48] 6.90 1.40

He, Kohn variational, 3 Ps states [49] 9.01 1.60

He, R-matrix, 9 Ps states, 9 He states [50] 9.01 1.6

He, exp. Rytsola et al. [51] 7.07 1.42

He, exp. Coleman et al. [52] 7.92 1.50

He, exp. Canter et al. [53] 7.50 1.46

Ne, Spherical cavity, frozen target [11] 14.36 2.02

Ne, Spherical cavity, Eq. (1) Rc=2.5 a.u [11] 7.50 1.46

Ne, Spherical cavity, Eq. (1) Rc=3.0 a.u [11] 9.70 1.66

Ne, Stochastic variational, frozen target [14] 14.36 2.02

Ne, Stochastic variational, van der Waals [14] 8.45 1.55

Ne, T-matrix, model static exchange [44] 7.00 1.41

Ne, R-matrix, 22 Ps states [12] 14.07 2.0

Ne, exp. Coleman et al. [52] 7.92 1.50
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TABLE III: Zero velocity cross section in units of (10−16 cm2) and fit parameters of Eq. (22) for

Ps scattering by Ar, Kr and Xe using various correlation models.

Atom, correlation model σ(v=0) A B C D

Ar, FEG 13.33 1.94669 -0.25754 1.81828 -1.69489

Ar, FEG+Eq. (1), Rc=2.5 a.u. 1.95 0.74374 0.91843 -3.76388 2.81374

Ar, FEG, no correlation 23.86 2.60419 1.64387 0 -1.41846

Kr, FEG 13.86 1.98443 0.25155 1.12354 -1.59459

Kr, Eq. (1), Rc=3.0 a.u. 5.01 1.19382 0.94039 -3.44121 2.42489

Kr, no correlation 28.41 2.84166 2.07948 0 -1.81308

Xe, FEG 12.14 1.85763 5.02004 -10.4840 6.05051

Xe, Eq. (1), Rc=3.0 a.u. 8.06 -1.51357 -14.14210 18.6610 -6.80718

Xe, no correlation 35.21 3.16358 3.45205 0 -3.63689
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TABLE IV: Zero velocity cross sections (in units of 10−16 cm2) and scattering lengths (in a.u.) of

previous calculations and experiments for Ps scattering by Ar, Kr and Xe.

Atom, correlation model σ(v=0) A

Ar, spherical cavity, frozen target [11] 27.78 2.81

Ar, spherical cavity, Eq. (1) Rc=2.5 a.u [11] 7.20 1.43

Ar, spherical cavity, Eq. (1) Rc=3.0 a.u [11] 16.42 2.16

Ar, stochastic variational, frozen target [14] 28.58 2.85

Ar, stochastic variational, van der Waals [14] 8.45 1.55

Ar, Pseudopotential, static exchange [9] 35.81 3.19

Ar, Pseudopotential, Eq. (1) Rc=2.5 a.u. [9] 16.11 2.14

Ar, Pseudopotential, Eq. (1) Rc=3.0 a.u. [9] 19.10 2.33

Ar, T-matrix, model static exchange [44] 9.58 1.65

Ar, R-matrix, 22 Ps states [12] 14.07 2.0

Ar, exp. Coleman et al. [52] 7.92 1.50

Kr, spherical cavity, frozen target [11] 34.03 3.11

Kr, spherical cavity, Eq. (1) Rc=3.0 a.u [11] 17.97 2.26

Kr, spherical cavity, Eq. (1) Rc=3.5 a.u [11] 23.06 2.56

Kr, stochastic variational, frozen target [14] 35.58 3.18

Kr, stochastic variational, van der Waals [14] 13.79 1.98

Kr, Pseudopotential, static exchange [9] 38.78 3.32

Kr, Pseudopotential, Eq. (1) Rc=3.0 a.u. [9] 19.43 2.35

Kr, Pseudopotential, Eq. (1) Rc=3.5 a.u. [9] 21.99 2.50

Kr, R-matrix, static exchange [12] 38.32 3.3

Xe, spherical cavity, frozen target [11] 46.88 3.65

Xe, spherical cavity, Eq. (1) Rc=3.0 a.u [11] 24.34 2.63

Xe, spherical cavity, Eq. (1) Rc=3.5 a.u [11] 29.18 2.88

Xe, stochastic variational, frozen target [14] 51.34 3.82

Xe, stochastic variational, van der Waals [14] 18.45 2.29

Xe, Pseudopotential, static exchange [10] 35.81 3.19

Xe, Pseudopotential, Eq. (1) Rc=3.0 a.u. [10] 21.12 2.45

Xe, R-matrix, static exchange [59] 50.00 3.77

Xe, exp. Shibuya and Saito [58] 14.93 2.06
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FIG. 1: Absolute value of the FEG exchange plus correlation potential for Ps-Rg scattering as a

function of Ps center of mass R at small values of R.
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R of the Ps center of mass at intermediate values of R.
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potentials and b) FEG exchange and correlation plus OPP. Solid lines: Neon; Dashed lines: Helium.

Black lines: S wave, red lines: P wave, blue lines: D wave.
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solid lines (upper curve at v=0): elastic cross section using only the local FEG exchange potential

plus OPP. Blue solid lines (lower curve at v=0): elastic cross section using the local FEG exchange

potential and correlation potential of Eq. (1) with a cutoff radius of Rc=2.5 a.u. Dashed line

(middle curve): Many body theory results of [16]. Red dashed lines (upper curve): frozen target

calculations of [11]. Blue dashed lines (lower curve): calculations of [11] using the correlation

potential of Eq. (1) with a cutoff radius of Rc=2.5 a.u. Squares: total cross section measurements

of [1]. Circles: total cross section measurements of [34].
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FIG. 5: Phase shifts for Ps scattering by a) Helium and b) Neon using the FEG exchange potential

plus the OPP and correlation potential of Eq. (1) with a cutoff radius of Rc=2.5 a.u. Black lines:

S wave, red lines: P wave, blue lines: D wave. Solid lines: present results; dashed lines: results of

ref [11] using the same correlation potential; dotted lines: results of Barker and Bransden [36].
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FIG. 6: Momentum transfer cross sections for Ps scattering by a) He and b) Ne. Solid lines: present

FEG plus OPP results. Dashed lines: many body theory calculations of [16]. Experimental results,

Triangle: Nagashima et al. [54, 55], Circles: Skalsey et al. [56], dotted line: Engbrecht et al. [57].
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FIG. 7: Phase shifts for Ps scattering by Argon and Xenon using a) FEG exchange and correlation

potentials and b) FEG exchange and correlation plus OPP. Solid lines: Argon; Dashed lines:

Xenon. Black lines: S wave, red lines: P wave, blue lines: D wave, green lines: F wave.
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FIG. 8: Cross sections for Ps scattering by a) Argon and b) Xenon. Solid lines (middle curves at

v = 0): elastic cross section using local FEG exchange and correlation potentials with OPP. Dashed

line (labeled total): total cross section (elastic plus ionization) Red solid lines (upper curves at

v=0): elastic cross section using only the local FEG exchange potential plus OPP. Blue solid lines

(lower curves at v=0): elastic cross section using the local FEG exchange potential plus OPP and

correlation potential of Eq. (1) with a cutoff radius of Rc=2.5 a.u. for Ar and Rc = 3.0 a.u. for

Xe. Green dot-dash lines: total cross sections of the pseudopotential method [10]. Red dotted lines

(upper curves): frozen target calculations of [11]. Blue dotted lines (lower curves): calculations of

[11] using the correlation potential of Eq. (1) with a cutoff radius of Rc=2.5 a.u. for Ar and Rc=3.0

for Xe. Circles: total cross section measurements of [1]. Squares: total cross section measurements

of [5].
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FIG. 9: Phase shifts for Ps scattering by a) Argon and b) Xenon using the FEG exchange potential

plus the OPP and correlation potential of Eq. (1) with a cutoff radius of Rc=2.5 a.u. for Argon

and Rc= 3.0 for Xenon. Black lines: S wave, red lines: P wave, blue lines: D wave. Solid lines:

present results; dashed lines: pseudopotential results of ref [10]; dotted lines: results of ref. [11].

33



0 1 2 3 4 5 6
- 0 . 5

- 0 . 4

- 0 . 3

- 0 . 2

- 0 . 1

0 . 0

0 . 1

 

 
co

rre
lat

ion
 p

ot
en

tia
l (

a.
u.

)

R  ( a . u . )

a )  A r

0 1 2 3 4 5 6
- 0 . 5

- 0 . 4

- 0 . 3

- 0 . 2

- 0 . 1

0 . 0

0 . 1

  

 

R  ( a . u . )

b )  X e

FIG. 10: Correlation potentials for a) Argon and b) Xenon. Solid line: FEG correlation potential.

Dashed line: Correlation with cutoff potential of (1) with Rc=2.5 a.u. for Ar and 3.0 a.u. for Xe.
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FIG. 11: Cross sections and phase shifts for Ps scattering by Kr. a) Solid line (middle curve at

v=0): elastic cross section using local FEG exchange and correlation potentials with OPP. Dashed

line (labeled total): total cross section (elastic plus ionization). Red solid line (upper curve at v=0):

elastic cross section using only the local FEG exchange potential plus OPP. Blue solid line (lower

curve): elastic cross section using the local FEG exchange potential plus OPP and correlation

potential of Eq. (1) with a cutoff radius Rc = 3.0 a.u. Red dotted line (upper curve): frozen

target calculations of [11]. Blue dotted line (lower curve): calculations of [11] using the correlation

potential of Eq. (1) with a cutoff radius of Rc=3.0 a.u. Green dash-dot line: pseudopotential

results of [10]. Squares: total cross section measurements of [1]. b)Phase shifts for Ps-Kr using

local FEG exchange and correlation potentials with OPP. Black line: S wave, red line: P wave,

blue line: D wave. Dashed lines are pseudopotential phase shifts of [10] and dotted lines are phase

shifts of [11] with the correlation potential of Eq. (1) with a cutoff radius of Rc=3.0 a.u.
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FIG. 12: S- and P -wave phase shifts for Ps-Xe scattering at low Ps energies. Solid lines: Present

FEG+OPP results. Dashed red lines: Shibuya and Saito [58]. Dotted blue lines: pseudopotential

results [10].
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FIG. 13: Momentum transfer cross sections for heavy rare gas atoms. Solid lines: present calcula-

tions using FEG exchange and correlation potentials plus the OPP. Dotted lines: calculations of

[11] with correlation potential of Eq. (1), larger cross sections are using Rc = 3.0 a.u. for Ar and

3.5 a.u. for Kr and Xe while smaller cross sections are using Rc = 2.5 a.u. for Ar and 3.0 a.u. for

Kr and Xe. Experimental results for Ar, closed circle: Nagashima et al. [55]; open circle: Skalsey

et al. [56]; closed square: Sano et al. [60]. Experimental result for Xe, open square: Shibuya et al.

[61].
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FIG. 14: Comparison of Ps scattering and electron scattering cross sections for a) Ar, b) Kr and

c) Xe. Solid lines: present Ps total (elastic plus ionization) cross sections with local FEG exchange

and correlation potentials plus OPP. Dashed lines: total electron scattering cross sections, for Ar

compiled from the calculations [62] and measurements [63], for Kr measurements [64] and for Xe

compiled from calculations [65] and measurements [66].
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