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Possibilities of finite calculus in computational mechanics
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SUMMARY

The expression ‘finite calculus’ refers to the derivation of the governing differential equations in
mechanics by invoking balance of fluxes, forces, etc. in a space–time domain of finite size. The
governing equations resulting from this approach are different from those of infinitesimal calculus
theory and they incorporate new terms which depend on the dimensions of the balance domain.
The new governing equations allow the derivation of naturally stabilized numerical schemes using
any discretization procedure. The paper discusses the possibilities of the finite calculus method for
the finite element solution of convection–diffusion problems with sharp gradients, incompressible
fluid flow and incompressible solid mechanics problems and strain localization situations. Copyright
� 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that standard numerical methods such as the central finite difference (FD)
method, the Galerkin finite element (FE) method and the finite volume (FV) method, among
others, lead to unstable numerical solutions when applied to problems involving different scales,
multiple constraints and/or high gradients. Examples of these situations are typical in the
solution of convection–diffusion problems, incompressible problems in fluid and solid mechanics
and strain or strain rate localization problems in solids and compressible fluids using the standard
Galerkin FE method or central scheme in FD and FV methods [1, 2]. Similar instabilities are
found in the application of meshless methods to those problems [3–5].

The sources of the numerical instabilities in FE, FD and FV methods, for instance, have been
sought in the apparent unability of the Galerkin FE method and the analogous central difference
scheme in FD and FV methods, to provide a numerical procedure able to capture the different
scales appearing in the solution for all ranges of the physical parameters. Typical examples
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are the spurious numerical oscillations in convection–diffusion problems for high values of the
convective terms. The same type of oscillations are found in regions next to sharp internal layers
appearing in high speed compressible flows (shocks) or in strain localization problems (shear
bands) in solids. A similar problem of different nature emerges in the solution of incompressible
problems in fluid and solid mechanics. Here the difficulties in satisfying the incompressibility
constraint limit the choices of the approximation for the velocity (or displacement) variables
and the pressure [1].

The solution of above problems has been attempted in a number of ways. The underdif-
fusive character of the central difference scheme for treating advective–diffusive problems has
been corrected in an ad hoc manner by adding the so-called ‘artificial diffusion’ terms to
the standard governing equation [2]. The same idea has been successfully applied to derive
stabilized FV and FE methods for convection–diffusion and fluid-flow problems [1, 2]. Other
stabilized FD schemes are based on the ‘upwind’ computation of the first derivatives appearing
in the convective operator [2]. The counterpart of upwind techniques in the FEM are the so-
called Petrov–Galerkin methods [1, 6], or the more general Galerkin methods [7] based on ad
hoc residual-based extensions of the Galerkin variational form with the aim of achieving a
stabilized numerical scheme. Among the many methods of this kind we can name the SUPG
method [8–10], the Galerkin least square (GLS) method [11, 12], the characteristic Galerkin
method [13–15], the characteristic based split (CBS) method [16, 17] and the subgrid scale
(SS) method [18–21].

In this paper, we propose a different route to derive stabilized numerical methods. The
starting point are the modified governing differential equations of the problem derived using
a finite calculus (FIC) approach [22]. The FIC method is based in expressing the balance of
fluxes (or equilibrium of forces) in a space–time domain of finite size. This introduces naturally
additional terms in the classical differential equations of the infinitesimal theory which are a
function of the balance domain dimensions. The merit of the modified equations via the FIC
approach is that they lead to stabilized schemes using any numerical method. In addition, the
different stabilized FD, FE and FV methods typically used in practice can be recovered using
the FIC equations [22, 23]. Moreover, these equations are the basis for deriving a consistent
procedure for computing the stabilization parameters [24, 25].

The layout of the paper is the following. In the next section the main concepts of the
FIC method are introduced. Applications of the FIC method to convection–diffusion problems
with sharp gradients are detailed and some examples of application are given. Finally, the
possibilities of the FIC method in incompressible fluid and solid mechanics are discussed and
a finite element formulation is presented. Next, the possibilities of the FIC method for strain
localization problems in solids are briefly discussed.

2. THE FINITE CALCULUS METHOD

We will consider a convection–diffusion problem in a 1D domain � of length L. The equation
of balance of fluxes in a subdomain of size d belonging to � (Figure 1) is written as

qA − qB = 0 (1)

where qA and qB are the incoming and outgoing fluxes at points A and B, respectively. The
flux q includes both convective and diffusive terms; i.e. q = v� − k(d�/dx), where � is the
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Figure 1. Equilibrium of fluxes in a space balance domain of finite size.

transported variable (i.e. the temperature in a thermal problem), v is the velocity and k is
the diffusivity of the material.

Let us express now the fluxes qA and qB in terms of the flux at an arbitrary point C within
the balance domain (Figure 1). Expanding qA and qB in Taylor series around point C up to
second-order terms gives

qA = qC − d1
dq

dx

∣∣∣∣
C

+ d2
1

2

d2q

dx2
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C

+ O(d3
1 ), qB = qC + d2

dq

dx

∣∣∣∣
C

+ d2
2

2

d2q

dx2
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C

+ O(d3
2 ) (2)

Substituting Equation (2) into Equation (1) gives after simplification

dq

dx
− h

2

d2q

dx2
= 0 (3)

where h = d1 − d2 and all the derivatives are computed at the arbitrary point C.
Standard calculus theory assumes that the domain d is of infinitesimal size and the resulting

balance equation is simply dq/dx = 0. We will relax this assumption and allow the space
balance domain to have a finite size. The new balance equation (3) incorporates now the
underlined term which introduces the characteristic length h. Obviously, accounting for higher-
order terms in Equation (2) would lead to new terms in Equation (3) involving higher powers
of h.

Distance h in Equation (3) can be interpreted as a free parameter depending on the location
of point C within the balance domain. Note that −d �h � d and, hence, h can take a negative
value. At the discrete solution level the domain d should be replaced by the balance domain
around a node. This gives for an equal size discretization −le �h � le where le is the element
or cell dimension. The fact that Equation (3) is the exact balance equation (up to second-
order terms) for any 1D domain of finite size and that the position of point C is arbitrary,
can be used to derive numerical schemes with enhanced properties simply by computing the
characteristic length parameter from an adequate ‘optimality’ rule leading to an smaller error
in the numerical solution [22–24].

Consider, for instance, Equation (3) applied to the 1D convection–diffusion problem. Ne-
glecting third-order derivatives of �, Equation (3) can be rewritten in terms of � as

−v
d�

dx
+
(

k + vh

2

)
d2�

dx2
= 0 (4)

We see clearly that the FIC method introduces naturally an additional diffusion term in the
standard convection–diffusion equation. This is the basis of the popular ‘artificial diffusion’
procedure [1, 2, 6] where the characteristic length h is typically expressed as a function of
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the cell or element dimension. The critical value of h can be computed by introducing an
optimality condition, such as obtaining a physically meaningful solution (such as �i�0 for
the Dirichlet problem with non-negative prescribed values of � at x = 0 and x = L). For an
equal size discretization this gives h�(1− 1/�)le, where � = vle/2k is the element/cell Peclet
number [1]. Note that the inequality applies for � > 0 and it should be reversed for � < 0.
Also h = 0 for |�| < 1 [22, 23]. Indeed an optimal value of h leading to exact nodal values
can also be found for this simple case as h = (coth � − 1/�)le [1].

The FIC method has been classified in Reference [26] as a particular case of ‘modified
equations methods’ where the standard differential equations are first augmented using physical
concepts and then discretized using any numerical technique. An interpretation of the FIC
equations as a modified residual method is presented in Reference [27].

Equation (3) can be extended to account for source terms. The modified governing equation
can then be written in compact form as

r − h

2

dr

dx
= 0 (5)

with

r := −v
d�

dx
+ d

dx

(
k
d�

dx

)
+ Q (6)

where Q is the external source. For consistency a ‘finite’ form of the Neumann boundary
condition should be used. This can be readily obtained by invoking balance of fluxes in a
domain of finite size next to the boundary �q where the external (diffusive) flux is prescribed
to a value qp. The modified Neumann boundary condition is [22]

k
d�

dx
+ qp − h

2
r = 0 at �q (7)

The governing equations of the problem are completed with the standard Dirichlet condition
prescribing the value of � at the boundary ��.

The underlined terms in Equations (5) and (7) introduce the necessary stabilization in the
discrete solution using whatever numerical scheme.

The time dimension can be simply accounted for the FIC method by considering the
balance equation in a space–time slab domain. Application of the FIC method to the tran-
sient convection–diffusion equations and to fluid flow problems can be found in References
[23, 28–33]. Quite generally the FIC equation can be written for any problem in mechanics as
[22]

ri − hj

2

�ri

�xj

− �

2

�ri

�t
= 0,

i = 1, nb

j = 1, nd
(8)

where ri is the ith standard differential equation of the infinitesimal theory, hj are characteristic
length parameters, � is a time stabilization parameter and t the time; nb and nd are, respectively,
the number of balance equations and the number of space dimensions of the problem (i.e.,
nd = 2 for 2D problems, etc.). Indeed for the transient case the initial boundary conditions
must be specified. The usual sum convention for repeated indexes is used in the text unless
otherwise specified.
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For example, in the case of the convection–diffusion problem nb = 1 and Equation (8) is
particularized as

r − hj

2

�r

�xj

− �

2

�r

�t
= 0, j = 1, nd (9)

with

r := −
(

��

�t
+ vj

��

�xj

)
+ d

dxj

(
k
d�

dxj

)
+ Q

For a transient solid mechanics problems Equation (9) applies with nb = nd and

ri := −�
�2ui

�t2
+ ��ij

�xj

+ bi, i, j = 1, nd (10)

where ui are the displacements, �ij are the stresses and bi the external body forces.
The modified Neumann boundary conditions in the FIC formulation can be written in the

general case as [22]

qijnj − t̄i − hj

2
nj ri = 0 on �q, i = 1, nb, j = 1, nd (11)

where qij are the generalized ‘fluxes’ (such as the heat fluxes in a thermal problem or the
stresses in solid or fluid mechanics), t̄i are the prescribed values of the boundary fluxes and
nj are the components of the outward normal to the Neumann boundary �q .

In Equations (8) and (11) we have underlined once more the terms introduced by the FIC
approach which are essential for deriving stabilized numerical formulations.

3. GENERAL FIC EQUATIONS FOR STEADY-STATE
CONVECTIVE–DIFFUSIVE PROBLEMS

Application of the FIC procedure to a general multidimensional steady-state convective–diffusive
problem leads to the following governing equations [22]:

r − 1
2 h

T∇r = 0 in � (12)

with the boundary conditions

� − �̄ = 0 on �� (13a)

nTD∇� + q̄n − 1
2 h

Tnr = 0 on �q (13b)

where �� and �q are the Dirichlet and Neumann boundaries where the variable � and the
outgoing normal diffusive flux are prescribed to values �̄ and q̄n, respectively. The modified
equation (13b) is obtained by invoking higher-order balance of fluxes in a finite domain next
to the Neumann boundary [22]. In above equations

r := −vT∇� + ∇TD∇� + Q (14)
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where v is the divergence-free velocity vector, D is the diffusivity matrix, ∇ is the gradient
operator, Q is the external source term and n is the normal vector. Vector h is the characteristic
length vector. For 2D problems h = [hx, hy]T, where hx and hy are characteristic distances
along the sides of the rectangular domain where higher-order balance of fluxes is enforced [22].

The underlined terms in Equations (12) and (13b) introduce the necessary stabilization in
the numerical solution of the convective–diffusive problem using FD, FE, FV and meshless
methods [4, 22–26]. As an example the FE formulation will be presented next.

3.1. Finite element discretization

A finite element interpolation of the unknown � can be written as

� � �̂ = ∑
Ni�̂i (15)

where Ni are the shape functions and �̂i are the nodal values of the approximate function �̂ [1].
Application of the Galerkin FE method to Equations (12)–(13b) gives, after integrating by

parts the term ∇r (and neglecting the space derivatives of h)∫
�

Nir̂ d� −
∫

�q

Ni(nTD∇�̂ + q̄n) d� +∑
e

1

2

∫
�e

hT∇Nir̂ d� = 0 (16)

The last integral in Equation (16) has been expressed as a sum of the element contributions
to allow for interelement discontinuities in the term ∇r̂ , where r̂ = r(�̂) is the residual of the
FE approximation of the infinitesimal governing equations.

Note that the residual terms have disappeared from the Neumann boundary �q . This is due
to taking into account the FIC terms in Equation (13b).

Integrating by parts the diffusive terms in the first integral of (16) leads to∫
�

Ni[vT∇�̂ + ∇TNiD∇�̂] d� −∑
e

1

2

∫
�e

hT∇Nir̂ d� −
∫

�
NiQ d� +

∫
�q

Niq̄n d� = 0

(17)

In matrix form

Ka = f (18)

Matrix K and vector f are assembled from the element contributions given by

Ke
ij =

∫
�e

[
NivT∇Nj + ∇TNi

(
D + 1

2 hv
T
)

∇Nj

]
d� − 1

2

∫
�e

hT∇Ni∇(D∇Nj) d� (19)

f e
i =

∫
�e

[
Ni + 1

2 h
T∇Ni

]
Q d� −

∫
�e

q

Ni q̄n d� (20)

Note that the method introduces in K an additional diffusivity matrix given by 1
2 hv

T. Also
the second integral of Equation (19) vanishes for linear approximations. The same happens
with the second term of the first integral of Equation (20) when Ni is linear and Q is constant.
The evaluation of these integrals is mandatory in any other case.
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3.2. Equivalence with the SUPG method

We could further assume that the direction of vector h is parallel to the velocity v, i.e.
h = h(v/|v|) where h is a characteristic length. Under these conditions, Equation (16) reads∫

�
Nir̂ d� −

∫
�q

Ni(nTD∇�̂ + q̄n) d� +∑
e

∫
�e

h

2|v| v
T∇Nir̂ d� = 0 (21)

Equation (21) coincides precisely with the so-called streamline-upwind-Petrov–Galerkin
(SUPG) method. The ratio h/2|v| has dimensions of time and it is usually termed element
intrinsic time parameter �. It can be shown that the definition of h parallel to v is equivalent to
introducing an artificial diffusion of value h|v|/2 along the streamlines [1, 6, 22]. The element
characteristic length h is computed in practice by an heuristic extension of the optimal value
for the 1D problem. A more consistent procedure is given in the next section.

It is important to note that the SUPG expression is a particular case of the more general FIC
formulation. This explains the limitations of the SUPG method to provide stabilized numerical
results in the vicinity of sharp gradients of the solution transverse to the flow direction [1].
In general, the direction of h is not coincident with that of v and the components of h
introduce the necessary stabilization along the streamlines and the transverse directions to the
flow. In this manner, the FIC method reproduces the best-features of the so-called stabilized
discontinuity-capturing schemes [34, 35].

4. COMPUTATION OF THE CHARACTERISTIC LENGTH

The computation of the characteristic length is a crucial step as its value affect to the stability
(and accuracy) of the numerical solution. This problem is common to all stabilized FE methods
and different approaches to compute the stabilization parameters using typically extensions of
the optimal values for simple 1D case (giving a nodally exact solution) have been proposed
[1, 6, 8, 13, 16, 36].

One of the relevant aspect of the FIC formulation is that the characteristic length parameters
can be accurately computed from the FIC governing equations. In general, the characteristic
lengths are a function of the numerical solution values and this introduces a non-linearity in the
computational process. An iterative scheme for computing the characteristic lengths based on a
diminishing residual technique was proposed in References [22–24]. Here a simpler procedure
leading to an accurate stabilized solution for multidimensional problems is proposed.

4.1. The 1D convection–diffusion equation

Consider the simpler steady-state 1D convection–diffusion problem. The FIC equation for the
discrete problem can be written as

r̂ − h

2

dr̂

dx
= r� (22)

where r� is the residual of the modified governing equation and r̂ is given (for a zero source)
by

r̂ = −v
d�̂

dx
+ k

d2�̂

dx2
(23)
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From Equation (22) it is deduced that a value of h ensuring convergence of the numerical
solution (r� → 0) must satisfy the following condition:

h

(
dr̂

dx

)
� 2r̂ (24)

Equation (24) assumes that r̂ has a positive value. For r̂ < 0 the inequality sign must be
reversed in Equation (24) and hereonwards.

Substituting Equation (23) into (24) and neglecting the third derivatives of � gives

h

(
d2�̂

dx2

)
� 2

d�̂

dx
− 2k

u

d2�̂

dx2
(25)

The expression of � given by Equation (25) is non-linear and depends on the gradient and
the curvature of the numerical solution as expected. An iterative algorithm for computing h

in convection–diffusion problems based on a residual diminishing technique was presented in
References [22–24].

Equation (25) can be used to estimate the characteristic length for an individual element as
follows. First we define the dimensionless stabilization parameter for the element as � = h/le,
where le is the element length. Introducing this expression into Equation (25) gives

�

(
d�̂

dx

)(e)

� 2

le

(
d�̂

dx

)(e)

− 1

�

(
d�̂

dx

)(e)

(26)

where (·)(e) denotes values at the element level and the element Peclet number � = ule/2k.
The derivatives in Equation (26) are now approximated from the finite element solution as
(d�̂/dx)(e) � O�̂i/2 and (d2�̂/dx2)(e) � O(�̂i/ le) where �̂i is a representative nodal value.
Substituting this expression into Equation (26) the following explicit value of � is found for
practical computations

� = (1 + �)�c for |�| > 1

� = 0 for |�| � 1 (27)

where � is a very small value (we usually take � = 10−6) and

�c = sign(v)

(
1 − 1

|�|
)

(28)

which coincides with the critical value of the stabilization parameter ensuring a stable numerical
solution [1, 2, 22, 23]. Note that above derivation emanates from the FIC differential equation
prior to any discretization step.

4.2. Computation of the characteristic length vector

The ideas from the simple 1D case are extended next to derive an iterative procedure for
computing the characteristic length vector for 2D and 3D problems. The method allows to
obtain stabilized solutions in problems with sharp gradients in one or two steps.
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The algorithm is based in the split of vector h as

h = hs + ht (29)

where hs and ht are characteristic length vectors in the direction of the velocity and in a
transverse direction, respectively.

Evaluation of the streamline characteristic length vector hs. For hs the classical definition of
the SUPG method is chosen, i.e.

hs = hs

|v| v (30)

The value of hs can be computed as follows. The discretized form of Equation (12) can be
written using Equations (29) and (30) and neglecting the contribution of ht as

r̂ − hs
vT

2|v| ∇r̂ = rs (31)

For rs = 0 this gives the critical value of hs as

hs = 2r̂|v|
vT∇r̂

(32)

Substituting the expression of r̂ from Equation (14) into (32) and neglecting third-order
derivative terms gives

hs =
[
2vi(��̂/�xi) −∑

i 2ki(�
2�̂/�xi�xi) − 2Q

]
|v|

vivj (�
2�̂/�xi�xj ) − vi�Q/�xi

i, j = 1, nd (33)

In Equation (33) we have assumed the conductivities ki to be constant.
Equation (33) allows to compute the critical value of hs at any point within the mesh. It

can be checked that Equation (33) reduces to h = sign(v)(1 − 1/|�|)le for the 1D case (with
Q = 0).

The presence of the derivatives of �̂ in Equation (33) introduces a non-linearity in the
computation of hs. The evaluation of the second derivatives of �̂ at the Gauss points of linear
elements can be performed by nodal projection and smoothing of the first derivatives field
[37, 38].

For practical purposes a simplified linear expression for hs can be derived by assuming the
velocity values to be large compared to those of the conductivity and the source terms (i.e.
the so called convective limit). This gives for linear elements (assuming Q to be constant)

hs � ls = 2vi(��̂/�xi)|v|
vivj (�

2�̂/�xi�xj )
� vk

lk
|v|
[
vivj

li lj

]−1

, i, j, k = 1, nd (34)

when li is a typical element dimension along the ith axis (see Figure 2). Figure 3 shows some
examples of the computation of hs in linear triangular and rectangular elements. Note that for
the 1D case Equation (34) gives hs = le.
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Figure 2. Typical dimensions in triangular and rectangular elements.

Figure 3. Some values of the streamline characteristic length hs for linear
triangular and rectangular elements.

A value of hs for all the range of velocities can be computed as

hs = �sls where ls is given by Equation (34) (35)

�s = 1 − 1

�s
for �s > 1

�s = 0 for �s � 1 (36)

where �s = |v|ls/2k and k = (
∑nd

i=1 k2i )
1/2.

The same procedure can be used to compute hs for higher-order elements.
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Evaluation of the transverse characteristic vector ht. For ht we take

ht = ht

|∇�̂| ∇�̂ (37)

Therefore, vector ht is assumed to be parallel to the direction of the gradient of the approx-
imate solution �̂. This assumption introduces a non linearity in the computation process.

The value of ht can be estimated as follows. Substituting Equation (37) into the discretized
form of Equation (12) gives

r� = rs − 1
2 h

T
t ∇r̂ (38)

where rs is defined by Equation (31). Obviously for the initial solution ht = 0 and r� = rs.
If r� �= 0 after the first step, then we can compute ht in order to ensure that r� = 0, i.e.

rs − 1
2 h

T
t ∇r̂ = 0 (39)

Substituting the expression of ht of Equation (37) into (39) gives

ht = 2rs|∇�̂|
∇T�̂∇r̂

(40)

The introduction of ht in the Galerkin equations gives the following additional term∫
�e

(
r2s

∇T�̂∇r̂

)
∇T�̂∇Ni d� (41)

This is equivalent to introducing an isotropic diffusion over each element of value

kt = r2s

|∇T�̂∇r̂| (42)

The absolute value is taken in the denominator in order to ensure a positive value of kt .
The expressions of hs and ht are the basis for an iterative scheme to obtain a stable solution

which is described in a next section.
Before that, a very good approximation for ht at elements adjacent to outflow boundaries is

proposed.

Boundary simplification of ht. Equation (37) can be approximated in elements adjacent to the
boundary (where the sharper gradients usually occur) simply by accepting that ht is constant
over the element and that the direction of ∇�̂ coincides with that of the normal vector exterior
to the side (or face) belonging to the boundary. Vector ht in these elements is defined as

ht = htn (43)

In elements sharing more than one side (or face) with a boundary line, ht is computed as

ht =
nl∑

i=1
htini (44)

where nl is the number of sides (or faces) belonging to the boundary (nl � 2 in 2D).
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In practice it is only necessary to introduce ht on the outflow boundaries (where vTn > 0).
The characteristic length distances hti are computed in these boundaries as

hti = |dti − hTs ni |�ti (45)

dti =max |nTi lj |, j = 1, 2, . . . , ns (46)

where ns is the number of element sides, lj is the length of the j th element side on the
boundary and

�ti = 1 − 1

�ti
for �ti > 1 (47)

�ti = 0 for �ti � 1 with �ti = |vTni |dti
2k

(48)

In elements with only one node on the boundary (as it occurs in non structured grids
and in triangular meshes) we take nl = 1 and for ni the boundary normal at the
node.

Figure 4. Some values of the streamline and transverse characteristic length vectors for linear
triangles adjacent to the boundary.
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Equation (45) accounts for the correction of hti due to the simultaneous application of vector
hs. Figure 4 shows some examples of the computation of ht in linear triangles adjacent to the
boundary.

The combination of Equations (30), (33) and (43)–(46) allows to solve convection–diffusion
problems with sharp boundary layers in one single step. Note that the resulting problem is
linear.

If numerical instabilities still exist due to sharp gradients in interior zones, the expression
of ht of Equation (37) should be used for the elements adjacent to the unstable zones.

4.3. Iterative algorithm for computing the characteristic length vector h

The computational scheme can be summarized as follows:

1. Solve the convection–diffusion problem using the expressions of hs and ht given by
Equations (30) and (43). This step provides a stabilized solution along the streamline
direction and along the boundaries where high gradients can occur.

2. Check the value of r̂� = r̂ − 1
2 h

T∇r̂ in all elements (in average sense). If high values
of r̂� are detected in some elements, solve step 3.

3. Repeat step 1 using for the elements adjacent to the unstable zones the value of ht given
by Equation (37). Go to step 2.

The process is repeated until the values of the residual r̂� can be considered acceptable.

5. EXAMPLES

5.1. 2D stationary convection–diffusion problem with diagonal velocity, zero source and
uniform Dirichlet conditions

The steady-state convection–diffusion equation in solved in a domain of unit size (Figure 5)
with

kx = ky = 1, v = 1010[1, 1]T, Q = 0 (49)

The following Dirichlet conditions are assumed

� = 0 on the lines x = 0 and y = 0

� = 100 on the lines x = 1 and y = 1

The expected solution is a uniform distribution of � = 0 over the domain except in the
vicinity of the boundaries x = 1 and y = 1 where a boundary layer is formed.

The domain is discretized with a uniform mesh of 400 four node quadrilaterals (Figure 5).
The solution has been obtained in one single step using the value of hs and ht given by

Equations (30) and (43), respectively. Figures 5 and 6 show that the two boundary layers
expected are perfectly captured without any oscillation.
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Figure 5. Convection–diffusion problem with uniform Dirichlet conditions. One step solution.
Distribution of � along the lines AA′ and BB′.

Note that a solution of the same quality using standard discontinuity capturing methods
would have required at least two iterations.

5.2. 2D stationary convection–diffusion problem with diagonal velocity, zero source
and non-uniform Dirichlet conditions

The convection–diffusion equation is solved again in a square domain of unit size with

v = 106[5, −9]T, kx = ky = 1, Q = 0, �̄(x, y) =
{
100 if (x, y) ∈ ��1

0 if (x, y) ∈ ��2
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Figure 6. Convection–diffusion problem with uniform Dirichlet conditions. One step solution.
Distribution of � along the diagonal line CC′.

Figure 7. Convection–diffusion problem with non-uniform Dirichlet conditions.
Distribution of � after the first step.
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Figure 8. Convection–diffusion problem with non-uniform Dirichlet conditions.
Distribution of � after the first iteration.
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Figure 9. Convection–diffusion problem with non-uniform Dirichlet conditions. Distribution of � along
the horizontal mid-line AA′ obtained in the first step (oscillatory solution—black line) and after the

first iteration (solution without oscillations—greyline).

with the following non-uniform Dirichlet conditions

��1
= {(x, y)/x ∈ [0, 1], y = 1} ∪

{
(x, y)/x = 0, y ∈

[
3
4 , 1

]}
��2

= ��/��1

The mesh of 400 four node quadrilaterals shown in Figure 7 has been used.
The problem has been solved with the iterative algorithm described in the previous section.

Figure 7 shows the distribution of � obtained in the first step with the values of hs and ht of
Equations (30) and (43), respectively. Note that the sharp layers adjacent to the boundary are
perfectly captured. It however remains a zone in the interior of the domain where an oscillatory
solution is obtained due to the sharp gradients of � and this leads to high values of the residual
in this region.
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Figure 10. Convection–diffusion problem with non-uniform Dirichlet conditions. Distribution of �
along the diagonal line BB ′ after the first step (oscillatory solution—black line) and after the first

iteration (solution without oscillations—greyline).

A second solution is next obtained using the value of ht of Equation (37) in the element
adjacent to the unstable region. This yields a stabilized solution in the whole domain (Figure 8).
Figures 9 and 10, respectively show the distributions of � along the horizontal line AA′ and the
diagonal line BB ′ obtained in the first step and after the first iteration. Note that the algorithm
eliminates the oscillations induced by the sharp gradients in the interior of the domain.

Figures 11 and 12 show a similar solution for the same example using a non-structured
mesh of four node quadrilaterals. Note that the algorithm captures the boundary layers in a
first step and provides a stabilized distribution of � over the whole domain after performing
an additional iteration.

6. AN INTERPRETATION OF THE FINITE CALCULUS METHOD

Let us consider the solution of a physical problem, such as obtaining the steady-state distribution
of the temperature � in a domain �, governed by a differential equation r(�) = 0 in � with
the corresponding boundary conditions. The ‘exact’ (analytical) solution of the problem will be
a function giving the sought distribution of the temperature � for any value of the geometrical
and physical parameters of the problem. Obviously, since the analytical solution is difficult
to find (practically impossible for real situations), an approximate numerical solution is found
� � �̂ by solving the problem r̂ = 0, with r̂ = r(�̂), using a particular discretization method
(such as the FEM). The temperature distribution in � is now obtained for specific values of
the geometrical and physical parameters. The accuracy of the numerical solution depends on
the discretization parameters, such as the number of elements and the approximating functions
chosen in the FEM. Figure 13 shows a schematic representation of the distributions of �̂ along
a line for different discretizations M1, M2, . . . , Mn where M1 and Mn are the coarser and finer
meshes, respectively. Obviously for n sufficiently large a good approximation of � will be
obtained and for M∞ the numerical solution �̂ will coincide with the ‘exact’ (and probably
unreachable) analytical solution � at all points. Indeed in some problems the M∞ solution can
be found by a ‘clever’ choice of the discretization parameters.
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Figure 11. Convection–diffusion problem with non-uniform Dirichlet conditions. Unstructured mesh of
four node quadrilaterals. Final distribution of � over the domain. Values of � along the horizontal
line AA′ obtained after the first step (oscillatory solution—black line) and after the first iteration

(solution without oscillations—greyline).

The problem arises when for some (typically coarse) discretizations, the numerical solution
provides non physical or very unaccurate values of �̂. The numerical method is then said to
be unstable. A situation of this kind is represented by curves M1 and M2 of the left-hand side
of Figure 13. These unstabilities would disappear by an appropriate mesh refinement (curves
M3, M4, . . .) at the obvious increase of the computational cost.

In the FIC formulation the starting point are the modified differential equations of the
problem, expressed by r − (h/2) dr/dx = 0 in � and the corresponding modified boundary
conditions as previously described. The modified equations are not longer useful to find an
analytical solution, �(x), for the physical problem. However, the numerical solution of the FIC
equation can be readily found. Moreover, by adequately choosing the values of the characteristic
length parameter h, the numerical solution of the FIC equations will be always stable (physically
sound) for any discretization level chosen.
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Figure 12. Convection–diffusion problem with non-uniform Dirichlet conditions. Unstructured mesh
of four node quadrilaterals. Final distribution of � over the domain. Values of � along the diagonal
line BB ′ obtained after the first (black line) and second (grey line) steps. The oscillatory solution

corresponds to the first step (black line).

This process is schematically represented in Figure 13 where it is shown that the numerical
oscillations for the coarser discretizations M1 and M2 disappear when using the FIC procedure.

We can therefore conclude the FIC approach allows us to obtain a better numerical solution
for a given discretization. Indeed, as in the standard infinitesimal case, the choice of M∞ will
yield the (unreachable) exact analytical solution and this ensures the consistency of the method.

7. THE FIC METHOD IN INCOMPRESSIBLE FLUID MECHANICS

The FIC method can be applied to derive the modified equations of momentum, mass and
energy conservation in fluid mechanics. The general form of these equations for a compressible
fluid was presented in Reference [22]. We will consider here the particular case of a viscous
incompressible fluid. The FIC equations for the momentum and mass balance in this case can
be written as (neglecting time stabilization terms) [22, 29, 32]
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Figure 13. Schematic representation of the numerical solution of a physical problem using standard
infinitesimal calculus and the finite calculus method.

Momentum:

rmi
− 1

2
hj

�rmi

�xj

= 0 (50)

Mass balance:

rd − 1

2
hj

�rd

�xj

= 0 (51)

where

rmi
= �

(
�vi

�t
+ �(vivj )

�xj

)
+ �p

�xi

− �sij

�xj

− bi (52)

rd = �vi

�xi

, i, j = 1, nd (53)
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Above vi is the velocity along the ith global axis, � is the (constant) density of the fluid, p

is the absolute pressure (defined positive in compression), bi are body forces and sij are the
viscous deviatoric stresses related to the viscosity 	 by the standard expression

sij = 2	

(
�̇ij − �ij

1

3

�vk

�xk

)
(54)

where �ij is the Kronecker delta and the strain rates �̇ij are

�̇ij = 1

2

(
�vi

�xj

+ �vj

�xi

)
(55)

The FIC boundary conditions are written as

nj�ij − ti + 1
2 hjnj rmi

= 0 on �t (56)

vj − v̄j = 0 on �u (57)

and the initial condition vj = v0j for t = t0.
In Equation (56) �ij = sij − p�ij are the total stresses, ti and ūj are prescribed tractions

and displacements on the boundaries �t and �u, respectively and nj are the components of the
unit normal vector to the boundary. The sign in front the stabilization term in Equation (56)
is positive due to the definition of rmi

in Equation (52).
The h′

i s in above equations are characteristic lengths of the domain where balance of
momentum and mass is enforced. In Equation (56) these lengths define the domain where
equilibrium of boundary tractions is established [22].

Equations (50)–(57) are the starting point for deriving stabilized finite element methods for
solving the incompressible Navier–Stokes equations using an equal order interpolation for the
velocity and the pressure variables.

The ‘conservative’ form of the convective terms in Equation (52) and the presence of the
volumetric strain rate in the constitutive equation (54) do not take advantage of the incompress-
ibility condition. These forms are useful at this stage for obtaining the relationship between
the space derivatives of the volumetric strain rate and the momentum equations. However, the
standard form of the incompressible flow equations is used for the derivation of the FEM
equations.

7.1. Stabilized integral forms

Making use of Equations (50) and (54) it can be obtained [29, 32]

hj

�rd

�xi

�
nd∑
i=1

�i

�rmi

�xi

(58)

where

�i =
(

8	

3h2i
+ 2�ui

hi

)−1

(59)
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Substituting Equation (58) into Equation (51) leads to the following expression for the
stabilized mass balance equation

rd −
nd∑
i=1

�i

�rmi

�xi

= 0 (60)

The �i’s in Equation (58) are termed intrinsic time parameters per unit mass. Note that they
take here the usual values of �i = �(h2i /	)(� � 2 − 3) and �i = hi/2�ui for the viscous limit
(Stokes flow) and the inviscid limit (Euler flow), respectively. The values of �i are deduced
in other works from ad hoc extensions of the 1D advective–diffusive problem and typically
�i = � is assumed. Here they have been obtained from the general FIC formulation and this
shows the possibilities of the method.

The computation of the characteristic length distances hi can follow a similar procedure as
explained for the advective–diffusive problem. For details see References [29–33].

The weighted residual form of the momentum and mass balance equations (Equations (50)
and (60)) is written as

Momentum:∫
�

�vi

[
rmi

− hj

2

�rmi

�xj

]
d� +

∫
�t

�vi

(
�ij nj − ti + hj

2
nj rmi

)
d� = 0 (61)

Mass balance: ∫
�

q

[
rd −

nd∑
i=1

�i

�rmi

xi

]
d� = 0 (62)

where �ui and q are arbitrary weighting functions representing virtual velocity and virtual
pressure fields.

Integrations by parts of Equations (61) and (62) leads to [29, 32].
Momentum:

∫
�

[
�vi�

(
�vi

�t
+ vj

�vi

�xj

)
+ ��̇ij (�ij − �ijp)

]
d� −

∫
�

�vibi d� −
∫

�t

�viti d�

+∑
e

∫
�e

hj

2

��vi

�xj

rmi
d� = 0 (63)

Mass balance: ∫
�

qrd d� +
∫

�

[
nd∑
i=1

�i

�q

�xi

rmi

]
d� = 0 (64)

The last integral in Equation (63) is computed as a sum of the element contributions to
allow for a discontinuities in the derivative of rmi

along the element interfaces.
In Equation (63) ��̇ij = 1

2 ((��vi/�xj )+ (��vj /�xi)). We also note that the standard form of
the convective operator for incompressible flows is now used.
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The discretization of the velocity and pressure fields using the FEM leads to the following
system of equations:

M ˙̄v + [K(	) + K̄(v̄)]v̄ − Gp̄= f (65a)

GTv̄ + L(�i )p̄= 0 (65b)

where as usual ¯(·) denote approximate nodal vectors. In (65b) L(�i ) is a laplacian type matrix
depending on the intrinsic time parameters �i . The form of the different matrices and vectors
can be found in References [29, 32].

It is interesting to analyse the steady-state form of Equations (65) for the Stokes flow case
where the convective terms are neglected (K̄ = 0). The resulting symmetric system can be
written as [

K(	) −G

−GT −L(�i )

]{
ū

p̄

}
=
{
f̄

0

}
(66)

The stability of the numerical solution is ensured by the presence of matrix L guaranteeing
a positive definitiveness of the equation system for any choice of the approximations for v and
p, thus overcoming the Babuska–Brezzi conditions [1]. Note that now �i = 3h2i /8	.

Application of the FIC method to the FE solution of the incompressible Navier–Stokes
equations accounting for free surface waves using linear triangles and tetrahedra can be found
in References [30–33]. Meshless finite point analysis of incompressible flows using the FIC
technique are reported in References [4, 5]. Extensions of the FIC method to the compressible
flow equations can be found in Reference [22].

Similar governing equations to that found using the FIC method have been obtained by
Ilinka et al. [39] for incompressible advective–diffusive and fluid flow problems by expanding
in Taylor series the residuals of the original FE equations. Analogous modified equations for
compressible gas flow problems have been obtained in Reference [40] using discrete Boltzman
schemes. The governing equations provided by the FIC method, based on simple physical
concepts of balance of fluxes and forces over a finite size domain, reproduce the particular
forms of the equations obtained by these authors.

8. THE FIC METHOD IN QUASI-INCOMPRESSIBLE AND FULL
INCOMPRESSIBLE SOLID MECHANICS

Application of the FIC method to the equations of equilibrium of forces in solid mechanics
leads to the following modified governing equations (for the static case)

ri − hj

2

�ri

�xj

= 0, i, j = 1, nd (67)

with

ri := ��ij

�xj

+ bi (68)
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The deviatoric stress–strain and the strain–displacement relationships have identical form to
Equations (54) and (55), respectively, substituting the viscosity 	 by the shear modulus G and
the velocities vi by the displacements ui .

The FIC method can also be applied to derive a modified equation relating the pressure and
the volumetric strain change over a finite size domain as [41](

1

K
p − �v

)
− hk

2

�
�xk

(
1

K
p − �v

)
= 0, k = 1, nd (69)

where K is the volumetric elastic modulus and �v = �ui/�xi . Note that for an incompressible
material K → ∞ and in this case Equation (69) recovers a form analogous to that of the
stabilized mass balance equation in fluid mechanics (see Equation (51)).

The underlined terms in Equations (67) and (69) result from the FIC assumptions and, as
usual, hj are the characteristic length parameters. The governing equations are completed with
the adequate boundary conditions. Note that, for consistency, the Neumann boundary conditions
must incorporate an additional stabilization term identical to that of Equation (13b) [22, 41, 42].

Equations (67) and (69) with the adequate boundary conditions are the basis for deriving
stabilized FE formulations for quasi-incompressible and full incompressible solids allowing for
equal order interpolations of the displacement and the pressure variables.

The derivation of the FE formulation follows the same steps than in the fluid flow case. The
resulting system of equation for the full incompressible case K = ∞) has a form identical to
that of the Stokes flow problem (Equation (66)).

This formulation has been successfully applied to the static and dynamic solution of quasi-
incompressible and full incompressible solid mechanics problems using three node triangles and
four node quadrilaterals with equal order interpolation for the displacements and the pressure
[28, 41, 42].

9. POSSIBILITIES OF FINITE CALCULUS FOR STRAIN LOCALIZATION

The FIC method introduces naturally higher-order derivative terms of the displacements in the
equilibrium equations. These terms resemble those introduced by the Cosserat model [43] and
the so-called ‘non-local’ constitutive models [43–47]. These models are typically used in order
to preserve the ellipticity of the solid mechanics equations in the presence of localized high
displacement gradient zones, such as shear bands and fracture lines.

For instance, the FIC governing equations for a simple 1D bar can be written (in absence
of external body forces) as

�N

�x
− h

2

�2N
�x2

= 0 (70)

where N is the axial force.
The relationship between the axial force and the elongation � = du/dx in the softening

branch can be written in incremental form as

�N = −|ET|�� = −|ET| d(�u)

dx
(71)

where ET is the tangent modulus of the material and �u is the displacement increment.
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Substituting Equation (71) into (70) gives

d2(�u)

dx2
− h

2

d3(�u)

dx3
= 0 (72)

Equation (72) resembles the governing equations derived by Lasry and Belytschko [44]
using localization limiters in the stress–strain relationship and by Schreier and Chen [45] using
gradient-dependent plasticity constitutive models.

Many similarities can be found between the governing equations derived by the FIC method
and those resulting from the non-local constitutive models [48]. Although in some situations
the resulting governing differential equations are the same, the basic difference between the
two approaches is that non-local constitutive models aim to enhance the constitutive equation
by adding new terms (typically strain gradient terms), whereas the FIC method defines a
new equilibrium equation applicable to all the discrete scales while preserving the features of
the constitutive equation. This opens a world of possibilities for the FIC equations in solid
mechanics to solve strain localization problems using standard constitutive models.

10. CONCLUDING REMARKS

The acceptance that the domain where the equations of balance of fluxes, forces, momentum,
mass, etc. are established in mechanics has a finite size leads to new governing differential
equations that incorporate the space and time dimensions of the balance domain. The new
equations can be taken as the starting point for deriving stabilized numerical schemes based on
FE, FD, FV and meshless methods for solving problems of convective transport, fluid dynamics
and incompressible solids, among many others.

In the first part of the paper we have shown the possibilities of the FIC method for solving
the convection–diffusion equation in cases where sharp gradients transverse to the velocity
direction exist. The method proposed for computing the characteristic length vector can be
easily extended for solving other problems in mechanics where sharp gradients of the solution
exist such as boundary layers, shocks in compressible flows, strain localization layers in solids,
etc.

In the second part of the paper we have briefly described the application of the FIC method-
ology for solving incompressible problems in fluid flow and solid mechanics using equal order
finite element interpolations. Finally, we have outlined the possibilities of the FIC method for
strain localization problems.
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