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Possibility of single-atom detection on a chip
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We investigate the optical detection of single atoms held in a microscopic atom trap close to a surface. Laser
light is guided by optical fibers or optical microstructures via the atom to a photodetector. Our results suggest
that with present-day technology microcavities can be built around the atom with sufficiently high finesse to
permit unambiguous detection of a single atom in the trap with 10ms of integration. We compare resonant and
nonresonant detection schemes and discuss the requirements for detecting an atom without causing it to
undergo spontaneous emission.
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I. INTRODUCTION

The subject of matter wave optics is advancing rapid
driven both by the fundamental interest in quantum syste
and by the prospect of new instruments based on the q
tum manipulation of neutral atoms. The recent miniaturi
tion of atom traps above microfabricated surfaces@1,2# has
opened the possibility of using neutral atoms to perfo
quantum information processing~QIP! on a chip. This tech-
nology is attractive because it appears robust and sca
and because trapped neutral atoms can have long cohe
times.

Experiments have shown that it is possible to trap, gu
and manipulate cold, neutral atoms in miniaturized magn
traps above a substrate using either microscopic pattern
permanent magnetization in a film or microfabricated w
structures carrying current or charge. These atom chips
create potentials where atoms are confined strongly eno
to consider implementing quantum logic gate schemes@3#. In
the last year, several groups have been able to load atom
microtraps with Bose-Einstein condensates~BEC! @4#, which
may serve as a coherent source of qubits. A next impor
step for QIP is the detection of individual atoms on a ch
with a signal-to-noise ratio better than unity in, say, 10ms.

Here we propose that this can be achieved using v
small optical cavities microfabricated on the chip. The pr
ence of a single atom in the small waist of the cavity p
duces a sufficient response in the light field to be detec
either by the absorption or by the phase shift of the light

Section II presents a generic mathematical model of a
detection in a cavity. The model is used to discuss reson
and off-resonant detection in Secs. III and IV. We extend t
discussion in Sec. V to consider optical forces exerted on
atom by the detecting light itself. This section includes
numerical simulation of an atom crossing the detecting c
1050-2947/2003/67~4!/043806~9!/$20.00 67 0438
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ity while moving in an atom guide. In Sec. VI we discu
some practical aspects of making optical cavities a
waveguides on an atom chip, and our conclusions are g
in Sec. VII. Details of the particular model cavity used in o
analysis can be found in the Appendix.

II. GENERIC MODEL

In this section we develop a model for a two-level ato
coupled to the coherent light field in a microscopic cavi
The picture is essentially one already used to describe
periments in the strong coupling regime of cavity quantu
electrodynamics~QED! @5–7#; however, we are intereste
here in a different region of parameter space. Because
cavities of interest are small, with mirrors of limited refle
tivity, the cavity decay ratesk are many orders of magnitud
faster than those of the best optical resonators. On the o
hand, these short cavities can support stable modes that
extremely small waist size (;1 mm), resulting in very
strong atom-cavity couplingg. In such cavities, even a sma
photon number can be sufficient to saturate the atomic t
sition, so we need to take nonlinear effects into account.
elements of the atomic density operatorr satisfy the optical
Bloch equations

d

dt
r015~2G2 iDa!r011ga* ~r002r11!, ~1!

d

dt
r11522Gr111g~a* r101ar01!. ~2!

Here, 2G is the decay rate of the excited atomic state,Da is
the detuning of the driving laser from the atomic resonan
andg is the single-photon Rabi frequency at the position
the atom. For simplicity we will assume in the following th
©2003 The American Physical Society06-1
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the atom is at an intensity maximum of the light. The lig
field in the cavity is treated classically, i.e., a coherent stat
assumed at all times. The coherent state amplitudea obeys
the equation of motion

d

dt
a5~ iDc2k!a1gr101h. ~3!

Here Dc denotes the detuning of the driving laser from t
cavity resonance. The decay rate of the cavity field isk
[kT1k loss, made up of kT due to photons that pas
through the cavity mirrors andk loss due to photons tha
leave the cavity by other processes. The termh is the cavity
pumping rate, related to the pumping laser power byh
5Aj inkT, where j in is the rate of photons incident on th
cavity.

The stationary solutions for the light amplitude in the ca
ity and for the population of the atomic excited state are

a5
h

~k1g!2 i ~Dc2U !
, ~4!

r115
g2N

Da
21G212g2N

, ~5!

where

g5
g2G

Da
21G212g2N

, ~6!

U5
g2Da

Da
21G212g2N

, ~7!

and N5uau2 is the mean intracavity photon number. Wh
the quantity 2g2N is small~large! compared withG2, we say
that the atomic saturation is low~high!. Note that Eq.~4!
defines the stationary field amplitude only implicitly becau
g andU depend onN. Hence this equation normally has
be solved numerically.

The presence of the atom is detected through its effec
the field amplitudea. This is partly due to the spontaneou
scattering, which addsg to the cavity damping rate in Eq
~4!, and partly to the coherent scattering, which adds2U to
the cavity detuning. With the atom at resonance and unsa
ated, the additional damping isg2/G and the ratio of this to
the intrinsic cavity damping isg2/(Gk), the cooperativity
parameter of laser theory. This parameter is fundamenta
the description of the atom-cavity interaction. When it
much smaller~larger! than unity, we describe the atom
cavity coupling as weak~strong!. For a cavity of lengthL, it
can be expressed as

g2

Gk
52

sa

A
nrt , ~8!

where sa53l2/(2p) is the resonant atomic interactio
cross section for light of wavelengthl, A is the cross section
of the cavity mode at the position of the atom, andnrt
04380
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5c/(4Lk) is the average number of round trips of a cav
photon before its decay.~Provided the reflectivity of the mir-
rors is close to 1, the finesse of the cavity is just 4pnrt .)
This agrees with the naive expectation that the effect of
atom should depend on the fraction of the light within
cross section and should increase linearly with the numbe
times each photon passes the atom. Note, however, tha
~8! is restricted to beam waist sizesA that are more than a
few times the cross sectionsa , because it holds only within
the dipole and paraxial approximations@8,9#. Let us empha-
size some important scaling properties of this quantity in
following.

~i! If the cavity decay rate is dominated by losses a
fixed number of material interfaces, then the number
round tripsnrt is independent of the cavity length. It follow
from Eq.~8! that, if the atom is at the center of the cavity an
the waist areaA is held constant, theng2/(Gk) is also inde-
pendent of the cavity length. In this case, if one rescales
cavity length by a numerical factorq, L→qL, and the de-
tuning byDc→Dc /q but keeps the pump laser power andDa
constant, then the detector signal-to-noise ratio~as discussed
in the following sections! and the back action on the atom
during the measurement will remain unchanged.

~ii ! Equation ~8! suggests that, within the paraxial ap
proximation, the beam cross section at the atomic posi
should be as small as possible to increase the coupling o
atom to the light. However, the beam divergence increase
the waist is made smaller, increasing the diffractive los
and other nonparaxial imperfections and reducingnrt . Con-
sequently, the optimum value forA depends on the specifi
details of the cavity and its losses.

A few more comments on the model introduced abo
may be in order. First, we assume that the atom is well
calized and also atomic motion is treated classically in S
V. Our model is therefore not valid for the description
ultracold atoms, e.g., in a BEC. Second, the model descr
the interaction of a single isolated atom with the cavity fie
It would be straightforward to generalize the optical Blo
equations to two or more atoms and to derive the co
sponding stationary solution@10#. However, because of th
small size of the interaction region we are considering he
these atoms would necessarily be close to each other
additional atom-atom interaction terms would have to be
cluded in the model. Therefore, our work cannot provi
quantitative results for the many-atom case.

In the following two sections we will discuss two possib
ways to detect the presence of an atom by measuring
output light beam. The first is to measure a dip in the out
intensity using pump light that is resonant with the atom. T
second is to measure the phase shift of the output light u
an off-resonant pump. The more general case, in which
atom changes both the amplitudeand the phase of the outpu
beam, can be qualitatively understood by considering th
two extremes.

III. RESONANT ATOM DETECTION

Let us compare the number of resonant photons trans
ted in a timet through the output mirror to a detector, wit
6-2
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and without an atom in the cavity. For a given intra-cav
photon numberN in a symmetric cavity, the number of pho
tons arriving at the detector isNout5NkTt. ~This can be
enhanced to 2NkTt if the input mirror has much higher re
flectivity than the output mirror.! We are thus interested i
the differenceNout,02Nout whereNout,0 is the output of the
empty cavity. This signal must be compared to the quan
noise of the measurement, i.e., to the widthANout of the
Poissonian photon number distribution of a coherent st
The signal-to-noise ratio of this measurement scheme
therefore

S5
Nout,02Nout

ANout

. ~9!

We will be interested in the regimeNout,0.1. With the cav-
ity and the atom both at resonance, the atomic transi
saturates at very low intracavity photon number making
difference signal weak, so it seems natural to consider u
off-resonant excitation at higher intensity. However, it can
shown thatS, as defined in Eq.~9! for a direct measuremen
of the cavity output intensity, is maximum for resona
pumping and we will therefore pursue the idea of usingDc
5Da50 in the following. Sensitive detection with detunin
requires a more sophisticated homodyne technique, w
we discuss in Sec. IV.

With Dc5Da50, analytical solutions of Eq.~9! can be
found for some limiting cases. In the limit of low atom
saturation, where 2g2N!G2, we find

S5Aj int
g2

kG

kT

k
3H 2

1
for S g2

kG D!1

@1.
~10!

Hence the signal-to-noise ratio at low saturation increa
with the square root of the incident laser power and integ
tion time, but linearly with the number of photon round trip
in the cavity. Losses also degrade the sensitivity through
factorkT /k. In the opposite limit of strong saturation, whe
2g2N@G2, Eq. ~4! yields

N5
h2

k2
2

G

k
, ~11!

which gives

S5GA t

j in
. ~12!

Thus the signal-to-noise ratio decreases with the square
of the intensity when the transition is saturated. This is
cause the noise due to fluctuations ofNout approachesAj int,
whereas the number of photons scattered by the atom is
ited toGt. This result is independent of all the cavity param
eters.

In Figs. 1 and 2 we show some numerical results base
resonant pumping of the simple cavity described in the A
pendix. Figure 1~a! shows the output photon number as
function of the pump power, both with and without an ato
04380
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in the cavity. With an empty cavity, the output is proportion
to the pump power for all parameters. With an atom in t
cavity this scaling also holds as long as the atomic satura
is small. For the parameters chosen here the atom-light c
pling is strong, i.e.,g2@kG, and thus the atom significantl
reduces the intracavity photon number as long as it is
saturated. For strong atomic saturation we find thatNout,0
and Nout differ by a constant value, in accordance with t
second term of Eq.~11!. In Fig. 1~b! we plot the signal-to-
noise ratioSversus pumping for three different values ofkT .
In each case,S increases withAj in for weak fields and then
decreases in stronger fields in accordance with Eqs.~10! and
~12!. The optimum sensitivity, observed close to atomic sa

FIG. 1. Resonant detection of a single Rb atom withg52p
312 MHz, G52p33 MHz, k loss52p36 MHz, t510 ms. ~a!
NumberNout of photons transmitted through the cavity with~upper
curves! and without ~lower curves! atom for kT52p33 MHz.
Dashed lines correspond to shot noiseNout6ANout. ~b! Signal-to-
noise ratioS for kT /(2p)51 MHz ~dashed!, 3 MHz ~solid!, and 10
MHz ~dash-dotted!. ~c! Number M of photons emitted spontane
ously by the atom during the measurement@parameters as in~b!#.
Insets of ~b! and ~c!: S(M ) for a better cavity withk loss5kT

52p30.59 MHz. The parameters are justified by calculations p
formed in the Appendix for an experimentally feasible cavity.

FIG. 2. ~a! Signal-to-noise ratioS and ~b! number of spontane-
ously scattered photonsM versus input photon flux. Parameters
in Fig. 1 but with increased loss ratesk loss/(2p)514 MHz ~solid
line!, 22 MHz ~dotted!, 38 MHz ~dashed!, 86 MHz ~dash-dotted!.
Again t510 ms. For each curvekT5k loss/2 to get optimum
signal-to-noise ratios.
6-3
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HORAK et al. PHYSICAL REVIEW A 67, 043806 ~2003!
ration (2Ng2'G2), is obtained at a different pump power o
each curve. There is also an optimum value for the mir
transmission. We found numerically that this occurs atkT
'k loss/2 with strong coupling andkT'k loss with weak cou-
pling. For the parameters given, a single atom can be
tected with signal-to-noise ratios of up to 35.

Figure 1~c! showsM[2Gtr11, the number of photons
spontaneously scattered by the atom during the detec
process. With the parameters used here, smallerkT gives
smallerM at a given pump power, but this depends on
value of k loss and is not always so. For example,M}1/kT
when k loss50 and the coupling is weak. In the strong
saturated regime, all curves converge to the limitM5Gt.
This spontaneous scattering causes momentum diffusio
the atom and loss of atomic coherences. For the purpos
atom detection, this does not constitute a problem. Howe
if one had in mind to use the atom-cavity coupling for r
versible, quantum logic operations it would be essentia
have little or no spontaneous decay. One would then
proach the regime of so-called interaction-free measurem
@11–13#. Atomic motion will be discussed in more detail i
Sec. V. In the weak saturation regime we can use Eq.~10! to
expressM as a function of the signal-to-noise ratio,

M5S2
k

kT
3H 1

2
~g2/kG!21

2~g2/kG!23

for S g2

kG D!1

@1.
~13!

Hence, with weak coupling and fixed signal-to-noise ra
the number of spontaneously scattered photons is inver
proportional to the number of round tripsnrt . In the strong
coupling regime, on the other hand,M scales as 1/nrt

3 .
Therefore an increase ofnrt by a factor of 10 would reduce
the photon scattering by three orders of magnitude.
course, the increase ofnrt also reduces the number of ph
tons in the cavity output. Whenk loss andkT are reduced to
2p30.59 MHz and j in52 photons/ms, we findNout,055
and M50.47,S593, as shown in the insets of Figs. 1~b!
and 1~c!.

Figure 2 is similar to Fig. 1 but with four larger values
k loss and with kT set equal tok loss/2 in each case so as t
achieve optimum signal-to-noise ratio. The curves forS and
M as a function of the pump power are generally similar
Fig. 1, but in accordance with the lower cavity finesse,
maximum values ofS are reduced. These curves correspo
approximately to additional losses of 1%, 2%, 4%, and 1
per round trip of the cavity, as described in the Append
For the largest loss rate,k loss52p386 MHz and the maxi-
mum value ofS is 3.75. At this point the number of scattere
photons isM586, which amounts to a considerable distu
bance of the atom. For lower loss rates, on the other ha
large signal-to-noise ratios can be achieved with only a
photon scattering events.

The possibility of a large signal-to-noise ratio with fe
scattered photons makes this cavity-based detection me
more attractive than standard resonance fluorescence i
ing. Consider a simple resonance fluorescence setup w
two light guides are mounted on the chip at 90° to ea
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other. One guides laser light to the atom trapped above
chip, while the second receives scattered photons and
veys them to a photodetector. The second guide collects
a small fraction of the scattered light since its end subtend
small solid angle at the atom. For example, a guide wit
10 mm core mounted 10mm away from the atom collects
;5% of the total scattered photons. Hence an atom sca
at least 20 photons for every signal photon, and there is
possibility of measuring the atom without disturbing
strongly.

IV. OFF-RESONANT DETECTION: HOMODYNE
MEASUREMENT

In the previous section the cavity and the atom we
pumped resonantly. We found in that case that atom de
tion without spontaneous scattering involves a very sm
cavity output except when the coupling is very strong. O
might therefore suspect that the detection scheme could
improved by working with far off-resonant light, using th
dispersive interaction to produce an optical phase shift
this section we investigate that idea. We continue to ta
Dc50, but now assume a large atom-pump detuningDa
@G so that the scattering rateg is much less than the ligh
shift U @Eqs. ~6! and ~7!#. In this situation the dominan
effect of the atom is to shift the resonance frequency of
cavity, thereby changing the phase of the cavity output
not its amplitude. Equation~4! can then be written as

a'
h

k1 iU
5

h

k

1

12 if
'

h

k
eif, ~14!

where the phase shift

f52
U

k
~15!

is assumed to be!1.
A balanced homodyne detection scheme can measure

phase of the cavity output@14#. The cavity output field is
mixed with a strong local oscillator laser field on a 50-
beam-splitter and the difference of the photon numbersN1,2
in the two beam-splitter output ports is measured. The qu
tum noise of the signal is determined by the noise of
strong local oscillator, the signal-to-noise ratio being giv
by

Shom5
uN12N2u

AN11N2

'2ANoutusinfu'2ANout

uUu
k

. ~16!

Because of the condition ufu!1, Nout5Nout,0
5 j int(kT /k)2. In the limit of low atomic saturation, we find

Shom52Aj int
kT

k

g2

Dak
. ~17!

Hence, according to Eq.~8!, the signal-to-noise ratio in-
creases linearly withnrt . Note also thatShom is G/Da times
theSof Eq. ~10! for resonant detection; with the same pum
6-4
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strength the off-resonantShom is much smaller than the reso
nant S. For strong atomic saturation, on the other hand,
obtain

Shom5DaA t

j in
, ~18!

which is larger than the corresponding result for reson
detection, Eq.~12!, by a factor ofDa /G. Again, this is inde-
pendent ofk, kT , A, andnrt .

The number of photons scattered spontaneously by
atom during the interaction time can be expressed in term
Shom as

M5Shom
2 k

kT

1

2 S g2

Gk D 21

. ~19!

Therefore, in order to achieve a certain signal-to-noise ra
M is the same for the homodyne detection scheme as it
the weak coupling limit of resonant detection@see Eq.~13!#.
Note that the conditionufu!1 prevents us from reaching th
nonlinear regime of strong coupling here. The number
photons transmitted through the cavity during this atom
tection is larger by a factor ofDa

2/G2 than it is in the resonan
detection scheme:

Nout5
1

4
Shom

2 S Gk

g2 D 2
Da

2

G2
. ~20!

Figure 3~a! shows the homodyne detection signal-to-no
ratio Shom as a function of the pump power. Comparing th
with Fig. 1~b!, we see that the maximum signal-to-noise ra
for the homodyne detection is smaller but of the same or
of magnitude as for the resonant detection scheme. T
agrees with the discussion above. The reduction by abo
factor of 2 for the solid curve~lowest cavity loss rate! is due
to the fact that we are limited to the weak coupling regim
here and therefore do not benefit from the nonlinear effe
of the strong coupling seen in Fig. 1~b!. Moreover, we find
numerically thatShom is maximized forkT'k loss, i.e., for
slightly larger mirror transmissions than for the reson
scheme. However, the pump intensity corresponding
maximum Shom is much larger because of the large ato

FIG. 3. Off-resonant atom detection using a homodyne meas
ment overt510 ms. ~a! Signal-to-noise ratioShom and~b! number
M of spontaneously scattered photons fork loss/(2p)56 MHz
~solid line!, 14 MHz ~dotted!, and 22 MHz~dashed!. For each curve
kT5k loss, Da550G, other parameters as in Fig. 1. Insets:k loss

5kT52p30.59 MHz, Da5200G.
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pump detuningDa . Indeed, the main advantage of the h
modyne detection scheme is that the signal consists of a
trarily many photons compared to the few photons in
cavity output for some parameter regimes of Figs. 1 and
This facilitates the measurement of the photon current
simultaneously reduces the effects of background radiati

In Fig. 3~b! we depict the corresponding numberM of
spontaneously scattered photons. Again,M is found to be of
the same order of magnitude as for the resonant detec
scheme. This is because the reduced atom-photon coup
in the far-detuned limit is compensated by the larger num
of photons used to achieve a good signal-to-noise ratio.
heating of atomic motion and loss of atom coherence du
photon scattering are therefore similar in both the reson
and the off-resonant detection schemes. It follows from
~19! that a large ratio ofg2/(kG) is needed to makeShom
.1 and M,1. With k loss5kT52p30.59 MHz andDa
5200G, for example, a pump current of 50 photons/ms gives
Nout,05125 andM50.49,Shom54.3 as shown in the inset
of Fig. 3.

V. ATOMIC MOTION

Up to this point we have supposed that the atom is held
the magnetic microtrap at a maximum of the cavity field f
the duration of the measurement timet. In this section we
show that reliable detection is possible, even when the a
is allowed to move around within the light field. We consid
a simple experiment in which the pump laser is continuou
on, while single atoms traverse the cavity at random a
have to be detected during their limited interaction time w
the cavity field. Rubidium atoms trapped in an atom ch
waveguide at a temperature of 1mK move at typical thermal
velocities of 1 cm/s. Such an atom would typically ta
300 ms to cross a 3mm cavity mode waist if it were not
interacting with the light. This is plenty of time to allow
detection, being much longer than thet510 ms interaction
time assumed in previous sections of this paper.

However, the atom-light interaction may change the av
able interaction time because of two effects. First, o
resonant light leads to optical dipole forces and hence
cavity light forms an additional potential for the atom. Se
ond, photon scattering will impart random momentum kic
to the atom. If this heating is too great, the atom may lea
the interaction region before it can be detected, regardles
its initial velocity.

Dipole forces only play a role for off-resonant pumping
discussed in Sec. IV. The dipole potential experienced by
atom is related to the excited state population by

V52
\Da

2
ln~122r11!. ~21!

For red~negative! detuning this potential is attractive. Thu
an atom traversing the cavity will be accelerated toward
center of the mode and will cross the cavity in a mu
shorter time. For the parameters of the solid curve in Fig
and Shom510 the interaction time is reduced to approx
mately 10ms, which is sufficient for atom detection. Fo

e-
6-5
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HORAK et al. PHYSICAL REVIEW A 67, 043806 ~2003!
much stronger pumping or lower finesse cavities, atom
tection with a continuous pump is no longer possible and
would have to modulate the pump light intensity in time.
this case, the attractive dipole force can be used to trap
atom for a sufficiently long time to allow for its detection.

The heating of an atom, i.e., the broadening of the m
mentum distributionDp, due to random recoil kicks over
time t is related to the momentum diffusion coefficientD
through the relation (Dp)252Dt. For an atom in a standing
wave cavity in the limit of weak atomic saturation (2g2N
!G2) we can use the value ofD given in Refs.@15#. For
simplicity we restrict the following discussions to the res
nant caseDa5Dc50. Thus

D5G~\k!2
h2g2

@Gk1g2cos2~kz!#2
, ~22!

wherek is the wave vector of the light field,g is again the
maximum Rabi frequency, andz50 is at an antinode of the
field. Whenz50, 2 Dt is equal to 2G(\k)2r11t, which is
just (\k)2M . Hence, the momentum distribution of an ato
at an antinode broadens byDp5\kAM during the interac-
tion time. At this position, the conditionM,1 for reversible
atom-light interaction is also the condition for leaving t
motional state of the atom unchanged. Away from the an
odes, however, this is no longer true. For example,M50 at
a node, whileD is maximum. In this case, it iscoherent
scattering of photons between the forward and backward
rections in the cavity that gives rise to the momentum dif
sion @16#. However, in general the use of a cavity in ato
detection reduces the heating of the atom significantly co
pared with simple resonance fluorescence detection. M
over, the counterpropagating fields in a cavity produce
much smaller mean scattering force than a single trave
beam, whose radiation pressure force can expel the a
quickly from the interaction region. In the ultimate limit o
very large atom-cavity coupling~‘‘interaction-free’’ measure-
ment!, the atomic motional state is completely unperturb
by the detection.

Let us now take this position dependence into accoun
simply averaging the results of Sec. III over the positi
along the cavity axis assuming a flat spatial distribution
the atom. For the spatially averaged signal-to-noise ratioS̄ at
resonance we find

S̄5Aj int
kT

k F11
g2

2kG
2S 11

g2

kG D 21/2G

5Aj int
g2

kG

kT

k
3H 1

1

2

for S g2

kG D!1

@1.
~23!

This is exactly one-half of the maximum value ofSgiven by
Eq. ~10!. The corresponding mean numberM̄ of spontane-
ously scattered photons is
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M̄5 j int
kT

k S kG

g2 D 1/2S 11
kG

g2 D 23/2

~24!

5 j int
kT

k
3H g2/kG

~g2/kG!21/2 for S g2

kG D!1

@1.

We note that in the weak coupling limit the dependence
M̄ on S̄ differs from Eq.~13! only by a factor of 2, whereas
it is qualitatively different in the strong coupling limit. Th
spatially averaged valueD̄ of the momentum diffusion read

D̄5
~\k!2

t S 11
g2

2kG D M̄ , ~25!

and thus the rms momentum change during detection is

Dp5\kA2M̄ S 11
g2

2kG D . ~26!

The corresponding random walk in position leads to a spa
spreadingDz of

Dz5A2D̄

m2

t3

3
5

Dp

m

t

A3
, ~27!

wherem is the atomic mass. As an example, let us take
parameters of the dotted curve in Fig. 2 withj in

520 photons/ms. Then S̄55.1, M̄525, Dp59.3\k, and
Dz5320 nm. Thus the heating and diffusive motion are re
tively small and do not compromise the feasibility of singl
atom detection.

We have performed numerical simulations of a simp
experiment in which atoms move along a guide perpend
lar to the cavity axis and cross the cavity field. The para
eters used are (g,G,k loss5kT)52p3(12,3,14) MHz, j in
510 photons/ms, and cavity waistw053 mm. The trans-
verse oscillation frequency in the guide is 2p337 kHz, the
atoms move along the guide with a mean velocity of 0.4 m
and the initial temperature of the cloud before interact
with the cavity is 30mK. Here the motion of the atoms i
classical. It is beyond the scope of the present paper to c
sider single atoms magnetically trapped in the Lamb-Dic
regime or to analyze the effect of the cavity field on a Bo
Einstein condensate.

Figure 4~a! shows the typical temporal evolution of th
intracavity photon numberN in one particular realization o
the simulation. It is constant as long as there is no at
interacting with the cavity mode, but with the arrival of a
atom,N exhibits periods of strong reduction according to t
position of the atom within the cavity. This curve has be
used to simulate the arrival times of individual photons at
photodetector measuring the cavity output. Detector cli
are indicated by the vertical lines at the bottom of Fig. 4~b!
and the scarcity of clicks near timet'45 ms indicates the
presence of the atom. This appears even more clearly in
solid line of Fig. 4~b!, which plots the number of photon
arriving in an 8ms integration window versus time. Fo
6-6
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POSSIBILITY OF SINGLE-ATOM DETECTION ON A CHIP PHYSICAL REVIEW A67, 043806 ~2003!
comparison, the dashed lines show the corresponding m
number of photons, plus and minus one standard devia
when there is no atom in the cavity. A simple criterion for t
detection of an atom in the cavity would thus be to defin
minimum value forNdetectand infer the presence of an ato
whenever the curve drops below that. With the minimum
at 11, we found that this procedure detects a single atom
a probability of 77%.

This detection efficiency has to be compared to the pr
ability that the photon count rate drops below that thresh
in the case of an empty cavity~i.e., no atom! due to the
standard quantum fluctuations of the photon number in
cavity. This ‘‘dark count’’ probability has been numerical
found to be approximately 6% for a time interval of 80ms,
corresponding to 750 dark counts per second. In practic
more sophisticated data analysis could provide better
crimination between real detection events and dark coun

Finally, let us note that for the parameters of Fig. 4 ea
atom makes on averageM528.3 spontaneous emissions,
result quite comparable to the simple 1D averages discu
above.

VI. MICROCAVITY DESIGN

It is beyond the scope of this paper to consider the det
of specific microcavity designs, but it does seem appropr
to make some general remarks about the feasibility of bu
ing suitable cavities. In this work, we are not thinking
whispering gallery cavities@17#, where the light is trapped
near the perimeter of a small sphere or disk and atoms
couple to the evanescent field that leaks out. Rather, we h
in mind an open resonator in which atoms can have acce
the regions of maximum optical field. The lowerQ of the
open resonator can be compensated by the small waist si
the cavity mode, which we are taking to be a few microm
ters.

A simple cavity of this kind might be made using a pair
optical fibers, each with an integrated Bragg reflector. T
two fibers, aimed at each other with a small gap between
ends, form a cavity~see Fig. 5!. Of course there are reflec
tions at the fiber ends and losses from the region of the

FIG. 4. Numerical simulation of an atom which is trapped in
two-dimensional~2D! harmonic trap but moves along the third d
mension and traverses the cavity.~a! Stationary intracavity photon
numberN vs time. ~b! Simulated detector signal vs time: arriv
time of individual photons at the photodetector~vertical lines at
bottom!, number of detected photons integrated over intervals
8 ms ~solid line!, mean integrated photon number for an emp
cavity and corresponding quantum noise~dashed!. ~See text for
details.!
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as well as absorption in the fiber itself, but such a cavity h
the virtue that it is easy to build and its modes are read
analyzed, which we do in the Appendix. The damping a
coupling parameters used in this work are realistic para
eters for such a cavity, as calculated in the Appendix. T
gap where the atom is placed should be wide enough
avoid long-range van der Waals or Casimir-Polder inter
tions between the atom and the end of the fiber. These fo
become problematic at distances below a few hundred
nometers@18,19#.

The cavity could be significantly improved by matchin
the ends of the fibers to the wave fronts in the gap. With t
in mind we have demonstrated a fiber terminated by a
crolens that produces a 2mm beam waist 50mm from the
end of the fiber, but an analysis of the microlens cavity
beyond the scope of the Appendix. Gradient index~GRIN!
rod lenses also lend themselves to this application. It is a
desirable for the cavity to be tunable so that its mode f
quencies can be properly chosen relative to the atomic t
sition of interest. Temperature tuning and piezoelectric t
ing are both realistic options. Alternatively, the cavity cou
be tuned electro-optically using, for example, a material s
as lithium niobate (LiNbO3), whose refractive index
changes by up to 1% in an applied electric field. Ultimate
it is of interest to integrate optical structures for atom det
tion directly into the atom chip. Many dielectric and sem
conductor materials combine suitable optical properties w
low enough vapor pressure. Waveguides made from SiN
Ta2O5 could be used in the red and near infrared for ato
such as Li and Rb, while GaAs structures would be app
priate for Cs.

VII. CONCLUSIONS

In this work we have analyzed the use of optical micr
cavities for detecting single atoms on an atom chip.
find that even cavities of quite modestk, in the range of
2p310 MHz, can play a useful role provided the waist
the light field is only a few micrometers. With lower los
such cavities permit the detection of a single atom wh
requiring less than one photon to be spontaneously scatte
We have verified that these results also hold taking into
count atomic motion and momentum diffusion correspond
to realistic experimental setups.

Our calculations show that the effect on the atom is
proximately the same for resonant and far-detuned pu
light if one wants to obtain a fixed signal-to-noise ratio f
the same cavity parameters. On resonance, simple mon

f

FIG. 5. Schematic presentation of the fiber cavity on an at
chip.
6-7
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HORAK et al. PHYSICAL REVIEW A 67, 043806 ~2003!
ing of the cavity output power can be used to detect
atom, but very small photon numbers must be used
achieve maximum signal-to-noise ratio. By contrast, o
resonant detection permits much larger pump power
therefore much larger cavity output, but in this case a m
refined homodyne technique must be used to detect the p
ence of the atom in the cavity. These methods seem pro
ing for the detection of single atoms on an atom chip.
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APPENDIX: MODES OF A FIBER GAP CAVITY

In this appendix we calculate the modes and loss rate
the simple fiber cavity used to illustrate the main part of
paper. The cavity consists of two single-mode fibers moun
on top of the chip and placed on opposite sides of the cur
carrying wire that forms the magnetic atom trap. The guid
atoms pass through a gap of length 2d between the fibers, a
illustrated in Fig. 5. Each fiber contains a highly reflecti
mirror, e.g., a Bragg reflector, at a distanceL from its end.
The cavity mode confined between these mirrors is conc
trated in the fiber cores and in the gap between the fibers
we show below, it is advantageous to use relatively la
core diameters to reduce the energy loss by the mode
match between the fibers. The assumption of a single-m
fiber thus leads to the requirement of a very small differe
of the index of refraction between the fiber core and cl
ding. In this limit, the mode in the fiber can be well approx
mated by a transversely polarized field with a Gaussian p
file of waist w0 @20#. Similarly, the paraxial approximation
can be applied to the light field in the gap, which is therefo
Gaussian.

Thus, the electric field of the cavity mode can be writt
as

E~x!5e03H E11 f 11~x!1E12 f 12~x! for z,2d,

E21 f 21~x!1E22 f 22~x! for uzu,d,

E31 f 31~x!1E32 f 32~x! for z.d,
~A1!

wheree0 is the polarization vector,x symbolizes the cylin-
drical coordinates (r ,w,z), and

f 16~x!5e2r 2/w0
2
e6 ik1(z1d), ~A2!

f 36~x!5e2r 2/w0
2
e6 ik1(z2d) ~A3!
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are the fiber modes traveling to the right~1! and left (2)
within each of the two fibers. In the gap where the atoms
guided, the Gaussian beams emerging from the left~right!
fiber and propagating to the right~left! are given by

f 21~x!5
w0

w~z1d!
expF2

r 2

w2~z1d!
1 ik0

r 2

2R~z1d!

1 ik0~z1d!2 ih~z1d!G , ~A4!

f 22~x!5
w0

w~z2d!
expF2

r 2

w2~z2d!
2 ik0

r 2

2R~z2d!

2 ik0~z2d!1 ih~z2d!G . ~A5!

Here,

w~z!5w0A11~z/z0!2,

R~z!5z@11~z0 /z!2#,

h~z!5arctan~z/z0!,

z05pw0
2/l0 , ~A6!

k0 , (k1) denotes the longitudinal wave number in vacuu
~in the fiber! andl0,152p/k0,1 are the corresponding wave
lengths.

Because of the divergence of the Gaussian beams in
gap, f 21 ( f 22) does not exactly match the fiber mod
f 31 ( f 12) at z5d(z52d). Therefore we projectf 26 onto
f 27* at these positions and treat the mode mismatch as ca
loss. We find

f 22~r ,z52d!5Q f21* ~r ,z52d!1 f 22
' ~r ,z52d!,

f 21~r ,z5d!5Q f22* ~r ,z5d!1 f 21
' ~r ,z5d!,

where the coefficientQ gives the mode-matched part of th
amplitude, while the superscript' indicates the part of the
field that is orthogonal to the mode of the fiber and is the
fore lost. We find that

Q5uQueif5
w0

w~d!
eik02d2 ih(d). ~A7!

The phase ofQ is of first order ind/z0, i.e., the gap size
divided by twice the Rayleigh length, whereas the modu
of Q is of second order. We will therefore calculate the cav
modes in perturbation theory ind/z0. The first order terms
yield a change of the optical path length and hence a cha
of the resonance frequencies, but still allow for se
consistent, lossless modes, which can then be used in
second order terms to calculate the leading contribution
the cavity loss rate.
6-8
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POSSIBILITY OF SINGLE-ATOM DETECTION ON A CHIP PHYSICAL REVIEW A67, 043806 ~2003!
Using the continuity equations for the electric field at t
fiber-vacuum interface together with the boundary conditio
at the mirrors, we obtain the cavity resonance condition

dS 2k02
1

z0
D5mp22 arctanF1

n
tan~k1L !G , ~A8!

wherem is an integer number andn5k1 /k0 is the effective
refractive index of the fiber. We also obtain relations betwe
the electric field amplitudesEj ,6 , in particular,

uE11u5uE12u5uE31u5uE32u, ~A9!

uE21u5uE22u

5uE11uU11n2~12n!e22ik1L

2 U. ~A10!

The energy flow in thez direction in the gap is given by

Sz5
pw0

2uE21u2

m0c
, ~A11!

which leads to a loss of energy from the cavity

Sloss52Sz~12uQu2!. ~A12!

If we divide this by the total energy of the light stored in th
fiber cavity, 4n2e0pLw0

2uE11u2 ~neglecting the small energ
stored in the gap!, we obtain the energy loss rate
d

.

C

-
rd
,
t

J

pe

04380
s

n

2kgap5
c

2L S d

z0
D 2U11n2~12n!e22ik1L

2n U2

~A13!

due to the mode mismatch of the mode coupling through
gap. The loss ratek loss is then the sum ofkgap and any
additional loss rates, e.g., due to material absorption. Fina
the maximum single-photon Rabi frequency, observed for
atom on the axis of the cavity in the gap, is given by

g5u11n2~12n!e22ik1LuA 3Gc

2n2Lw0
2k0

2
. ~A14!

As an example let us consider rubidium atoms (l0
5780 nm) in such a cavity withL520 000l1, which yields
a node of the electric field at the fiber ends and therefor
large field in the gap@see Eq.~A10!#. The gap size is chose
as 2d55.079mm in accordance with the resonance con
tion ~A8!. The fiber core diameter is 5mm, the refractive
index of the fiber core isn151.5, and that of the cladding i
n251.496. For these parameters, the corresponding wai
w052.92mm, kgap52p36.23 MHz and g52p312.2
MHz. A mirror transmission of T50.01 gives kT
5Tc/(4nL)52p37.65 MHz. This example motivates th
choice of parameters used for the figures in this work
smaller gap of 2d51.563mm giveskgap52p30.59 MHz,
which we use in the insets of Figs. 1 and 3. Note that, asL is
tunable, any experimental realization error concerning
exact magnitude of 2d may be compensated in order to on
again comply with the resonance condition~A8!.
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