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theory. It is shown that, using a general definition of possibility measures, and a generalization
of Sugeno’s fuzzy integral – the seminormed fuzzy integral, or possibility integral –, a unified and
consistent account can be given of many of the possibilistic results extant in the literature. The
striking formal analogy between this treatment of possibility theory, using possibility integrals,
and Kolmogorov’s measure-theoretic formulation of probability theory, using Lebesgue integrals,
is explored and exploited. I introduce and study possibilistic and fuzzy variables as possibilistic
counterparts of stochastic and real stochastic variables respectively, and develop the notion of
a possibility distribution for these variables. The almost everywhere equality and dominance of
fuzzy variables is defined and studied. The proof is given for a Radon-Nikodym-like theorem
in possibility theory. Following the example set by the classical theory of integration, product
possibility measures and multiple possibility integrals are introduced, and a Fubini-like theorem
is proven. In this way, the groundwork is laid for a unifying measure- and integral-theoretic
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Parts II and III of this series of three papers.
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1 INTRODUCTION

The theory of probability originated in the middle of the eighteenth century from considerations
about games of chance, under the influence of, among others, Fermat, Pascal, Huyghens and
James Bernoulli. Important mathematicians such as DeMoivre, Laplace, Gauss and Poisson
further developed it, and it gradually became an impressive body of results about randomness
and random events, with applications in statistics, demography, systems science, chemistry and
physics, to name only a few important domains. As an inevitable consequence of this success
and rapid growth, very soon the need was felt for a solid and formal foundation. At the same
time, the theory was still lacking a consistent and unifying presentation of the diversity of its
notions and results, gathered over decades and even centuries. The first formal foundation of
probability theory was given by the Russian mathematician S. N. Bernstein. An alternative
axiomatic foundation is due to yet another Russian scientist, A. N. Kolmogorov, who was the
first to show that it is possible to combine probability theory with the measure theory to which
Lebesgue had devoted much of his life. His position was that probability can be mathematically
represented by a normalized measure. At the same time, using Lebesgue integration theory, he
succeeded in formulating the theory of probability in a measure- and integral-theoretic language,
and thus provided a unified and consistent account of the study of random events and chance
[Kolmogorov, 1950].

On the other hand, many prominent scientists have defended the view that uncertainty and
randomness are not one and the same thing. To put it more succinctly, uncertainty can be
caused by more than chance alone. In 1978, Zadeh [1978a] observed in his seminal paper dealing
with possibility theory, that people often convey information using simple affirmative sentences
in natural language of the type ‘subject-verb-predicate’, where the predicate tells us something
about the subject, or, to formulate it in a more mathematical way, imposes a restriction on the
values that the subject may assume in an appropriate universe of discourse. The information
transmitted or represented in this way, could be called ‘linguistic information’. In most cases
in natural language, however, the information contained in such a sentence is not sufficient
to unequivocally determine the subject, simply because the predicate involved is imprecise or
vague. To give an example, the proposition ‘John’s age is between 20 and 30 years’ gives us
some information about how old John is, but does not completely determine his age, since the
predicate ‘between 20 and 30 years’ is imprecise. Similarly, when we say ‘Mary is tall’, we give
some information about Mary’s stature, but since ‘tall’ is a vague predicate, this information is
not sufficient to completely determine it.

In both cases, although the sentence involved contains information, it still leaves us uncertain
as to the precise value which the subject of the sentence assumes in its universe of discourse.
We have thus stumbled upon a kind of uncertainty, henceforth called ‘linguistic uncertainty’,
which cannot be directly attributed to randomness or chance, and which is nevertheless always
present in our normal, everyday communication.

Zadeh has advanced the thesis that linguistic information, or dually, linguistic uncertainty,
has nothing to do with probability and cannot be represented by probability measures. In
order to provide a mathematical representation for this uncertainty, he introduced possibility
measures, fuzzy variables and their possibility distributions, product possibility measures, and
the notion of noninteractivity1 [Zadeh, 1978a]. He thus laid the foundation of a theory of
possibility, a collection of notions and results concerning possibility measures, and, in Zadeh’s

1Noninteractivity is a special case of what I shall possibilistic independence in Part III of this series.
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view, dealing with the mathematical description of linguistic uncertainty. Zadeh’s work has
been further refined and extended by a number of scientists. Without aiming at completeness,
I want to mention Dubois and Prade and various co-workers, who among many other things
introduced the dual notion of a necessity measure, studied the relationships between possibility
and necessity measures and other representations of uncertainty [Dubois and Prade, 1985, 1988],
and more recently presented a study of possibilistic independence [Benferhat et al., 1994, 1995],
[Dubois et al., 1994a], of conditioning in a possibilistic framework [Dubois and Prade, 1990]
and of possibilistic logic [Dubois et al., 1994b]; Klir and various colleagues, who introduced the
notion of a measure of uncertainty for possibility measures [Higashi and Klir, 1982], [Klir and
Folger, 1988], studied ways of converting possibility measures into probability measures and vice
versa [Klir, 1990], [Klir and Parviz, 1992], studied the relationship between possibility theory
and the Dempster-Shafer theory of evidence and explored the relationship between possibility
theory and modal logic [Klir and Harmanec, 1995]; and Hisdal [1978], Nguyen [1978] and Ramer
[1989], who also contributed to the subject of conditional possibility.

It should be stressed that there are other interpretations of possibility measures than the
one given by Zadeh. It has for instance been noted that possibility measures are special types of
belief measures [Shafer, 1976] and upper probabilities [Walley, 1991], and that they can therefore
be interpreted within the framework of the Dempster-Shafer theory of evidence and of imprecise
probabilities, respectively. Giles [1982] made an attempt to interpret possibility measures as
some kind of upper probabilities. Dubois and Prade have also studied interpretations of pos-
sibility theory in relation with likelihood functions [Dubois et al., 1993a], and with epistemic
states [Dubois et al., 1993b]. It goes without saying that most, if not all, of the abstract math-
ematical results in this paper remain valid under any interpretation that might be given to the
specific possibility measures that will be defined and used further on.

This is the first of a series of three papers dealing with the measure- and integral-theoretic
treatment of possibility theory. With this series, it is my aim to accomplish to some extent in
possibility theory what Kolmogorov has succeeded in doing for probability theory. In this first
paper, using a very general definition of a possibility measure and an appropriate generalization
of Sugeno’s fuzzy integral – the seminormed fuzzy integral –, I give a consistent and unifying
account of possibility theory, clarifying and resolving in the process some inconsistencies and
difficulties still extant in the literature. At the same time, I show that possibility theory can
be developed along the same general lines as Kolmogorov’s theory of probability2, and reveal
the deep symmetry between both accounts of uncertainty. Finally, I present this material as
mathematical evidence, confirming my suspicion that possibility measures and (seminormed)
fuzzy integrals are a perfect match, in very much the same way as classical measures and
Lebesgue integrals are. In the second and third parts of this series, I use the results derived
here to work out a measure- and integral-theoretic treatment of conditional possibility and
possibilistic independence. The results published in this series are a condensation of part of my
doctoral dissertation [De Cooman, 1993], written in Dutch, and a significant extension of a short
overview paper [De Cooman, 1995a].

In section 2, I have collected the basic mathematical notions, necessary for the proper un-
derstanding of the rest of the material. Possibility measures and seminormed fuzzy integrals are
briefly introduced in section 3, together with a number of their properties that will be used later
in the paper, and in the other papers in this series. A formal treatment of possibilistic variables,

2It should be stressed that in this series of papers, whenever I talk about probability theory, I mean Kol-
mogorov’s measure- and integral-theoretic account of it.
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the possibilistic counterparts of stochastic variables, is proposed in section 4. The special case of
what I call fuzzy variables, the formal counterparts of the real stochastic variables in probability
theory, is treated in more detail in section 5. Section 6 deals with the almost everywhere equality
and dominance of these fuzzy variables. A Radon-Nikodym-like theorem for seminormed fuzzy
integrals and possibility measures is the subject of section 7. An integral-theoretic approach to
product possibility measures, and the product and chain integrals associated with them, follows
in section 8, which also contains a possibilistic counterpart of the well-known theorem of Fubini.
In section 9 I briefly look back at what has been accomplished, and pave the way for the treat-
ment of conditional possibility and possibilistic independence in the second and third paper of
this series.

2 PRELIMINARY DEFINITIONS

Let us start this discussion with a few preliminary definitions and notational conventions, valid
in the rest of this paper, unless explicitly stated to the contrary. We denote by X an arbitrary
universe of discourse, i.e., a nonempty set. The universes considered hereafter will be implicitly
assumed to contain at least two elements.

By (L,≤) we mean a complete lattice that is arbitrary but fixed throughout the whole text.
The smallest element of (L,≤) is denoted by 0L and the greatest element by 1L. We also assume
that 0L 6= 1L. The meet of (L,≤) is denoted by _, the join by ^.

2.1 Triangular Seminorms and Norms

A triangular seminorm or, shortly, t-seminorm P on the complete lattice (L,≤) is a binary
operator on L that satisfies the following two conditions:

(i) boundary conditions:
(∀λ ∈ L)(P (1L, λ) = P (λ, 1L) = λ);

(ii) isotonicity:
(∀(λ1, λ2, µ1, µ2) ∈ L4)(λ1 ≤ λ2 and µ1 ≤ µ2 ⇒ P (λ1, µ1) ≤ P (λ2, µ2)).

A triangular norm or, shortly, t-norm T on (L,≤) is a t-seminorm on (L,≤) that is furthermore
associative and commutative. Of course, _ is a triangular norm on (L,≤), and more specifically,
the only one that is idempotent. For a more involved account of triangular seminorms and norms
defined on complete lattices, and more in general, on bounded partially ordered sets, I refer to
[De Cooman and Kerre, 1994], where the reader will find more details about the notions discussed
in this subsection.

A t-seminorm P on (L,≤) is called completely distributive w.r.t. supremum iff for any λ
in L and any family {µj | j ∈ J} of elements of L: P (λ, supj∈J µj) = supj∈J P (λ, µj) and
P (supj∈J µj , λ) = supj∈J P (µj , λ). In this case, the structure (L,≤, P ) is called a complete
lattice with t-seminorm. Similarly, whenever the t-norm T on (L,≤) is completely distributive
w.r.t. supremum, we call the structure (L,≤, T ) a complete lattice with t-norm. Of course, a
complete lattice with t-norm (L,≤,_) is a complete Brouwerian lattice [Birkhoff, 1967].

Let λ and µ be elements of L and let P be a t-seminorm on (L,≤). An element α of L is
called a left-inverse for P of λ w.r.t. µ iff P (α, λ) = µ and a right-inverse for P of λ w.r.t. µ
iff P (λ, α) = µ. For a t-norm T on (L,≤), left-inverses and right-inverses coincide due to the
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commutativity of T , and are simply called inverses. The following, rather interesting properties
are easily proven:

µ 6≤ λ ⇒ there are no left- and right-inverses for P of λ w.r.t. µ
µ 6≤ λ ⇒ there are no inverses for T of λ w.r.t. µ

In this light, a t-seminorm P on (L,≤) is called weakly left-invertible iff for any λ and µ in L with
µ ≤ λ, there exists a left-inverse for P of λ w.r.t. µ. The definition of weak right-invertibility
is completely similar. A t-norm T on (L,≤) is called weakly invertible iff for any λ and µ in L
with µ ≤ λ, there exists an inverse for T of λ w.r.t. µ.

In the rest of this subsection, we assume that (L,≤, P ) is a complete lattice with t-seminorm,
and that (L,≤, T ) is a complete lattice with t-norm. It has been shown previously [De Cooman
and Kerre, 1994] that for these structures, there exists an important relation between the notion
of a weak (left- and right-)inverse and the order-theoretic notion of residuation [Birkhoff, 1967].
In order to explain this, let us again consider arbitrary elements λ and µ of L. The left-residual
λ CP µ for P of λ by µ is defined as

λ CP µ = sup { ν | ν ∈ L and P (ν, µ) ≤ λ }.

For the right-residual µ BP λ for P of λ by µ a similar definition can be given. For the t-norm T
the notions of left- and right-residual coincide and are simply called residual. The residual λ4T µ
for T of λ by µ is defined as λ4T µ = λ CT µ = µ BT λ. The connection between residuals and
inverses is made explicit by the following propositions [De Cooman and Kerre, 1994].

Proposition 2.1. Let λ and µ be elements of L.

(i) If the equation P (ν, λ) = µ in ν admits a solution, then µ CP λ is the greatest solution
w.r.t. the order relation ≤, and if the equation P (λ, ν) = µ in ν admits a solution, then
λ BP µ is the greatest solution w.r.t. the order relation ≤.

(ii) If the equation T (ν, λ) = µ in ν admits a solution, then µ4T λ is the greatest solution
w.r.t. the order relation ≤.

Proposition 2.2. (i) P is weakly left-invertible iff (∀(λ, µ) ∈ L2)(λ ≥ µ ⇒ P (µ CP λ, λ) =
µ) and weakly right-invertible iff (∀(λ, µ) ∈ L2)(λ ≥ µ ⇒ P (λ, λ BP µ) = µ).

(ii) T is weakly invertible iff (∀(λ, µ) ∈ L2)(λ ≥ µ ⇒ T (µ4T λ, λ) = µ).

In order to clarify these results, let us look at a number of familiar and important examples.

Example 2.3. If we consider the real unit interval [0, 1], ordered by the natural order of real
numbers, ([0, 1],≤) is a complete chain, with meet min, the well-known minimum operator.
Interestingly, ([0, 1],≤) is a complete Brouwerian chain, or equivalently, ([0, 1],≤, min) is a com-
plete chain with t-norm. It is easily verified that for any x and y in [0, 1]:

x4miny = sup { z | z ∈ [0, 1] and min(z, y) ≤ x } =

{

1 ; y ≤ x
x ; y > x

and min(x4miny, y) = min(x, y), which implies that min is weakly invertible.
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Alternatively, we may consider the algebraic product operator × on [0, 1], which clearly is
a triangular norm on ([0, 1],≤) that is furthermore completely distributive w.r.t. supremum. In
other words, the structure ([0, 1],≤,×) is a complete chain with t-norm, and for any x and y in
[0, 1], we find that

x4×y = sup { z | z ∈ [0, 1] and z × y ≤ x } =

{

1 ; y ≤ x
x/y ; y > x

and (x4×y)× y = min(x, y), which implies that × is also weakly invertible.

2.2 Ample Fields

An ample field R on the universe X is a set of subsets of X that is closed under arbitrary unions
and intersections, and under complementation in X. The ample fields we shall consider, are
assumed to be proper, i.e., {∅, X} ⊂ R. A special ample field on X, and at the same time the
largest, is the power set ℘(X) of X, i.e. the set of all subsets of X. In this sense, ample fields can
be considered as immediate generalizations of this power set. For a discussion of this subject, I
refer to [De Cooman and Kerre, 1993], [Wang, 1982] and [Wang and Klir, 1992].

The atom of R containing the element x of X is denoted by [ x ]R and is defined by:

[x ]R =
⋂

{A | x ∈ A and A ∈ R}.

It is easily proven that the set of all atoms of R constitutes a partition of X. Remark that
[x ]℘(X) = {x}, for any x in X. Therefore, atoms can be interpreted as generalizations of
singletons. In this light, we also have that for any x in X and A in R, x ∈ A ⇔ [ x ]R ⊆ A.

A subset E of X is called R-measurable iff E ∈ R. If no confusion can arise, we also simply
call E measurable. A measurable set is also called an event. Furthermore, it is interesting to
note that

E ∈ R ⇔ E =
⋃

x∈E

[ x ]R. (1)

Consider an arbitrary subset E of ℘(X). Since the intersection of any family of ample fields
is again an ample field, we know that

τ(E) =
⋂

{R | R is an ample field on X and E ⊆ R}

is an ample field on X, called the ample field generated by E . τ can be regarded as an operator
on ℘(℘(X)), and is as such a closure operator on ℘(X) [Davey and Priestley, 1990], i.e., for
any subsets E , E1 and E2 of ℘(X), E ⊆ τ(E), τ(τ(E)) = τ(E) and E1 ⊆ E2 ⇒ τ(E1) ⊆ τ(E2).
Furthermore, τ(E) = E iff E is an ample field on X. This notion can be used to introduce product
ample fields. If we consider the universes X1 and X2 provided with the respective ample fields
R1 and R2, then the product ample field of R1 and R2 is the ample field on X1×X2 defined as

R1 ×R2 = τ({A1 ×A2 | A1 ∈ R1 and A2 ∈ R2 }). (2)

Interestingly, for the atoms of R1 ×R2, we have that

(∀(x1, x2) ∈ X1 ×X2)([ (x1, x2) ]R1×R2 = [ x1 ]R1 × [x2 ]R2), (3)
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which confirms the interpretation of an atom as a generalization of a singleton. The generaliza-
tion of these results for products of more than two ample fields is immediate.

Finally, given an ample field R on a universe X, we may associate with it a ℘(X) − ℘(X)-
mapping pR – actually, the closure operator on X associated with the closure system R –,
defined by, for any A in ℘(X):

pR(A) =
⋃

x∈A

[ x ]R. (4)

2.3 Fuzzy Sets and Fuzzy Variables

With any subset A of a universe X, we can associate its characteristic X − L mapping χA,
defined by

χA(x) =

{

1L ; x ∈ A
0L ; x ∈ coA.

In accordance with the terminology introduced by Goguen [1967], an arbitrary X − L mapping
will be called a (L,≤)-fuzzy set (or simply fuzzy set) in X. It is an obvious generalization of a
characteristic X − L-mapping. The set of the (L,≤)-fuzzy sets in X is denoted by F(L,≤)(X).
We shall also make use of the partial order relation v on F(L,≤)(X), defined as follows: for any
h1 and h2 in F(L,≤)(X),

h1 v h2 ⇔ (∀x ∈ X)(h1(x) ≤ h2(x)).

For any λ in L, λ denotes the constant X − {λ} mapping.
A X − L mapping h is called R-measurable iff it is constant on the atoms of R. The origin

of this definition of measurability is discussed in [De Cooman and Kerre, 1993], where it is also
shown that it is an obvious and natural extension of the normal measurability condition imposed
on real mappings in classical measure and probability theory. A R-measurable X − L mapping
– or (L,≤)-fuzzy set in X – is also called a (L,≤)-fuzzy variable in (X,R). Whenever we
want to omit reference to the structures (L,≤) and (X,R), we simply speak of fuzzy variables.
A fuzzy variable can therefore be considered as a ‘fuzzification’ of a measurable set, and will
sometimes be called a fuzzy event. Indeed, a subset E of X is R-measurable iff its characteristic
X − L-mapping is. The set of the (L,≤)-fuzzy variables in (X,R) is denoted by GR(L,≤)(X).

If n ∈ N∗, i.e., n is a strictly positive natural number, the X − Ln-mapping (h1, . . . , hn) is
a n-dimensional fuzzy variable in (X,R) iff each of its component mappings hk, k ∈ {1, . . . , n},
is a fuzzy variable in (X,R). It is obvious that a fuzzy variable can always be considered
as a special case of a multidimensional fuzzy variable. A more detailed account of the fuzzy
variables introduced here, together with a deeper discussion of their meaning and interpretation,
is deferred to section 5.

3 THE POSSIBILITY INTEGRAL AND ITS MEANING

Before addressing the details of the measure- and integral-theoretic aspects of possibility theory
in the following section, let me define here the basic vocabulary, and explain what I mean by a
possibility measure and a possibility integral.
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3.1 Possibility Measures

Let R be an ample field on the universe X. A (L,≤)-possibility measure Π on (X,R) is a com-
plete join-morphism between the complete lattices (R,⊆) and (L,≤). This means by definition
that Π satisfies the following requirement: for any family {Aj | j ∈ J} of elements of R

Π(
⋃

j∈J

Aj) = sup
j∈J

Π(Aj).

This definition immediately implies that Π(∅) = 0L. For any A in R, Π(A) is called the (L,≤)-
possibility of A. The structure (X,R, Π) is called a (L,≤)-possibility space. Π is called normal
iff Π(X) = 1L. Whenever we do not want to mention the complete lattice (L,≤) explicitly, we
simply speak of possibility, possibility measures and possibility spaces.

A R-measurable X −L-mapping π such that for any A in R, Π(A) = supx∈A π(x), is called
a distribution of Π. Such a distribution is unique, and satisfies (∀x ∈ X)(π(x) = Π([ x ]R)).

(L,≤)-possibility measures are generalizations towards more general domains and codomains
of Zadeh’s possibility measures [Zadeh, 1978a], Wang’s fuzzy contactabilities [Wang, 1982], the
possibility measures studied by Wang and Klir [1992], and the possibility measures introduced
in [De Cooman et al., 1992]. For a more detailed discussion of these generalizations, I refer
to [De Cooman, 1993], [De Cooman and Kerre, 1993] and [De Cooman et al., 1992]. Their
introduction can be justified as follows. Using a complete lattice as a codomain allows us to
model potential incomparability of possibilities, and for instance to associate possibility measures
with the (L,≤)-fuzzy sets introduced by Goguen [1967], in order to represent more general forms
of linguistic uncertainty [De Cooman, 1995d], [Zadeh, 1978a]. Why possibility is defined here
on ample fields, rather than on power sets, needs a justification that is more involved. Actually,
we could call a mapping from an arbitrary subset E of ℘(X) to L a (L,≤)-possibility measure if
it is extendable to a (L,≤)-possibility measure with domain ℘(X). It is shown elsewhere [Boyen
et al., 1995] that this extendability is equivalent with the extendability to a (L,≤)-possibility
measure with domain τ(E), the smallest ample field that includes E . Therefore, ample fields
arise naturally as domains of possibility measures. Moreover, generally speaking, if we want to
define a possibility measure on ℘(X), we have to be more specific than if we want to define one
on any other ample field R on X, since, for instance, the atoms of ℘(X) constitute a refinement
of the atoms of R. So, at least in principle, we want to be able to be as nonspecific as possible,
and introduce possibility measures on ample fields and not just on power sets.

3.2 Possibility Integrals

In this subsection, we assume that P is a t-seminorm on (L,≤), such that (L,≤, P ) is a complete
lattice with t-seminorm. Furthermore (X,R, Π) is a (L,≤)-possibility space, and the distribution
of Π is denoted by π.

In a recent article about possibility and necessity integrals [De Cooman and Kerre, 1995], I
argued that a generalization of Sugeno’s fuzzy integral, the seminormed fuzzy integral, is ideally
suited for combination with (L,≤)-possibility measures. In the rest of this paper and also in
Parts II and III of this series, I want to explore this idea, and show that these seminormed
fuzzy integrals can be used to give a consistent and unifying account of possibility theory. Let
me, without going into detail, repeat here the most important points of the argumentation in
the above-mentioned article, and explicitly write down the formulas that we shall need further
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on. For an explicit definition of the seminormed fuzzy integral, and a detailed account of its
properties, I refer to [De Cooman and Kerre, 1995].

For a start, whenever the above-mentioned integral is associated with a possibility measure,
we call it a possibility integral. It turns out that if we combine a seminormed fuzzy integral
with a possibility measure, there exists a very simple formula for its calculation. Indeed, for an
arbitrary R-measurable set A and an arbitrary R-measurable X −L-mapping h, the (L,≤, P )-
possibility integral of h on A (w.r.t. Π) can be written as:

(P ) –
∫

A
hdΠ = sup

x∈A
P (h(x), π(x)). (5)

Moreover, if µ is an element of L, we find for the constant mapping µ that

(P ) –
∫

A
µdΠ = P (µ,Π(A)). (6)

As a special case, we can integrate the constant mapping 1L over A, which leads to

(P ) –
∫

A
dΠ = (P ) –

∫

A
1LdΠ = Π(A). (7)

Also useful is the following relation:

(P ) –
∫

A
hdΠ = (P ) –

∫

X
(h _ χA)dΠ, (8)

where, for any x in X, (h _ χA)(x) = h(x) _ χA(x). As a corollary of this, we find for the
characteristic X − L-mapping of the R-measurable set A that

(P ) –
∫

X
χAdΠ = (P ) –

∫

A
1LdΠ = Π(A). (9)

If we define the mapping ΠP : GR(L,≤)(X) → L by

ΠP (h) = (P ) –
∫

X
hdΠ = sup

x∈X
P (h(x), π(x)), (10)

Eq. (9) tells us that ΠP (χA) = Π(A), which means that the mapping ΠP can be considered as
an ‘extension’ of the mapping Π from R to GR(L,≤)(X). Furthermore, for any family {hj | j ∈ J}
of fuzzy variables in (X,R):

(P ) –
∫

X
(sup
j∈J

hj)dΠ = sup
j∈J

(P ) –
∫

X
hjdΠ, (11)

which means that ΠP is a complete join-morphism between the complete lattices (GR(L,≤)(X),v)
and (L,≤), and therefore behaves like a possibility measure. The (L,≤, P )-possibility integral
allows us in other words to ‘extend’ the domain of the possibility measure Π fromR to GR(L,≤)(X).
ΠP is called the P -extension of Π, and for any h in GR(L,≤)(X), ΠP (h) is called the (L,≤, P )-
possibility, or also (generalized) possibility, of h.
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4 POSSIBILISTIC VARIABLES

In this section, I give a short description of what I mean by a possibilistic variable. I also intro-
duce possibility distributions and possibility distribution functions for these variables. In order to
keep this survey as tidy as possible, I have collected a number of preliminary definitions and re-
sults in subsection 4.1. The proper introduction of possibilistic variables and their distributions
is given in subsection 4.2. A few related additional results about the calculation of possibility
integrals by a transformation of variables can be found in subsection 4.3.

4.1 Preliminary Definitions

In probability theory, and in measure theory in general, it is possible to transfer a (probability)
measure from one universe to another, using a mapping between these universes [Burrill, 1972].
This procedure is commonly called the transformation of a measure by a mapping. It is not
difficult to show that something completely similar can be done with possibility measures.

Indeed, consider a (L,≤)-possibility space (X1,R1, Π1). Let furthermore X2 be a universe
and f a X1 −X2-mapping. We use f and Π1 to introduce the following set and mapping:

R1
(f) = {B | B ∈ ℘(X2) and f−1(B) ∈ R1 } and Π1

(f) : R1
(f) → L : B 7→ Π1(f−1(B)),

where f−1(B) = {x1 | x1 ∈ X1 and f(x1) ∈ B } is the inverse image of B under the mapping f .
Of course, R1

(f) is an ample field on X2 and Π1
(f) is a (L,≤)-possibility measure on (X2,R1

(f)),
which will henceforth be called the transformed (L,≤)-possibility measure on (X2,R1

(f)) of Π1
by f . Furthermore, if Π1 is normal, then Π1

(f) is normal, and vice versa. The distribution π1
(f)

of Π1
(f) satisfies, for any x2 in X2:

π1
(f)(x2) = sup

f(x1)∈[ x2 ]R1
(f)

π1(x1), (12)

where π1 is the distribution of Π1.
This course of reasoning can be taken yet a step further. Let me first remind the reader of

a very general definition of measurability of mappings [Jacobs, 1978].

Definition 4.1. Let X1 and X2 be universes. Let A1 ⊆ ℘(X1) and A2 ⊆ ℘(X2), and let f be
a X1 − X2-mapping. Then f is called A1 − A2-measurable iff f−1(A2) ⊆ A1, or equivalently,
(∀B ∈ A2)(f−1(B) ∈ A1).

This definition plays a fairly important part in the transformation of possibility measures.
Indeed, as before, let (X1,R1, Π1) be a (L,≤)-possibility space, let X2 be a universe and let f
be a X1−X2-mapping. Then f is obviously R1−R1

(f)-measurable. Let furthermore R2 be an
ample field on X2. If f is R1−R2-measurable, then it follows immediately that R2 ⊆ R(f)

1 . We
conclude that R1

(f) is the greatest ample field R2 on X2 w.r.t. set inclusion, such that f is still
R1 −R2-measurable.

We are now ready to generalize the transformation of possibility measures. Consider an ample
field R2 on the universe X2, and assume that the X1 −X2-mapping f is R1 −R2-measurable.
We know that Π1

(f) is a (L,≤)-possibility measure on (X2,R1
(f)), and that R2 ⊆ R1

(f), so
that we may consider the restriction Π1

(f)|R2. This is of course a (L,≤)-possibility measure on
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(X2,R2). We shall call Π1
(f)|R2 the transformed (L,≤)-possibility measure on (X2,R2) of Π1

by f . Furthermore, for any B in R2

(Π1
(f)|R2)(B) = Π1(f−1(B)), (13)

and the distribution π2 of Π1
(f)|R2 satisfies, for any x2 in X2

π2(x2) = sup
f(x1)∈[ x2 ]R2

π1(x1). (14)

Clearly, R1
(f) is the greatest ample field w.r.t. set inclusion on which a transformed (L,≤)-

possibility measure of Π1 by f can be defined.

4.2 Possibilistic Variables

A variable may be informally defined as an abstract object that can assume values in a certain
universe. This notion of a variable is used for instance by Zadeh [1978a], Hisdal [1978] and
Nguyen [1978] in the context of fuzzy set theory and possibility theory. In probability theory,
this notion appears in the guise of a stochastic variable [Burrill, 1972]. In this section, I intend
to show how the notion of a possibilistic variable can be introduced, and in doing so I provide a
generalization and formalization of Zadeh’s more intuitive notion of a fuzzy variable.

Let us consider a universe X and a variable ξ in X of the type informally described above.
In principle, ξ can assume any value in X. However, it is possible to restrict the values which
ξ may take in X, for instance by stating that ξ can only take values in a subset D of X. By
imposing such a restriction, the uncertainty about the value that ξ assumes is actually reduced.
We thus get more information about the value which ξ assumes in X.

Such information need not always take the form of a subset D of X. Let us for instance
consider the following case: the information about the value ξ takes in X is given in the form
of a probability measure [Doob, 1953]. More explicitly, we consider a σ-field S of subsets of X
and a probability measure Pr on (X,S). We also assume that for any A in S, Pr(A) is the
probability that ξ takes a value in the subset A of X. It is clear that, by doing so, we impose
a restriction on the values that ξ can take in X. This new restriction is more ‘elastic’ than the
one specified by the subset D, and takes the form of a probability measure Pr. In this sense, it
could be said that the information we have about the value of ξ in X is probabilistic.

Up to now, we have not yet given any formal mathematical definition of the variables we are
talking about. It is nevertheless perfectly possible to do this, starting with the more intuitive
model described above. In probability theory, this is normally accomplished as follows: first of
all, a basic space Ω is considered, provided with a σ-field SΩ of subsets of Ω. Then a probability
measure PrΩ is defined on (Ω,SΩ). A SΩ−S-measurable Ω−X-mapping ξ is called a stochastic
variable in (X,S). The probability that this stochastic variable takes a value in the element A of
S is then given by PrΩ(ξ−1(A)). The universe X that this variable ξ takes its values in, is called a
sample space. The relation with the more intuitive treatment given above should be clear. As an
example, the above-mentioned probability measure Pr is determined by Pr(A) = PrΩ(ξ−1(A)),
for any A in S.

On the other hand, if the information we have is given by a possibility measure, a completely
analogous approach can be used. In the intuitive picture of a variable ξ in X, we consider
an ample field R of subsets of X. Furthermore, we assume that on (X,R) there is defined a
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(L,≤)-possibility measure Π, in such a way that for any A in R, Π(A) is the (L,≤)-possibility
that the variable ξ takes a value in the set A. This effectively imposes a restriction on the values
that ξ can take in X. Our information about ξ in X is in this case of a possibilistic nature.

We may use these more or less intuitive notions, together with the discussion of stochastic
variables given above, to give a formal definition of possibilistic variables. We consider a basic
space Ω, provided with an ample field RΩ of subsets of Ω. We also assume the existence of a
(L,≤)-possibility measure ΠΩ on (Ω,RΩ), with distribution πΩ.

Definition 4.2. A Ω−X-mapping ξ that is RΩ−R-measurable, is called a possibilistic variable
in (X,R).

As mentioned before, this formalizes Zadeh’s notion of a fuzzy variable. I prefer to use
the name ‘possibilistic variable’, however, because this notion will turn out to be of central
importance in this treatise on possibility theory, and is only indirectly related with fuzzy sets.

Using ΠΩ, the (L,≤)-possibility that the possibilistic variable ξ takes a value in the element
A of R can be expressed as ΠΩ(ξ−1(A)). The relation with the more intuitive treatment given
above, should once again be clear. In particular, the (L,≤)-possibility measure Π in the intuitive
picture can of course be determined by

(∀A ∈ R)(Π(A) = ΠΩ(ξ−1(A))), (15)

or equivalently, Π is the transformed (L,≤)-possibility measure of ΠΩ on (X,R) by the mapping
ξ. The distribution π of Π is then given by

π(x) = sup
ξ(ω)∈[ x ]R

πΩ(ω), (16)

for any x in X.
It should come as no surprise that possibilistic variables play a part in possibility theory that

is to a high extent comparable to the one played in probability theory by stochastic variables. For
one thing, they allow us to formally study the notions of conditional possibility and possibilistic
independence. A detailed account of how this can be done, is given in Parts II and III of this
series.

Drawing our inspiration from the treatment of stochastic variables in probability theory
[Burrill, 1972], and from Eqs. (15) and (16) above, we introduce possibility distributions and
possibility distribution functions for possibilistic variables.

Definition 4.3. Let ξ be a possibilistic variable in (X,R). The (L,≤)-possibility measure
Πξ = ΠΩ

(ξ)|R is called the possibility distribution (measure) of ξ. Its distribution πξ : X → L
is called the possibility distribution function of ξ, and satisfies, for any x in X:

πξ(x) = sup
ξ(ω)∈[ x ]R

πΩ(ω).

Furthermore, for any A in R, Πξ(A) = supx∈A πξ(A).

Remark that Πξ is normal iff ΠΩ is. I follow Zadeh’s nomenclature [Zadeh, 1978a] in calling
πξ the ‘possibility distribution function’ of the possibilistic variable ξ. On the other hand, I want
to reserve the name ‘possibility distribution of a possibilistic variable’ for the possibility measure
Πξ. It should also be noted that there exists an important conceptual difference between the
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distribution of a possibility measure, and the possibility distribution (measure) of a possibilistic
variable3.

4.3 Transformation of Variables

Let us now turn to a few theorems whose counterparts in classical integration theory fall into
the category ‘transformation of variables’. In what follows, we denote by (X1,R1, Π1) and
(X2,R2, Π2) (L,≤)-possibility spaces. f is a X1 − X2-mapping. Furthermore, Π1

(f) is the
transformed (L,≤)-possibility measure on (X2,R1

(f)) of Π1 by f . Whenever in the sequel f is
assumed to be R1 −R2-measurable4, we denote by Π1

(f)|R2 the transformed (L,≤)-possibility
measure on (X2,R2) of Π1 by f . The distributions of Π1, Π2 and Π1

(f) are denoted by respec-
tively π1, π2 and π1

(f). For any subset A of X1, f(A) = { f(x1) | x1 ∈ X2 } is the direct image
of A under the mapping f .

In Theorem 4.4 and Corollary 4.5 we encounter formulas that are very similar to what in
classical integration theory is known as the integral transport formula [Burrill, 1972, Theorem 7-
8A]. They tell us in precisely what way we must change the integrand and the domain of
integration, when we transform a possibility integral associated with the possibility measure Π1
on (X1,R1) into a possibility integral associated with the transformed possibility measures Π1

(f)

on (X2,R1
(f)) (Theorem 4.4) and Π1

(f)|R2 on (X2,R2) (Corollary 4.5). These integral transport
formulas will be of use in the next section, and in the discussion of conditional possibility, given
in Part II.

Theorem 4.4. Let P be a t-seminorm on (L,≤), such that (L,≤, P ) is a complete lattice with
t-seminorm. Let h be a (L,≤)-fuzzy variable in (X2,R1

(f)). Then for any E in R1
(f):

(P ) –
∫

E
hdΠ1

(f) = (P ) –
∫

f−1(E)
(h ◦ f)dΠ1.

Proof. Consider an arbitrary element E of R1
(f). Since h is R1

(f)-measurable, we have on the
one hand that, taking into account Eqs. (5) and (12),

(P ) –
∫

E
hdΠ1

(f) = sup
y∈E

P (h(y), π1
(f)(y))

= sup
y∈E

P (h(y), sup
x∈f−1([ y ]R1

(f))
π1(x))

= sup
y∈E

sup
f(x)∈[ y ]R1

(f)

P (h(y), π1(x))

= sup
y∈E

sup
x∈f−1([ y ]R1

(f) )
P (h(f(x)), π1(x)).

3Of course, any distribution can be trivially considered as the possibility distribution function of an identical
permutation.

4In classical integration theory an analogous mapping is called a measurable transformation.
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Since E ∈ R1
(f), we find, taking into account Eq. (1) and the properties of the inverse image of

a mapping,

= sup
x∈f−1(E)

P ((h ◦ f)(x), π1(x))

= (P ) –
∫

f−1(E)
(h ◦ f)dΠ1,

again taking into account Eq. (5), since it easily verified that h ◦ f is R1-measurable.

Corollary 4.5. Let P be a t-seminorm on (L,≤), such that (L,≤, P ) is a complete lattice
with t-seminorm. Let the X1 −X2-mapping f be R1 −R2-measurable. Let furthermore h be a
(L,≤)-fuzzy variable in (X2,R2). Then for any E in R2:

(P ) –
∫

E
hd(Π1

(f)|R2) = (P ) –
∫

f−1(E)
(h ◦ f)dΠ1.

Proof. Consider an arbitrary E inR2. Since f isR1−R2-measurable, we know thatR2 ⊆ R1
(f).

Therefore, h is R1
(f)-measurable and E ∈ R1

(f). This implies that we may use Theorem 4.4.
Also taking into account Eqs. (1) and (5), and the R2- and R1

(f)-measurability of h, we find
that

(P ) –
∫

f−1(E)
(h ◦ f)dΠ1 = (P ) –

∫

E
hdΠ1

(f)

= sup
x2∈E

P (h(x2),Π1
(f)([x2 ]R1

(f)))

= sup
y2∈E

sup
x2∈[ y2 ]R2

P (h(x2), Π1
(f)([x2 ]R1

(f))).

= sup
y2∈E

sup
x2∈[ y2 ]R2

P (h(y2), Π1
(f)([x2 ]R1

(f)))

= sup
y2∈E

P (h(y2), sup
x2∈[ y2 ]R2

Π1
(f)([ x2 ]R1

(f)))

= sup
y2∈E

P (h(y2), Π1
(f)([ y2 ]R2))

= (P ) –
∫

E
hd(Π1

(f)|R2).

The following rather remarkable result illustrates that the analogy between classical inte-
gration theory and possibility integral theory can be carried very far. Theorem 4.6 is indeed
a perfect analogon of the theorem of the Jacobian for Lebesgue integrals [Burrill, 1972, Theo-
rem 7-8B]. It should be noted that the mapping g in this theorem plays the role of the Jacobian
of the ‘measurable transformation’ f . The t-norm T in this theorem has a similar function as
the product operator in the classical theory.

Theorem 4.6. Let T be a t-norm on (L,≤), such that (L,≤, T ) is a complete lattice with
t-norm. Let the X1 −X2-mapping f be R1 −R2-measurable. If

(i) (∀E ∈ R2)(Π
(f)
1 (E) ≤ Π2(E)),

(ii) T is weakly invertible,
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then there exists a g in GR2
(L,≤)(X2), such that for any h in GR2

(L,≤)(X2) and for any E in R2:

(T ) –
∫

f−1(E)
(h ◦ f)dΠ1 = (T ) –

∫

E
T ◦ (h, g)dΠ2.

Proof. Consider an arbitrary h in GR2
(L,≤)(X2) and any E in R2. Since h is R2-measurable, we

may write, taking into account Corollary 4.5 and Eq. (5),

(T ) –
∫

f−1(E)
(h ◦ f)dΠ1 = (T ) –

∫

E
hd(Π1

(f)|R2) = sup
y∈E

T (h(y),Π1
(f)([ y ]R2)),

On the other hand, we immediately find for any g in GR2
(L,≤)(X2) that, taking into account

T ◦ (h, g) ∈ GR2
(L,≤)(X2), Eq. (5) and the associativity of the t-norm T ,

(T ) –
∫

E
T ◦ (h, g)dΠ2 = sup

y∈E
T (T (h(y), g(y)), π2(y)) = sup

y∈E
T (h(y), T (g(y), π2(y))).

It therefore remains to be proven that there exists a R2-measurable X2−L-mapping g such that

(∀x2 ∈ X2)(Π1
(f)([ x2 ]R2) = T (g(x2), π2(x2)). (17)

Taking into account assumption (i), we have in particular that Π1
(f)([ x2 ]R2) ≤ π2(x2), for any

x2 in X2. Assumption (ii) and Proposition 2.2 now guarantee that the X2 − L-mapping g,
defined as g(x2) = Π1

(f)([ x2 ]R2)4T π2(x2), for any x2 in X2, satisfies Eq. (17). This g is at the
same time clearly R2-measurable.

5 FUZZY VARIABLES

In section 2 I introduced fuzzy variables as measurable fuzzy sets, i.e., fuzzifications of measurable
sets (or events). Further on, I shall show that these fuzzy variables are special instances of the
possibilistic variables, introduced and studied in the previous section. This, in my opinion,
justifies my using the name ‘fuzzy variables’.

As mentioned before, it should on the other hand be noted that Zadeh, in his seminal
paper about possibility theory [Zadeh, 1978a], uses the name ‘fuzzy variable’ more generally for
what I have been calling here a possibilistic variable5. Since, however, these variables are the
possibilistic counterparts of the stochastic variables in probability theory, I prefer to call them
possibilistic, and want to reserve the qualification ‘fuzzy’ for those variables that are also fuzzy
sets.

In probability theory, a very prominent class of variables are the real stochastic variables,
for which a large body of results have been derived [Burrill, 1972]: using Lebesgue integration
theory, it is possible for these real variables to introduce mean values or expectations, higher
order moments, characteristic functions, etc. If we take a closer look, we see that a deeper reason

5Following Zadeh, Nahmias [1978] defines fuzzy variables as real-valued mappings. Wang [1982] gives a similar
definition for his fuzzy variables, but also imposes a measurability condition. Ralescu [1982] defines fuzzy variables
as real stochastic variables. It should be noted that Nahmias and Wang introduce their fuzzy variables in a
possibilistic context, although both of them use a different name (scale, fuzzy contactability) for the possibility
measures they work with. Ralescu does not work with possibility measures, but with Sugeno’s fuzzy measures.
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for this diversity of results is the following: real stochastic variables assume values in the set of
the reals, and so do the probability measures used to describe their behaviour. This makes it
possible for those variables to appear in the integrand of the Lebesgue integral associated with
these measures.

If we want to look for a possibilistic formal analogon of real stochastic variables, it is clear
that we must look for those possibilistic variables that take values in essentially the same set as
the possibility measures used to describe their behaviour. Only then shall we be able to make
these variables appear in the integrand of possibility integrals associated with these possibility
measures, and closely follow the analogy with probability theory. That is the most important
reason why I single out fuzzy variables here, why I have given them a special name, and dedicate
this section to their study.

In what follows, we denote by (X,R, Π) a (L,≤)-possibility space; the distribution of Π is
denoted by π. Furthermore, Ω is a universe, SΩ a σ-field on Ω and PrΩ a probability measure
on (Ω,SΩ). For a more detailed treatment of the probability theoretic material that follows, I
refer to [Burrill, 1972] and [Doob, 1953].

For a start, let us find out what the formal analogy between real stochastic variables and
fuzzy variables really consists in. Consider the universe Ω, provided with the σ-field SΩ and
the probability measure PrΩ as a basic space. Furthermore, consider a real stochastic variable
ξ, i.e., ξ is a SΩ − σ(TR)-measurable Ω − R-mapping, or equivalently, a stochastic variable in
(R, σ(TR)). TR is of course the metric topology on the reals, and σ(TR) the σ-algebra generated
by this topology, also called the Borel algebra on that set. This real stochastic variable ξ has a
probability distribution function Fξ, defined as:

Fξ : R→ [0, 1] : x 7→ PrΩ(ξ−1(]−∞, x])).

It can be shown that with this Fξ there is associated a unique probability measure Prξ on
(R, σ(TR)), satisfying (∀x ∈ R)(Prξ(] − ∞, x]) = Fξ(x)). The completion of this probability
measure is precisely the Lebesgue-Stieltjes measure mFξ induced by Fξ (or by ξ). It can also be
shown that for any element B of σ(TR):

Prξ(B) =
∫

B
dFξ, (18)

where the integral on the right hand side of the equation is the Lebesgue-Stieltjes integral as-
sociated with the distribution function Fξ. Furthermore, it can be proven that the probability
measure Prξ is precisely the transformed probability measure on (R, σ(TR)) of PrΩ by ξ, which
really means that (∀B ∈ σ(TR))(Prξ(B) = PrΩ(ξ−1(B))). There are other ways of determining
the probability measure Prξ, which are however equivalent with the specification of the proba-
bility distribution function Fξ . When the real stochastic variable ξ is discrete, it is possible to
define a R− [0, 1]-mapping fξ by

(∀x ∈ R)

(

fξ(x) = PrΩ(ξ−1{x}) = Fξ(x)− lim
t

<→x
Fξ(t)

)

.

fξ is called the frequency function of ξ. When ξ is a continuous real stochastic variable, there
exists a R− R-mapping fξ satisfying

(∀x ∈ R)
(

Fξ(x) =
∫ x

−∞
fξ(t)dt

)
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which is called the (probability) density function of ξ.
The ultimate aim of these functions is of course to convert the probabilistic information,

embodied in (Ω,SΩ, PrΩ), into the probabilistic information (R, σ(TR),Prξ) about the values
that the real stochastic variable ξ can take in R. The latter form of information is the starting
point for further derivations, such as the calculation of the mean, the higher order moments and
the characteristic function of the real stochastic variable ξ.

For fuzzy variables, it is possible to follow an analogous course of reasoning. Let us consider
a universe X, provided with an ample field R and the (L,≤)-possibility measure Π as a basic
space. It is easily verified that a (L,≤)-fuzzy variable h in (X,R) is a R − ℘(L)-measurable
X−L-mapping, which can therefore be formally considered as a possibilistic variable in (L, ℘(L)).
The set L is in this case interpreted as a sample space, and is provided with the ample field of
measurable subsets of6 ℘(L). Drawing our inspiration from the probabilistic discussion above,
we can now try and convert the possibilistic information, contained in the (L,≤)-possibility
space (X,R, Π), into possibilistic information about the value that h assumes in L.

In probability theory, using distribution functions and Lebesgue-Stieltjes integrals to calcu-
late transformed probability measures is a standard procedure, and in many cases by far the
most convenient way of obtaining these measures. On the other hand, it turns out that in
possibility theory a more direct approach is ideally suited: we shall use the plain, brute-force
transformation of possibility measures as the appropriate way of transmitting possibilistic in-
formation. In Proposition 5.1 and Definition 5.2 it is explained in more detail how this comes
about. In order to keep this discussion as general as possible, we shall work from the outset with
multidimensional fuzzy variables, of which the ordinary, one-dimensional fuzzy variables are a
special case. The proof of Proposition 5.1 is straightforward, and can therefore be omitted.

Proposition 5.1. Let n be an element of N∗ and let h = (h1, . . . , hn) be a n-dimensional
(L,≤)-fuzzy variable in (X,R). Since h is a X − Ln-mapping, we can use h to transform
Π into a (L,≤)-possibility measure Π(h) on (Ln,R(h)). Furthermore, R(h) = ℘(Ln), and the
(L,≤)-possibility measure Π(h) on (Ln, ℘(Ln)) has as its distribution the Ln − L-mapping π(h),
defined by π(h)(λ) = Π(h−1({λ}), λ ∈ Ln. For Π(h) itself, we have that Π(h)(B) = Π(h−1(B)),
B ∈ ℘(Ln). Π(h) is normal iff Π is.

Definition 5.2. Let n be an element of N∗ and let h = (h1, . . . , hn) be a n-dimensional (L,≤)-
fuzzy variable in (X,R). The Ln − L-mapping γh = π(h) is called the possibility distribu-
tion function of h. The ℘(Ln) − Ln-mapping Γh is the unique (L,≤)-possibility measure on
(Ln, ℘(Ln)) that has γh as its distribution, i.e. Γh = Π(h). We call Γh the possibility distribution
(measure) of h. Remark that Γh is normal iff Π is.

Of course, fuzzy variables are special possibilistic variables, and the possibility distributions
and distribution functions of the former are special instances of those of the latter.

It should be noted that the definition of a possibility distribution function and that of its
probabilistic counterpart are somewhat different to the letter: in the definition of a probability
distribution function, the real intervals ]−∞, x], x ∈ R, play a prominent part; in the definition of
a possibility distribution function, this role is played by the atoms {λ}, λ ∈ Ln, of the ample field
℘(Ln). This means that possibility distribution functions bear a closer formal resemblance to the
density and frequency functions in probability theory. Despite this difference, both distribution

6Remark also that ℘(L) = τ(TL), where TL is the order topology on the complete lattice (L,≤) [Birkhoff,
1967]. This makes the analogy between real stochastic variables and fuzzy variables even more complete.
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functions are very similar in spirit: the probability distribution function Fξ uniquely determines
the probability measure Prξ; the possibility distribution function γh characterizes the (L,≤)-
possibility measure Γh. The name ‘possibility distribution function’ for the Ln − L-mapping
γh is not just plucked out of the air: this function (mapping) tells us how the possibility is
distributed over the elements of Ln. A second reason for my terminology is that Zadeh7 [1978a]
uses it in a comparable context (see also Definition 4.3). A third reason is that the terms
‘density’ and ‘frequency’ do not belong in a theory of possibility. ‘Frequency’ is a statistical
term, and is therefore tightly connected with the probabilistic paradigm. The term ‘density’ has
originated in mechanics: probability densities draw their inspiration from mass densities, which
are essentially mass-volume ratios, and therefore alien to this theory of possibility.

Of course, when we want to look for analogous theorems between probability and possibility
theory, these will primarily be found between possibility distribution functions on the one hand,
and density and distribution functions on the other hand, due to the formal resemblance between
these notions. To a lesser extent, we can of course also expect similarities between results about
possibility and probability distribution functions. To give a few examples, let us start from
the definition above and deduce a number of interesting results, which are clearly possibilistic
counterparts of well-known theorems in probability theory. See, for instance, Eq. (18) and
[Burrill, 1972, Theorem 11-1A, section 11-1 and Theorem 11-2A with corollary] respectively.
The proofs of Propositions 5.3 and 5.4, and of Corollary 5.6 are immediate, and therefore
omitted.

Proposition 5.3. Let P be a t-seminorm on (L,≤) such that (L,≤, P ) is a complete lattice with
t-seminorm. Let furthermore n be an element of N∗ and let h = (h1, . . . , hn) be a n-dimensional
(L,≤)-fuzzy variable in (X,R). Then for any B in ℘(Ln):

Π(h−1(B)) = (P ) –
∫

B
dΓh.

Proposition 5.4. Let P be a t-seminorm on (L,≤) such that (L,≤, P ) is a complete lattice
with t-seminorm. Let m and n be elements of N∗. Let furthermore h = (h1, . . . , hn) be a n-
dimensional (L,≤)-fuzzy variable in (X,R) and let g = (g1, . . . , gm) be a Ln − Lm-mapping.
Then g ◦h, or g(h), is a m-dimensional (L,≤)-fuzzy variable in (X,R), and for any λ in Lm

and B ⊆ Lm:

γg(h)(λ) = (P ) –
∫

g−1({λ})
dΓh and Γg(h)(B) = (P ) –

∫

g−1(B)
dΓh.

Theorem 5.5. Let P be a t-seminorm on (L,≤), such that (L,≤, P ) is a complete lattice with t-
seminorm. Let m and n be elements of N∗. Let furthermore h = (h1, . . . , hn) be a n-dimensional
(L,≤)-fuzzy variable in (X,R) and let g = (g1, . . . , gm) be a Ln − Lm-mapping. Then

ΠP (g(h)) = (P ) –
∫

Ln
gdΓh.

Proof. For a start, it should be noted that the formula above is a shorthand for

(∀` ∈ {1, . . . ,m})
(

ΠP (g`(h)) = (P ) –
∫

Ln
g`dΓh

)

.

7Nahmias [1978] gives a similar definition for his fuzzy variables, but uses the term ‘membership function’
instead of ‘possibility distribution function’. Wang [1982] on the other hand generalizes Nahmias definition of a
fuzzy variable, but uses still other names: fuzzy density and fuzzy distribution.
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Let therefore ` be an arbitrary natural number with 1 ≤ ` ≤ m. Then it must be shown that

(P ) –
∫

X
(g` ◦h)dΠ = (P ) –

∫

Ln
g`dΓh.

This equality immediately follows from Theorem 4.4, by taking into account the following cor-
respondences: X1 → X, X2 → Ln, f → h, R1 → R, R1

(f) → R(h) = ℘(Ln), Π1 → Π,
Π1

(f) → Π(h) = Γh, h → g`, E → Ln and f−1(E) → h−1(Ln) = X.

Corollary 5.6. Let P be a t-seminorm on (L,≤), such that (L,≤, P ) is a complete lattice with
t-norm. Let furthermore h be an arbitrary (L,≤)-fuzzy variable in (X,R). Then

ΠP (h) = (P ) –
∫

L
idLdΓh = sup

λ∈L
P (λ, γh(λ)),

where idL is the identical permutation of L.

Let me conclude this section with a short discussion of the interpretation and the significance
of these results. Although the formal analogy between real stochastic variables and fuzzy vari-
ables is apparent, there is a notable difference between their respective interpretations. Even
though a fuzzy variable can be formally considered as a variable that takes values in L, we
have been interpreting it as a measurable fuzzy set, the ‘fuzzification’ of the notion of event, or
measurable set. Whereas the Lebesgue integral in probability theory is used to define the mean
value or expectation of a real stochastic variable, here the possibility integral is used to extend
the notion of possibility, and define the possibility of fuzzy events, as is explained in section 3.
Similarly, as I shall presently argue, the results in this section have an interpretation that differs
from their formal counterparts in probability theory.

In Zadeh’s fuzzy set theory, it is possible to change the meaning of a ([0, 1],≤)-fuzzy set8

by taking its composition with transformations of the real unit interval [0, 1], called linguistic
hedges [Zadeh, 1975a, 1975b, 1976, 1978b]. We can illustrate Zadeh’s course of reasoning more
or less as follows. Let htall be the ([0, 1],≤)-fuzzy set in R, associated with the property ‘tall’.
Also consider the following transformations of [0, 1]:

gvery : [0, 1] → [0, 1] : x 7→ x2

gmore or less : [0, 1] → [0, 1] : x 7→
√

x
gnot : [0, 1] → [0, 1] : x 7→ 1− x.

Then, still according to Zadeh, gvery ◦htall is the ([0, 1],≤)-fuzzy set in R associated with the
property ‘very tall’; gmore or less ◦htall is the ([0, 1],≤)-fuzzy set in R associated with the property
‘more or less tall’ and gnot ◦htall is the ([0, 1],≤)-fuzzy set in R associated with the property ‘not
tall’. The Ln−Lm-mapping g in the results in this section can be considered as a generalization
of these linguistic hedges. The mapping g enables us to convert n (L,≤)-fuzzy sets into m new
(L,≤)-fuzzy sets. Possible choices for g are for instance [De Cooman, 1993], [De Cooman and
Kerre, 1994]:

• m = n = 1;
g is a negation operator on (L,≤), which can be used to define a pointwise complement
operator for (L,≤)-fuzzy sets.

8Remark that I consistently use the terminology introduced in section 2. In the language of this paper, the
membership function of a Zadeh fuzzy set is a ([0, 1],≤)-fuzzy set.
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• m = 1, n = 2;
g is a t-norm on (L,≤), which can be used to introduce a pointwise intersection operator
for (L,≤)-fuzzy sets.

• m = 1, n = 2;
g is a t-conorm on (L,≤), which can be used to introduce a pointwise union operator for
(L,≤)-fuzzy sets.

Whereas its probabilistic counterpart is used for the calculation of the moments and the charac-
teristic functions of real stochastic variables, starting from their probability distribution function,
Theorem 5.5 enables us to calculate the possibility of a combination of fuzzy variables, using
their possibility distribution function. As a special case, Corollary 5.6 can be used to calculate
the possibility of a fuzzy variable from its possibility distribution function. Proposition 5.4 tells
us how the possibility distribution function of a combination of fuzzy variables can be expressed
in terms of the possibility distribution functions of these fuzzy variables themselves.

In summary, these results tell us that if we want to work with fuzzy variables, their possibility
distributions functions (or measures) contain all the information we need, i.e., it is possible to
perform all the calculations with these functions, without having to go back to the possibility
measure Π defined on (X,R).

6 THE NOTION ‘ALMOST EVERYWHERE’

In this section, I introduce the notions of almost everywhere equality and almost everywhere dom-
inance of fuzzy variables. Similar notions for real-valued functions play an important part in the
classical theory of measure and integration [Burrill, 1972]. It will appear from the propositions
below that in order to make these notions as useful in possibility theory as they are in classical
measure theory, we cannot adopt definitions that are immediate extensions of the classical ones.
As it turns out, we need more specific definitions, of which such immediate extensions turn out
to be generalizations. The notions discussed here are of crucial importance for the discussion of
conditional possibility and possibilistic independence, given in Parts II and III.

In what follows, we consider a (L,≤)-possibility space (X,R, Π) and denote the distribution
of Π by π.

Definition 6.1. Let P be a t-seminorm on (L,≤). For any E in R, we define the following
binary relations on GR(L,≤)(X). For h1 and h2 in GR(L,≤)(X):

(i) h1
(Π,P,E)

≤ h2 ⇔ (∀x ∈ E)(P (h1(x), π(x)) ≤ P (h2(x), π(x))).

When h1
(Π,P,E)

≤ h2, we say that h2 (Π, P )-dominates h1 almost everywhere on E.

(ii) h1
(Π,P,E)

= h2 ⇔ (∀x ∈ E)(P (h1(x), π(x)) = P (h2(x), π(x))).
When h1

(Π,P,E)
= h2, we say that h1 and h2 are (Π, P )-equal almost everywhere on E.

When h1
(Π,P,X)

≤ h2, we also write h1
(Π,P )

≤ h2 and say that h2 (Π, P )-dominates h1 almost every-
where. When h1

(Π,P,X)
= h2, we also write h1

(Π,P )
= h2 and say that h1 and h2 are almost everywhere

(Π, P )-equal, or equivalently, that they are (Π, P )-equivalent.
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On any complete lattice (L,≤), there always exist at least two t-seminorms [De Cooman and
Kerre, 1994]. This means that this definition is generally applicable, and is never vacuous. Just
like their classical counterparts, the relations introduced in Definition 6.1 satisfy some interesting
properties. These are gathered in Proposition 6.2, the proof of which is trivial, and therefore
omitted.

Proposition 6.2. Let P be a t-seminorm on (L,≤). For any E in R:

(i)
(Π,P,E)

≤ is a partial preorder relation on GR(L,≤)(X);

(ii)
(Π,P,E)

= is an equivalence relation on GR(L,≤)(X);

(iii)
(Π,P,E)

= is the equivalence relation associated with
(Π,P,E)

≤ , i.e.,

(∀(h1, h2) ∈ GR(L,≤)(X)2)((h1
(Π,P,E)

≤ h2 and h2
(Π,P,E)

≤ h1) ⇔ h1
(Π,P,E)

= h2).

In the following propositions we show that some well-known integral-theoretic results from
classical measure theory have analogous counterparts in possibility theory. Among these, Propo-
sition 6.4 is important, because it provides a characterization of the notions of almost everywhere
dominance and almost everywhere equality in terms of possibility integrals. It is precisely this
result which led me to consider Definition 6.1 instead of a definition that immediately extends
the classical approach. Indeed, for such a straightforward extension no characterization in terms
of possibility integrals has been found. The proof of Proposition 6.3 is trivial, taking into account
Eq. (5).

Proposition 6.3. Let P be a t-seminorm on (L,≤), such that (L,≤, P ) is a complete lattice
with t-seminorm. Let E be a R-measurable set and let h1 and h2 be (L,≤)-fuzzy variables in
(X,R).

(i) h1
(Π,P,E)

≤ h2 ⇒ (P ) –
∫

E
h1dΠ ≤ (P ) –

∫

E
h2dΠ.

(ii) h1
(Π,P,E)

= h2 ⇒ (P ) –
∫

E
h1dΠ = (P ) –

∫

E
h2dΠ.

As mentioned before, Proposition 6.4 gives an alternative characterization of the relations in-
troduced in Definition 6.1. It also gives a characterization of the (Π, P )-equivalence of fuzzy
variables that will play an important role in the discussion of conditional possibility in Part II.
The proof of Corollary 6.5 is immediate, and can therefore be omitted.

Proposition 6.4. Let P be a t-seminorm on (L,≤), such that (L,≤, P ) is a complete lattice
with t-seminorm. Let E be a R-measurable set and let h1 and h2 be (L,≤)-fuzzy variables in
(X,R).

(i) h1
(Π,P,E)

≤ h2 iff for any A in R

A ⊆ E ⇒ (P ) –
∫

A
h1dΠ ≤ (P ) –

∫

A
h2dΠ. (19)

20



(ii) h1
(Π,P,E)

= h2 iff for any A in R

A ⊆ E ⇒ (P ) –
∫

A
h1dΠ = (P ) –

∫

A
h2dΠ. (20)

(iii) h1 and h2 are (Π, P )-equivalent iff for any A in R

(P ) –
∫

A
h1dΠ = (P ) –

∫

A
h2dΠ. (21)

Proof. It suffices to prove (i), since (ii) and (iii) immediately follow from (i), taking into account
Proposition 6.2(iii). If E = ∅, the equivalence is trivially satisfied. Let us therefore assume that

E 6= ∅. Assume on the one hand that h1
(Π,P,E)

≤ h2. It immediately follows that for any A in R,
with A ⊆ E, supx∈A P (h1(x), π(x)) ≤ supx∈A P (h2(x), π(x)), whence (19), taking into account
Eq. (5).

Assume on the other hand that (19) holds for any A in R. Let x be an arbitrary element
of E and let in (19) A be equal to [x ]R. Since, by definition, [x ]R ⊆ E, it follows from the
assumption that

(P ) –
∫

[ x ]R
h1dΠ ≤ (P ) –

∫

[ x ]R
h2dΠ.

Using Eq. (5) and the R-measurability of π, h1 and h2, we deduce from this inequality that

P (h1(x), π(x)) ≤ P (h2(x), π(x)). We may therefore conclude that h1
(Π,P,E)

≤ h2.

Corollary 6.5. Let P be a t-seminorm on (L,≤), such that (L,≤, P ) is a complete lattice with
t-seminorm. Let h be a (L,≤)-fuzzy variable in (X,R) and E an element of R. Then

h
(Π,P,E)

= 0L ⇔ (P ) –
∫

E
hdΠ = 0L and h

(Π,P,E)
= 1L ⇔ (∀A ∈ R)

(

A ⊆ E ⇒ (P ) –
∫

A
hdΠ = Π(A)

)

.

In the rest of this subsection, I intend to further explore the relation between my definition
of almost everywhere equality and dominance, and the immediate extensions of the definitions
in classical measure theory. Consider two (L,≤)-fuzzy variables h1 and h2 in (X,R) and an
arbitrary element E of R. Also consider the set A = {x | x ∈ E and h1(x) 6≤ h2(x) }. It is easily
proven that this set is R-measurable. If, for instance, we had extended the classical definition
of almost everywhere dominance towards fuzzy variables, we would have found as a defining
condition for the almost everywhere dominance on E of h1 by h2:

Π({x | x ∈ E and h1(x) 6≤ h2(x) }) = 0L. (22)

Let us find out how this relates to my definition. First, assume that E 6= ∅. Consider an arbitrary
x in E. Either x belongs to A, and then of course π(x) = 0L, or x belongs to E \ A, and then

h1(x) ≤ h2(x). In either case, we find that P (h1(x), π(x)) ≤ P (h2(x), π(x)), whence h1
(Π,P,E)

≤ h2.
If E = ∅, the same conclusion is trivially reached. Thus it appears that my definition is implied
by an immediate extension of the classical definition. However, it is easily verified that the
reverse implication is not necessarily valid. We conclude from this that an immediate extension
of the classical definition of almost everywhere dominance would lead to a definition that is less
specific than mine. Of course, for almost everywhere equality, similar results can be obtained.
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Let us now take one further step and assume that the t-seminorm P on (L,≤) satisfies the
following property:

(∀(λ1, λ2) ∈ L2)(∀µ ∈ L)(P (λ1, µ) ≤ P (λ2, µ) ⇒ (µ = 0L or λ1 ≤ λ2)). (23)

In this case, P is called strongly resolving on the left. This interesting potential property of t-
seminorms is studied in more detail in [De Cooman and Kerre, 1994]. Furthermore, assume that

h1
(Π,P,E)

≤ h2. Eq. (23) then immediately implies that Π({x | x ∈ E en h1(x) 6≤ h2(x) }) = 0L. We
conclude that in this particular case, my definition coincides with the immediate extensions of
the classical definitions. It is furthermore interesting to note that the product operator × on the
unit interval [0, 1] is a t-(semi)norm on ([0, 1],≤) which is in particular strongly resolving on the
left. We are thus led to the interesting conclusion that the reason why we have to use definitions
which are more specific than the classical ones, is that we are using operators P which are more
general than the product operator used in classical measure theory.

7 A RADON-NIKODYM-LIKE THEOREM

In this section I prove a result that is an analogon of the famous theorem of Radon-Nikodym in
classical measure theory [Burrill, 1972]. Let us denote by P a triangular seminorm on (L,≤),
such that (L,≤, P ) is a complete lattice with t-seminorm.

As a classical first step towards this Radon-Nikodym-like theorem, the following proposition
shows that it is always possible to construct a new possibility measure using a fuzzy variable
and a possibility integral associated with another possibility measure.

Proposition 7.1. Let (X,R, Π) be a (L,≤)-possibility space. Let h be a (L,≤)-fuzzy variable
in (X,R). The R− L mapping Φ, defined as

(∀A ∈ R)
(

Φ(A) = (P ) –
∫

A
hdΠ

)

,

is a (L,≤)-possibility measure on (X,R).

Proof. We denote by π the distribution of Π. Consider an arbitrary family {Aj | j ∈ J} of
elements of R. Then, taking into account Eq. (5) and the associativity of supremum in the
complete lattice (L,≤):

Φ(
⋃

j∈J

Aj) = sup
x∈

⋃

j∈J
Aj

P (h(x), π(x)) = sup
j∈J

sup
x∈Aj

P (h(x), π(x)) = sup
j∈J

Φ(Aj).

This result leads us to the following important question. Consider two (L,≤)-possibility
measures Π and Φ on (X,R); can we find a (L,≤)-fuzzy variable h in (X,R), such that for any
E in R:

Φ(E) = (P ) –
∫

E
hdΠ?

In the theorem below, I give a sufficient condition in order that this would indeed be the case.

Theorem 7.2 (Radon-Nikodym). Let Π and Φ be two (L,≤)-possibility measures on (X,R)
with respective distributions π and ϕ. If
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(i) (∀E ∈ R)(Φ(E) ≤ Π(E)), or equivalently, ϕ v π,

(ii) P is weakly invertible,

there exists a (L,≤)-fuzzy variable h in (X,R) such that

(∀E ∈ R)
(

Φ(E) = (P ) –
∫

E
hdΠ

)

. (24)

This (L,≤)-fuzzy variable h is furthermore unique in the sense of (Π, P )-equivalence.

Proof. Let us give a proof by construction. For any (L,≤)-fuzzy variable h in (X,R), we find,
using Eq. (5), that (24) is equivalent with

(∀x ∈ X)(ϕ(x) = P (h(x), π(x))). (25)

Taking into account the assumptions and Proposition 2.2, we know that the X −L mapping h,
defined by (∀x ∈ X)(h(x) = ϕ(x) CP π(x)), satisfies (25). Since the distributions ϕ and π are
by definition R-measurable, it immediately follows that h is also R-measurable and is therefore
a solution for the problem considered. Taking into account Proposition 6.4(iii), this solution
is unique in the sense of (Π, P )-equivalence, which of course means that every solution of the
problem considered must be (Π, P )-equivalent with h. Or, to formulate it in yet another way,
the set of solutions of Eq. (24) is the equivalence class of the equivalence relation

(Π,P )
= that

contains h.

Theorem 7.2 is obviously analogous to the theorem of Radon and Nikodym. Eq. (24) can
be considered as an integral equation in the fuzzy variable h. Theorem 7.2 provides us with
sufficient conditions for the existence of solutions of this equation. Integral equations of the
type (24) occur very frequently in the measure- and integral-theoretic account of possibility
theory, and more particularly in the treatment of conditional possibility, as will be shown in
Part II. The theorem above, together with the method of solving (24), implicit in its proof, will
turn out to be a significant aid in dealing with such equations.

To conclude this section, let me point out that it is interesting to compare the sufficient con-
ditions in Theorem 7.2 with the one that appears in the classical version of the Radon-Nikodym
theorem. It is easily seen that condition (i) is a stronger variant of the classical condition of ab-
solute continuity [Burrill, 1972]. Condition (ii), however, has no classical counterpart. It should
nevertheless be noted that in this theory the operator P plays the same role as the product
operator × does in the classical theory of measure and integration, and that the t-norm × on
([0, 1],≤) turns out to be weakly invertible [De Cooman and Kerre, 1994]. From this we may
conclude that (ii) is an additional condition, which occurs in this theory because we work with
operators that are more general than the product operator.

8 PRODUCT MEASURES AND MULTIPLE INTEGRALS

In what follows, the structures (X1,R1,Π1) and (X2,R2, Π2) denote (L,≤)-possibility spaces.
The distributions of Π1 and Π2 are denoted by respectively π1 and π2. By R1 × R2 we mean
the product ample field of R1 and R2, and not the Cartesian product of the sets R1 and R2.
Furthermore, T denotes a t-norm on the complete lattice (L,≤), such that (L,≤, T ) is a complete
lattice with t-norm.
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In section 2, I have already indicated how the structures (X1,R1) and (X2,R2) can be com-
bined into a new structure (X1 ×X2,R1 ×R2). The ample fields R1 and R2 are the building
blocks for the construction of the product ample field R1×R2 on the product universe X1×X2.
The questions I want to answer in this section are the following. Can we also, using as build-
ing blocks the possibility measures Π1 on (X1,R1) and Π2 on (X2,R2), construct a possibility
measure on (X1 ×X2,R1 ×R2)? And furthermore, can the (L,≤, T )-possibility integral, asso-
ciated with this possibility measure, be calculated in terms of the (L,≤, T )-possibility integrals
associated with Π1 and Π2? The first of these problems is treated in subsection 8.1, where I
show how, using the notion of a (L,≤, T )-possibility integral, the possibility measures Π1 and
Π2 can be combined into their T -product. In subsection 8.2 I deal with the second problem. In
doing so, I prove a result that is analogous to Fubini’s theorem in the classical theory of measure
and integration. The reader will undoubtedly notice that the analogy between our discussion
and the treatment in the classical case is not restricted to Fubini’s theorem alone. Indeed, the
material in this section is developed along the same general lines as the treatment of product
measures, chain and double integrals in classical measure theory [Burrill, 1972].

8.1 Product Possibility Measures

Let us attempt a step-by-step construction of a (L,≤)-possibility measure on the structure
(X1 ×X2,R1 ×R2), using the possibility measures Π1 and Π2. For a start, we devise a recipe
which allows us to associate with everyR1×R2-measurable set an element of L, having (L,≤, T )-
possibility integrals as its most important ingredient. This approach results in the definition of
a particular R1 × R2 − L-mapping. From the study of its properties, it will appear that this
mapping is a (L,≤)-possibility measure on (X1 ×X2,R1 ×R2).

Consider an arbitrary element E of R1 × R2. We use the following notations, for any
(x1, x2) in X1 ×X2: x1E = { y2 | (x1, y2) ∈ E } and Ex2 = { y1 | (y1, x2) ∈ E }. The following
measurability properties are easily proven [Wang, 1982]: for any x1 in X1 and x2 in X2, x1E ∈ R2
and Ex2 ∈ R1. This allows us to meaningfully associate with E the following mappings, which
are, in a sense, symmetrical counterparts: gE : X1 → L : x1 7→ Π2(x1E) and hE : X2 → L : x2 7→
Π1(Ex2). For these mappings, we now prove the following auxiliary property.

Lemma 8.1. gE is R1-measurable and hE is R2-measurable.

Proof. Let us for instance prove that gE is R1-measurable. Consider an arbitrary x1 in X1
and an arbitrary y1 in [ x1 ]R1 . For any y2 in X2, we have, taking into account Eq. (3) and
[ x1 ]R1 = [ y1 ]R1 , that [ (x1, y2) ]R1×R2 = [ (y1, y2) ]R1×R2 , whence

y2 ∈ x1E ⇔ [ (x1, y2) ]R1×R2 ⊆ E ⇔ [ (y1, y2) ]R1×R2 ⊆ E ⇔ y2 ∈ y1E.

We conclude that x1E = y1E whence Π2(x1E) = Π2(y1E) and therefore also gE(x1) = gE(y1).
This implies that gE is R1-measurable.

Using the (L,≤, T )-possibility integrals associated with Π1 and Π2, we now define the map-
pings ρ1 : R1 × R2 → L and ρ2 : R1 × R2 → L, which can also be considered as symmetrical
counterparts:

ρ1(E) = (T ) –
∫

X1

gEdΠ1 = (T ) –
∫

X1

Π2(·E)dΠ1
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and

ρ2(E) = (T ) –
∫

X2

hEdΠ2 = (T ) –
∫

X2

Π1(E·)dΠ2,

for any E in R1 × R2. In Theorem 8.2, we show that these mappings constitute one and the
same possibility measure on (X1 ×X2,R1 ×R2).

Theorem 8.2. (i) (∀E ∈ R1 ×R2)(ρ1(E) = ρ2(E)).

(ii) Let us write ρ = ρ1 = ρ2 and define the X1 ×X2 − L-mapping π as

(∀(x1, x2) ∈ X1 ×X2)(π(x1, x2) = T (π1(x1), π2(x2)))

Then ρ is the only (L,≤)-possibility measure on (X1 ×X2,R1 ×R2) with distribution π.

(iii) Furthermore, ρ satisfies

(∀A1 ∈ R1)(∀A2 ∈ R2)(ρ(A1 ×A2) = T (Π1(A1),Π2(A2))) (26)

and this determines ρ uniquely, i.e., there is only one (L,≤)-possibility measure on (X1×
X2,R1 ×R2) for which (26) holds.

Proof. Let us first prove (i). Consider an arbitrary E in R1 × R2. Taking into account
Lemma 8.1, gE is R1-measurable. Eq. (5) and the definition of gE therefore allow us to write
that

ρ1(E) = sup
x1∈X1

T (gE(x1), π1(x1))

= sup
x1∈X1

T ( sup
x2∈x1E

π2(x2), π1(x1))

= sup
x1∈X1

sup
x2∈x1E

T (π2(x2), π1(x1))

= sup
(x1,x2)∈E

T (π2(x2), π1(x1)).

In an analogous way, we find that

ρ2(E) = sup
(x1,x2)∈E

T (π1(x1), π2(x2)).

It now follows from the commutativity of the t-norm T that ρ1(E) = ρ2(E).
The proof of (ii) is now immediate. Indeed, from the proof of (i) and the definition of ρ it

follows for any E in R1 ×R2 that

ρ(E) = sup
(x1,x2)∈E

T (π1(x1), π2(x2)) = sup
(x1,x2)∈E

π(x1, x2).

Using this formula, it is easily proven that ρ is a (L,≤)-possibility measure on (X1×X2,R1×R2).
It is clear that π is R1 ×R2-measurable, and that it is the unique distribution of ρ. Of course,
ρ is the only (L,≤)-possibility measure on (X1 ×X2,R1 ×R2) that has π as its distribution.
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To conclude this proof, let us show that (iii) holds. On the one hand, consider arbitrary A1
in R1 and A2 in R2. Since by definition A1 ×A2 ∈ R1 ×R2, it follows from (ii) that

ρ(A1 ×A2) = sup
(x1,x2)∈A1×A2

T (π1(x1), π2(x2))

= sup
x1∈A1

sup
x2∈A2

T (π1(x1), π2(x2))

= T ( sup
x1∈A1

π1(x1), sup
x2∈A2

π2(x2))

= T (Π1(A1), Π2(A2)).

On the other hand, let κ be a (L,≤)-possibility measure on (X1 ×X2,R1 ×R2) satisfying

(∀A1 ∈ R1)(∀A2 ∈ R2)(κ(A1 ×A2) = T (Π1(A1), Π2(A2))).

We already know that there exists at least one such κ. In particular, such a κ by definition
satisfies (∀(x1, x2) ∈ X1×X2)(κ([ (x1, x2) ]R1×R2) = T (π1(x1), π2(x2))), which means that κ has
π as its distribution. We conclude from (ii) that κ = ρ.

The possibility measure ρ in this theorem can be constructed in a very simple way, using the
possibility measures Π1 and Π2. In Definition 8.3 it is given a a special name, which is more
or less obvious, given the analogy with the standard introduction of classical product measures.
Let me also point out that the t-norm T in this treatment plays the same role as the algebraic
product operator × in the classical theory.

Definition 8.3. The (L,≤)-possibility measure ρ is called the T -product possibility measure –
or, shortly, the T -product measure or the T -product – of Π1 and Π2, and will from now on be
denoted by Π1 ×T Π2.

The product possibility measures introduced here are generalizations of the product pos-
sibility measures found in the literature for (L,≤) = ([0, 1],≤) and T = min [Wang, 1982],
[Zadeh, 1978a]. To my knowledge, however, it is noted here for the first time that fuzzy (and,
more particularly, possibility) integrals can be used to define such product measures, and this
using a methodology that is analogous to the one used in the Lebesgue theory of measure and
integration.

So far, we have concentrated on the definition of the T -product of two possibility measures.
There is no reason, however, why we should not be able to extend this course of reasoning to
the product of more than two possibility measures. In a fairly trivial and completely analogous
way, this extension leads to the definition of the T -product Π1 ×T · · · ×T Πn on the structure
(X1 × · · · ×Xn,R1 × · · · × Rn) of an n-tuple, n ∈ N∗, of (L,≤)-possibility measures Πk on
(Xk,Rk), k = 1, . . . , n. This extension is left implicit, however.

8.2 Multiple Possibility Integrals

Let us consider an arbitrary (L,≤)-fuzzy variable h in (X1 × X2,R1 × R2) and an arbitrary
element E of R1 × R2. In the previous subsection, we have introduced the (L,≤)-possibility
measure Π1 ×T Π2 on (X1 ×X2,R1 ×R2). We are therefore able to integrate h over E, using
the possibility integral associated with the T -product measure Π1 ×T Π2:

(T ) –
∫

E
hd(Π1 ×T Π2).
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There are, however, other ways of integrating the fuzzy variable h over E, which involve the
partial mappings of h. Taking into account Eq. (3), we find that h(x1, ·) is R2-measurable, for
any x1 in X1; and that h(·, x2) is R1-measurable, for any x2 in X2.

Now, consider an arbitrary x1 in X1. Since it is easily shown that x1E ∈ R2, we may write
the following, also taking into account Eq. (5):

(T ) –
∫

x1E
h(x1, ·)dΠ2 = sup

x2∈x1E
T (h(x1, ·)(x2), π2(x2)) = sup

x2∈x1E
T (h(x1, x2), π2(x2)).

A similar integral can be considered for every choice of x1. This course of reasoning therefore
leads to the introduction of a mapping

hE
1 : X1 → L : x1 7→ (T ) –

∫

x1E
h(x1, ·)dΠ2.

In a completely symmetrical way, the mapping

hE
2 : X2 → L : x2 7→ (T ) –

∫

Ex2

h(·, x2)dΠ1

is defined. It is fairly obvious that the integration process can be completed by considering the
integrals

(T ) –
∫

X1

hE
1 dΠ1 and (T ) –

∫

X2

hE
2 dΠ2.

Informally stated, this means that we integrate h over E by first performing an integration in
one possibility space and then integrating the partial result in the other possibility space. In
Definition 8.4 we summarize this course of reasoning.

Definition 8.4. Let h be an X1 ×X2 − L-mapping that is R1 ×R2-measurable, and let E be
a R1 ×R2-measurable set. We can associate with h and E the mappings hE

1 and hE
2 . We call

the integrals (T ) – –
∫∫

E
hdΠ1dΠ2 = (T ) –

∫

X2

hE
2 dΠ2 and (T ) – –

∫∫

E
hdΠ2dΠ1 = (T ) –

∫

X1

hE
1 dΠ1 chain

(L,≤, T )-possibility integrals of h on E. Furthermore, (T ) –
∫

E
hd(Π1 ×T Π2) will be called the

double (L,≤, T )-possibility integral of h on E.

We have in all given three ways in which the fuzzy variable h can be integrated over the set
E. We proceed to show in Theorem 8.6 that they all lead to the same result. In the classical
theory of measure and integration, an analogous result is known as Fubini’s theorem.

Lemma 8.5. Let h be a (L,≤)-fuzzy variable in (X1 × X2,R1 × R2). Then for every E in
R1×R2 the X1−L-mapping hE

1 is a (L,≤)-fuzzy variable in (X1,R1) and the X2−L-mapping
hE

2 is a (L,≤)-fuzzy variable in (X2,R2).

Proof. We give the proof for hE
1 . The proof for hE

2 is completely analogous. Consider an
arbitrary x1 in X1 and y1 in [ x1 ]R1 . Then, by definition,

hE
1 (y1) = (T ) –

∫

y1E
h(y1, ·)dΠ2.

A course of reasoning analogous to that of Lemma 8.1 shows that x1E = y1E. Furthermore,
consider an arbitrary x2 in X2. We know that h(·, x2) is R1-measurable, whence h(x1, x2) =
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h(y1, x2). We may therefore conclude that the partial mappings h(x1, ·) and h(y1, ·) are identical.
Consequently,

(T ) –
∫

y1E
h(y1, ·)dΠ2 = (T ) –

∫

x1E
h(x1, ·)dΠ2,

and therefore also hE
1 (x1) = hE

1 (y1).

Theorem 8.6 (Fubini). Let h be a (L,≤)-fuzzy variable in (X1×X2,R1×R2). Then for any
E in R1 ×R2:

(T ) –
∫

E
hd(Π1 ×T Π2) = (T ) – –

∫∫

E
hdΠ1dΠ2 = (T ) – –

∫∫

E
hdΠ2dΠ1.

Proof. Since h is R1 ×R2-measurable, we have on the one hand that

(T ) –
∫

E
hd(Π1 ×T Π2) = sup

(x1,x2)∈E
T (h(x1, x2), T (π1(x1), π2(x2))).

On the other hand, we have by definition that, also taking into account Eq. (5), Lemma 8.5 and
the commutativity and associativity of T ,

(T ) – –
∫∫

E
hdΠ2dΠ1 = (T ) –

∫

X1

hE
1 dΠ1

= sup
x1∈X1

T (hE
1 (x1), π1(x1)).

= sup
x1∈X1

T ( sup
x2∈x1E

T (h(x1, x2), π2(x2)), π1(x1))

= sup
x1∈X1

sup
x2∈x1E

T (T (h(x1, x2), π2(x2)), π1(x1))

= sup
(x1,x2)∈E

T (T (h(x1, x2), π2(x2)), π1(x1))

= sup
(x1,x2)∈E

T (h(x1, x2), T (π1(x1), π2(x2))).

This proves the first equality. The proof of the second equality is completely analogous.

The course of reasoning followed in this subsection can be extended in a fairly trivial way to
the case of more than two possibility spaces. This leads to the definition of multiple possibility
integrals, for which an immediate generalization of Theorem 8.6 remains valid. As before, such
an extension will be left implicit.

We conclude this section with a result that can be informally described as ‘the conversion of
a double integral into a product of simple integrals’. Let us start by repeating here the definition
of the well-known notion of cylindric extension [Kerre, 1991]. It is of course possible to provide
this notion with a far more general definition than the one given here. Our Definition 8.7 is
however sufficiently general for the use that will be made of this notion in this series of papers.

Definition 8.7. Let h1 be a X1 − L-mapping and let h2 be a X2 − L-mapping.

(i) The X1×X2−L-mapping h1, defined by h1(x1, x2) = h1(x1), for any (x1, x2) in X1×X2,
is called the cylindric extension of h1 to X1 ×X2.
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(ii) The X1×X2−L-mapping h2, defined by h2(x1, x2) = h2(x2), for any (x1, x2) in X1×X2,
is called the cylindric extension of h2 to X1 ×X2.

Proposition 8.8. Let h1 and h2 be (L,≤)-fuzzy variables in (X1,R1) and (X2,R2) respectively.
Let furthermore A1 be an element of R1 and A2 an element of R2.

(i) h1, h2 and T ◦ (h1, h2) are R1 ×R2-measurable.

(ii) (T ) –
∫

A1×A2

T ◦ (h1, h2)d(Π1 ×T Π2) = T
(

(T ) –
∫

A1

h1dΠ1, (T ) –
∫

A2

h2dΠ2

)

.

Proof. The proof of (i) is immediate. We give the proof of (ii). Taking into account (i), Eq. (5)
and the commutativity and associativity of T , we have for any A1 in R1 and A2 in R2 that

(T ) –
∫

A1×A2

T ◦ (h1, h2)d(Π1 ×T Π2) = sup
(x1,x2)∈A1×A2

T (T 2
k=1hk(x1, x2), T 2

k=1πk(xk))

= sup
x1∈A1

sup
x2∈A2

T (T (h1(x1), π1(x1)), T (h2(x2), π2(x2)))

= T ( sup
x1∈A1

T (h1(x1), π1(x1)), sup
x2∈A2

T (h2(x2), π2(x2))).

Again taking into account Eq. (5), this completes the proof.

This result is also a possibilistic counterpart of a well-known result in classical measure and
integration theory [Burrill, 1972]. The role of the product operator is of course in possibility
theory taken over by a t-norm T .

9 CONCLUSION

In the first paper of this series, I have laid the foundations for a measure- and integral-theoretic
formulation of possibility theory. I have formalized the notion of a variable in possibility theory,
and studied possibilistic and fuzzy variables together with their possibility distributions. Using
the notion of a seminormed fuzzy integral, a variety of integral-theoretic notions and results have
been discussed and derived, which show that these seminormed fuzzy integrals and possibility
measures are a perfect match, in very much the same way as Lebesgue integrals and classical
measures are. I explicitly mention possibility integrals and their properties; the (extended)
possibility of fuzzy variables; the almost everywhere equality and dominance of fuzzy variables;
product possibility measures, double possibility integrals and a Fubini-like theorem; how to
work with possibility distributions to calculate integrals, other possibility distributions and the
possibility of fuzzy variables; and finally the discussion of a special class of integral equations
and a Radon-Nikodym-like theorem for their solution.

I have attempted to make this discussion of possibility theory very general, and some will
probably say that it is more general than called for. My reason for doing so is that possibility
theory is still a very young branch of mathematics, and I do not want to preclude a priori and
wittingly any direction of subsequent research. That is why I am working with a complete lattice
as a codomain for possibility measures, instead of the much more popular, but more restrictive
real unit interval. In this way, it remains possible to consider incomparability of possibilities.
Moreover, I want to leave room for the claim that possibility is an ordinal notion, and not a
cardinal one. In the same spirit, I consider possibility measures defined on ample fields, and not
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just on power sets, as is generally the case. Finally, I use triangular seminorms and norms defined
on complete lattices instead of the minimum operator on the unit interval. In an earlier paper
[De Cooman and Kerre, 1995], I have shown that these operators are in a sense the most general
operators using which possibility integrals may be defined. The reader will have noticed that I
only use t-norms where their associativity and commutativity is necessary. In all other places,
I only make use of t-seminorms. This is in keeping with my maximum generality approach.

This brings us to a very interesting open question. The triangular (semi)norms in this paper
serve as possibilistic counterparts for the product operator in probability theory. Is this many-to-
one relationship fundamental, or does there exist a unique t-(semi)norm P that is to possibility
theory what the product operator is to probability theory? It should be mentioned here that
at least some results [De Cooman, 1995b, 1995c] seem to indicate that the choice P = _ is
of special importance in possibility theory, because it yields a number of interesting properties,
formally analogous to probability theory, which cannot be obtained for other choices of P .

There is one obvious way in which the results in this paper might still be further generalized,
namely by considering the definition of possibility measures on more general set structures than
ample fields: plump fields, σ-fields, fields, etc. Actually, it might be asked why I have used ample
fields from the beginning, and closely related to that question, why I do not define possibility
measures as set mappings that preserve countable suprema, in analogy with classical measure
theory. I feel that such a definition would be artificial in this context. Indeed, one of the reasons
why in classical measure theory σ-fields and countable additivity are used, is that uncountable
additivity is impossible. There seems to be nothing, on the other hand, that prevents us from
considering uncountable ‘supitivity’. Sticking to countable supitivity in this context is, to my
knowledge, not really called for, however interesting the mathematical theory such a definition
would generate. On the other hand, philosophical reasons might lead to the consideration of
finitary definitions of possibility measures on fields of sets. This step might make matters more
complicated, however, and is the subject of my current research.

In the introduction to this paper, I mentioned that possibility theory can be couched in a
measure- and integral-theoretic language, and that the approach described here can be used to
unify a number of existing results in possibility theory. I am now in a position to give at least
a partial justification for my claim. Indeed, I have shown in section 3 that possibility integrals
can be used to define the (extended) possibility of a measurable fuzzy set [Dubois and Prade,
1985, 1988], [Zadeh, 1978a], (indirectly) to formalize and generalize the notion of a possibilistic
variable [Zadeh, 1978a] and its possibility distribution, and to introduce the notion of a product
possibility measure [Zadeh, 1978a].

The material presented here is a necessary prelude to the more involved measure- and
integral-theoretic treatment of conditional possibility and possibilistic independence, given in
Parts II and III of this series of papers.
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