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ABSTRACT
We study the problem of computing possible and neces-
sary winners for partially specified weighted and unweighted
tournaments. This problem arises naturally in elections
with incompletely specified votes, partially completed sports
competitions, and more generally in any scenario where
the outcome of some pairwise comparisons is not yet fully
known. We specifically consider a number of well-known so-
lution concepts—including the uncovered set, Borda, ranked
pairs, and maximin—and show that for most of them pos-
sible and necessary winners can be identified in polynomial
time. These positive algorithmic results stand in sharp con-
trast to earlier results concerning possible and necessary
winners given partially specified preference profiles.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms
Economics, Theory, Algorithms

Keywords
Social Choice Theory, Tournament Solutions, Possible and
Necessary Winners, Computational Complexity

1. INTRODUCTION
Many multi-agent situations can be modeled and analyzed

using weighted or unweighted tournaments. Prime examples
are voting scenarios in which pairwise comparisons between
alternatives are decided by majority rule and sports com-
petitions that are organized as round-robin tournaments.
Other application areas include webpage and journal rank-
ing, biology, psychology, and AI (also see [6], and the ref-
erences therein). More generally, tournaments and tourna-
ment solutions are used as a mathematical tool for the anal-
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ysis of all kinds of situations where a choice among a set
of alternatives has to be made exclusively on the basis of
pairwise comparisons.

When choosing from a tournament, relevant information
may only be partly available. This could be because some
preferences are yet to be elicited, some matches yet to be
played, or certain comparisons yet to be made. In such
cases, it is natural to speculate which are the potential and
inevitable outcomes on the basis of the information already
at hand.

For complete tournaments, a number of attractive solution
concepts have been proposed (see, e.g., [6, 17]). Given any
such solution concept S, possible winners of a partial tour-
nament G are defined as alternatives that are selected by S
in some completion of G, and necessary winners are alterna-
tives that are selected in all completions. By a completion
we here understand a complete tournament extending G.

In this paper we address the computational complexity of
identifying the possible and necessary winners for a number
of solution concepts whose winner determination problem
for complete tournaments is tractable. We consider four
of the most common tournament solutions—namely, Con-
dorcet winners (COND), the Copeland solution (CO), the
top cycle (TC ), and the uncovered set (UC )—and three
common solutions for weighted tournaments—Borda (BO),
maximin (MM ) and ranked pairs (RP). For each of these
solution concepts, we characterize the complexity of the fol-
lowing problems: deciding whether a given alternative is a
possible winner (PW ), deciding whether a given alternative
is a necessary winner (NW ), and deciding whether a given
subset of alternatives equals the set of winners in some com-
pletion (PWS). These problems can be challenging, as even
unweighted partial tournaments may allow for an exponen-
tial number of completions. Our results are encouraging, in
the sense that most of the problems can be solved in poly-
nomial time. Table 1 summarizes our findings.

Similar problems have been considered before. For Con-
dorcet winners, voting trees and the top cycle, it was already
shown that possible and necessary winners are computable
in polynomial time [16, 19, 20]. The same holds for comput-
ing possible Copeland winners that were considered in the
context of sports tournaments [8].

A more specific setting that is frequently considered
within the area of computational social choice differs from
our setting in a subtle but important way that is worth be-
ing pointed out. There, tournaments are assumed to arise
from pairwise majority comparisons on the basis of a profile



of individual voters’ preferences.1 Since a partial prefer-
ence profile R need not conclusively settle every majority
comparison, it may give rise to a partial tournament only.
There are two natural ways to define possible and neces-
sary winners for a partial preference profile R and solution
concept S. The first is to consider the completions of the
incomplete tournament G(R) corresponding to R and the
winners under S in these. This is covered by our more gen-
eral setting. The second is to consider the completions of
R and the winners under S in the corresponding tourna-
ments.2 Since every tournament corresponding to a comple-
tion of R is also a completion of G(R) but not necessarily
the other way round, the second definition gives rise to a
stronger notion of a possible winner and a weaker notion of
a necessary winner. Interestingly, and in sharp contrast to
our results, determining these stronger possible and weaker
necessary winners is computationally hard for many voting
rules [16, 25].

In the context of this paper, we do not assume that tour-
naments arise from majority comparisons in voting or from
any other specific procedure. This approach has a number
of advantages. Firstly, it matches the diversity of settings to
which tournament solutions are applicable, which goes well
beyond social choice and voting. For instance, our results
also apply to a question commonly encountered in sports
competitions, namely, which teams can still win the cup
and which future results this depends on (see, e.g., [8, 14]).
Secondly, (partial) tournaments provide an informationally
sustainable way of representing the relevant aspects of many
situations while maintaining a workable level of abstraction
and conciseness. For instance, in the social choice setting
described above, the partial tournament induced by a par-
tial preference profile is a much more succinct piece of in-
formation than the preference profile itself. Finally, specific
settings may impose restrictions on the feasible extensions
of partial tournaments. The positive algorithmic results in
this paper can be used to efficiently approximate the sets
of possible and necessary winners in such settings, where
the corresponding problems may be intractable. The voting
setting discussed above serves to illustrate this point.

2. PRELIMINARIES
A partial tournament is a pair G = (V,E) where V is

a finite set of alternatives and E ⊆ V × V an asymmetric
relation on V , i.e., (x, y) ∈ E implies (y, x) /∈ E. If (x, y) ∈
E we say that x dominates y. A (complete) tournament T
is a partial tournament (V,E) for which E is also complete,
i.e., either (x, y) ∈ E or (y, x) ∈ E for all distinct x, y ∈ V .
We denote the class of complete tournaments by T .

Let G = (V,E) be a partial tournament. Another partial
tournament G′ = (V ′, E′) is called an extension of G, de-
noted G ≤ G′, if V = V ′ and E ⊆ E′. If E′ is complete,
G′ is called a completion of G. We write [G] for the set of
completions of G, i.e., [G] = {T ∈ T : G ≤ T}.

For each x ∈ V , we define the dominion of x in G by

1See, e.g., [1, 2, 15, 24, 25] for the basic setting, [3] for
parameterized complexity results, [12, 13] for probabilistic
settings, and [7, 26] for settings with a variable set of alter-
natives.
2These two ways of defining possible and necessary winners
are compared (both theoretically and experimentally) in [16,
20] for three solution concepts: Condorcet winners, voting
trees and the top cycle.

S PWS NWS PWSS

COND in P [16] in P [16] in P (Th. 1)
CO in P (Th. 2)a in P (Th. 2)a in P (Th. 2)
TC in P [16]a in P [16] in P (Th. 3)
UC in P (Th. 4) in P (Th. 5) NP-C (Th. 6)

BO in P (Th. 7)a in P (Th. 9) in P (Th. 8)b

MM in P (Th. 10)a in P (Th. 11) in P (Th. 12)b

RP NP-C (Th. 13) coNP-C (Th. 14) NP-C (Cor. 1)

a This P-time result contrasts with the intractability of the
same problem for partial preference profiles [16, 25].

b Assuming that the weight n is polynomial in the size of the
partial tournament.

Table 1: Complexity of computing possible winners
(PW) and necessary winners (NW) and of checking
whether a given subset of alternatives is a possible
winning set (PWS) under different solution concepts
given partial tournaments.

D+
G(x) = {y ∈ V : (x, y) ∈ E}, and the dominators of x

in G by D−G(x) = {y ∈ V : (y, x) ∈ E}. For X ⊆ V , we let
D+

G(X) =
⋃

x∈X D+
G(x) and D−G(X) =

⋃
x∈X D−G(x).

For given G = (V,E) and X ⊆ V , we further write EX→

for the set of edges obtained from E by adding all missing
edges from alternatives in X to alternatives not in X, i.e.,

EX→ = E ∪ {(x, y) ∈ X × V : y /∈ X and (y, x) /∈ E}.

We use EX← as an abbreviation for EV \X→, and respec-
tively write Ex→, Ex←, GX→, and GX← for E{x}→, E{x}←,
(V,EX→), and (V,EX←).

Let n be a positive integer. A partial n-weighted tourna-
ment is a pair G = (V,w) consisting of a finite set of alter-
natives V and a weight function w : V × V → {0, . . . , n}
such that for each pair (x, y) ∈ V × V with x 6= y,
w(x, y) + w(y, x) ≤ n. We say that T = (V,w) is a (com-
plete) n-weighted tournament if for all x, y ∈ V with x 6= y,
w(x, y)+w(y, x) = n. A (partial or complete) weighted tour-
nament is a (partial or complete) n-weighted tournament for
some n ∈ N. The class of n-weighted tournaments is denoted
by Tn. Observe that with each partial 1-weighted tourna-
ment (V,w) we can associate a partial tournament (V,E)
by setting E = {(x, y) ∈ V : w(x, y) = 1}. Thus, (partial)
n-weighted tournaments can be seen to generalize (partial)
tournaments, and we may identify T1 with T .

The notations G ≤ G′ and [G] can be extended naturally
to partial n-weighted tournaments G = (V,w) and G′ =
(V ′, w′) by letting (V,w) ≤ (V ′, w′) if V = V ′ and w(x, y) ≤
w′(x, y) for all x, y ∈ V , and [G] = {T ∈ Tn : G ≤ T}.

For given G = (V,w) and X ⊆ V , we further define wX→

such that for all x, y ∈ V ,

wX→(x, y) =

{
n− w(y, x) if x ∈ X and y /∈ X,

w(x, y) otherwise,

and set wX← = wV \X→. Moreover, wx→, wx←, GX→, and
GX← are defined in the obvious way.

We use the term solution concept for functions S that
associate with each (complete) tournament T = (V,E), or
with each (complete) weighted tournament T = (V,w), a
choice set S(T ) ⊆ V . A solution concept S is called resolute
if |S(T )| = 1 for each tournament T . In this paper we will
consider the following solution concepts: Condorcet winners



(COND), Copeland (CO), top cycle (TC ), and uncovered set
(UC ) for tournaments, and maximin (MM ), Borda (BO),
and ranked pairs (RP) for weighted tournaments. Of these
only ranked pairs is resolute. Formal definitions will be pro-
vided later in the paper.

3. POSSIBLE & NECESSARY WINNERS
A solution concept selects alternatives from complete

tournaments or complete weighted tournaments. A partial
(weighted) tournament, on the other hand, can be extended
to a number of complete (weighted) tournaments, and a so-
lution concept selects a (potentially different) set of alterna-
tives for each of them.

For a given a solution concept S, we can thus define
the set of possible winners for a partial (weighted) tour-
nament G as the set of alternatives selected by S from some
completion of G, i.e., as PWS (G) =

⋃
T∈[G] S(T ). Analo-

gously, the set of necessary winners of G is the set of al-
ternatives selected by S from every completion of G, i.e.,
NWS (G) =

⋂
T∈[G] S(T ). We can finally write PWSS (G) =

{S(T ) : T ∈ [G]} for the set of sets of alternatives that S
selects for the different completions of G.

Note that NWS (G) may be empty even if S selects a
non-empty set of alternatives for each tournament T ∈ [G],
and that |PWSS (G)| may be exponential in the number of
alternatives of G. It is also easily verified that G ≤ G′

implies PWS (G′) ⊆ PWS (G) and NWS (G) ⊆ NWS (G′),
and that PWS (G) =

⋃
G≤G′ NWS (G′) and NWS (G) =⋂

G≤G′ PWS (G′).

Deciding membership in the sets PWS (G), NWS (G), and
PWSS (G) for a given solution concept S and a partial
(weighted) tournament G is a natural computational prob-
lem. We will respectively refer to these problems as PWS ,
NWS , and PWSS , and will study them for the solution con-
cepts mentioned at the end of the previous section.3

For complete tournaments T we have [T ] = {T} and thus
PWS (T ) = NWS (T ) = S(T ) and PWSS (T ) = {S(T )}. As a
consequence, for solution concepts S with an NP-hard win-
ner determination problem—like Banks, Slater, and TEQ—
the problems PWS , NWS , and PWSS are NP-hard as well.
We therefore restrict our attention to solution concepts for
which winners can be computed in polynomial time.

For irresolute solution concepts, PWSS may appear a
more complex problem than PWS . We are, however, not
aware of a polynomial-time reduction from PWS to PWSS .
The relationship between these problems may also be of in-
terest for the “classic” possible winner setting with partial
preference profiles.

4. UNWEIGHTED TOURNAMENTS
In this section, we consider the following well-known solu-

tion concepts for unweighted tournaments: Condorcet win-
ners, Copeland, top cycle, and uncovered set. Weighted
tournaments will then be considered in Section 5.

4.1 Condorcet Winners
Condorcet winners are a very simple solution concept and

will provide a nice warm-up. An alternative x ∈ V is a

3Formally, the input for each of the problems consists of an
encoding of the partial (n-weighted) tournament G and, for
partial n-weighted tournaments, the number n.

Condorcet winner of a complete tournament T = (V,E) if
it dominates all other alternatives, i.e., if (x, y) ∈ E for all
y ∈ V \ {x}. The set of Condorcet winners of tournament T
will be denoted by COND(T ); obviously this set is always
either a singleton or empty.

It is readily appreciated that the possible Condorcet win-
ners of a partial tournament G = (V,E) are precisely the
undominated alternatives, and that a necessary Condorcet
winner of G should already dominate all other alternatives.
Both properties can be verified in polynomial time.

Each of the sets in PWSCOND(G) is either a single-
ton or the empty set, and determining membership for a
singleton is obviously tractable. Checking whether ∅ ∈
PWSCOND(G) is not quite that simple. First observe that
∅ ∈ PWSCOND(G) if and only if there is an extension G′

of G in which every alternative is dominated by some other
alternative. Given a particular G = (V,E), we can define
an extension G′ = (V,E′) of G by iteratively adding edges
from dominated alternatives to undominated ones until this
is no longer possible. Formally, let

E0 = E and Ei+1 = Ei ∪ {(x, y) ∈ Xi × Yi : (y, x) /∈ Ei},

where Xi and Yi denote the dominated and undominated
alternatives of (V,Ei), respectively. Finally define E′ =⋃|V |

i=0Ei, and observe that this set can be computed in poly-
nomial time.

Now, for every undominated alternative x of G′ and every
dominated alternative y of G′, we not only have (x, y) ∈ E′,
but also (x, y) ∈ E. This is the case because in the inductive
definition of E′ only edges from dominated to undominated
alternatives are added in every step. It is therefore easily
verified that PWSCOND(G) contains ∅ if and only if the set
of undominated alternatives in G′ is either empty or is of size
three or more. We have shown the following easy result.

Theorem 1. PWCOND , NWCOND , and PWSCOND can be
solved in polynomial time.

The results for PWCOND and NWCOND also follow from
Proposition 2 of Lang et al. [16] and Corollary 2 of Konczak
and Lang [15]. We further note that Theorem 1 is a corollary
of corresponding results for maximin in Section 5.2. The
reason is that a Condorcet winner is the maximin winner of a
1-weighted tournament, and a tournament does not admit a
Condorcet winner if and only if all alternatives are maximin
winners.

4.2 Copeland
Copeland’s solution selects alternatives based on the num-

ber of other alternatives they dominate. Define the Copeland
score of an alternative x in tournament T = (V,E) as
sCO(x, T ) = |D+

T (x)|. The set CO(T ) then consists of
all alternatives that have maximal Copeland score. Since
Copeland scores coincide with Borda scores in the case of
1-weighted tournaments, the following is a direct corollary
of the results in Section 5.1.

Theorem 2. NWCO , PWCO , and PWSCO can be solved
in polynomial time.

PWCO can alternatively be solved via a polynomial-time
reduction to maximum network flow (see, e.g., [8], p. 51).



4.3 Top Cycle
A subset X ⊆ V of alternatives in a (partial or com-

plete) tournament (V,E) is dominant if every alternative in
X dominates every alternative outside X. The top cycle of
a tournament T = (V,E), denoted by TC (T ), is the unique
minimal dominant subset of V .

Lang et al. have shown that possible and necessary win-
ners for TC can be computed efficiently by greedy algo-
rithms ([16], Corollaries 1 and 2). For PWSTC , we not only
have to check that there exists a completion such that the set
in question is dominating, but also that there is no smaller
dominating set. It turns out that this can still be done in
polynomial time.

Theorem 3. PWSTC can be solved in polynomial time.

Proof Sketch. Consider a partial tournament G =
(V,E) and a set X ⊆ V of alternatives. If X is a sin-
gleton, the problem reduces to checking whether X ∈
PWSCOND(G). If X is of size two or if one of its elements
is dominated by an outside alternative, X /∈ PWSTC (G).
Therefore, we can without loss of generality assume that
|X| ≥ 3 and (y, x) /∈ E for all y ∈ V \ X and x ∈ X. The
Smith set of a partial tournament is defined as the minimal
dominant subset of alternatives [22].4 It can be shown that
there exists a completion T ∈ [G] with TC (T ) = X if and
only if the Smith set of the partial tournament (X,E|X×X)
equals the whole set X. Since Brandt et al. [4] have shown
that the Smith set of a partial tournament can be computed
efficiently, the theorem follows.

4.4 Uncovered Set
Given a tournament T = (V,E), an alternative x ∈ V is

said to cover another alternative y ∈ V if D+
T (y) ⊆ D+

T (x),
i.e., if every alternative dominated by y is also dominated
by x. The uncovered set of T , denoted by UC (T ), then is
the set of alternatives that are not covered by some other
alternative. A useful alternative characterization of the un-
covered set is via the two-step principle: an alternative is
in the uncovered set if and only if it can reach every other
alternative in at most two steps.5 Formally, x ∈ UC (T ) if
and only if for all y ∈ V \ {x}, either (x, y) ∈ E or there is
some z ∈ V with (x, z), (z, y) ∈ E. We denote the two-step
dominion D+

E(D+
E(x)) of an alternative x by D++

E (x).
We first consider PWUC , for which we check for each al-

ternative whether it can be reinforced to reach every other
alternative in at most two steps.

Theorem 4. PWUC can be solved in polynomial time.

Proof. For a given partial tournament G = (V,E) and
an alternative x ∈ V , we check whether x is in UC (T ) for
some completion T ∈ [G].

Consider the graph G′ = (V,E′′) where E′′ is derived
from E as follows. First, we let D+(x) grow as much as
possible by letting E′ = Ex→. Then, we do the same for

its two-step dominion by defining E′′ as E′D
+
E′ (x)→. Now

it can be shown that x ∈ PWUC (G) if and only if V =
{x} ∪D+

E′′(x) ∪D++
E′′ (x).

A similar argument yields the following.

4For complete tournaments, the Smith set coincides with
the top cycle.
5In graph theory, vertices satisfying this property are often
called kings.

Theorem 5. NWUC can be solved in polynomial time.

Proof. For a given partial tournament G = (V,E) and
an alternative x ∈ V , we check whether x is in UC (T ) for
all completions T ∈ [G].

Consider the graph G′ = (V,E′′) with E′′ defined as fol-
lows. First, let E′ = Ex←. Then, expand it to E′′ =

E′D
−
E′ (x)→. Intuitively, this makes it as hard as possible for

x to beat alternatives outside of its dominion in two steps.
Then it can be shown that x ∈ NWUC (G) if and only if
V = {x} ∪D+

E′′(x) ∪D++
E′′ (x).

For all solution concepts considered so far—Condorcet
winners, Copeland, and top cycle—PW and PWS have the
same complexity. One might wonder whether a result like
this holds more generally, and whether there could be a
polynomial-time reduction from PWS to PW . The follow-
ing result shows that this is not the case, unless P=NP.

Theorem 6. PWSUC is NP-complete.

Proof Sketch. LetG = (V,E) be a partial tournament.
Given a set X ⊆ V and a completion T ∈ [G], it can be
checked in polynomial time whether X = UC (T ). Hence,
PWSUC is obviously in NP.

NP-hardness can be shown by a reduction from Sat. For
each Boolean formula ϕ in conjunctive normal-form with a
set C of clauses and set P of propositional variables, we
construct a partial tournament Gϕ = (Vϕ, Eϕ). Define

Vϕ = C × {0, 1} ∪ P × {0, . . . , 5} ∪ {0, 1, 2},

i.e., along with three auxiliary alternatives, we introduce
for each clause two alternatives and for each propositional
variable six. We write ci, pi, Ci, and Pi for (c, i), (p, i),
{ci : c ∈ C}, and {pi : p ∈ P}, respectively. Let

X = C × {0} ∪ P × {0, 1, 2} ∪ {0, 1, 2}.

Then, Eϕ is defined such that it contains no edges between
alternatives in Vϕ \ X. For alternatives x ∈ X, Eϕ is
given by the following table, in which each line is of the
form D−Gϕ

(x) ∩ V \ X → x → D+
Gϕ

(x) ∩ X and where it

is understood that x dominates all alternatives in Vϕ \ X
unless specified otherwise. For improved readability some
curly braces have been omitted and a comma indicates set-
theoretic union.

{p3 : p ∈ c}, {p4 : p̄ ∈ c}, c1 → c0 → 2, P2, {p1 : p /∈ c}, {p0 : p̄ /∈ c}
p3 → p0 → 0, p2, {c0 : p̄ ∈ c}
p4 → p1 → 0, p2, {c0 : p ∈ c}

P3, P4, p5 → p2 → 2, {q0, q1 : q 6= p}
P3, P4 → 0 → 2, C0, P2

C1, P5 → 1 → 0, C0, P2

∅ → 2 → 1, P0, P1

It now suffices to show that Eϕ is specified in such a way
that X is the uncovered set of some completion of Gϕ if and
only if ϕ is satisfiable.

For every p ∈ P , the edges between p0, p1, and 1 are
left unspecified. The idea is that p0 and p1 are the only
candidates to cover p5, p0 and 1 are the only candidates to
cover p4, and p1 and 1 are the only candidates to cover p3.
As p0 ∈ D+

Gϕ
(p3), p1 ∈ D+

Gϕ
(p4), and 1 ∈ D+

Gϕ
(p5), there

are two possibilities of extending Gϕ in such a way that p3,
p4 and p5 are covered simultaneously and X is the uncovered
set. Either all the edges in



(a) {(p0, p1), (p1, 1), (1, p0)}, or all those in

(b) {(p1, p0), (p0, 1), (1, p1)}

have to be added to Eϕ to achieve this (additionally some
edges among Vϕ \ X have to be set appropriately as well).
Possibility (a) corresponds to setting p to “true.” In this
case, p1 also covers c1 for every clause c ∈ C that con-
tains p. Possibility (b) corresponds to setting p to “false”
and causes p0 to cover c1 for every clause c ∈ C that con-
tains p̄. Moreover, for each c ∈ C, the only candidates in X
to cover c1 are p1 if p ∈ c and p0 if p̄ ∈ c. Observe that
1 ∈ D+

Gϕ
(c1) for all c ∈ C. Thus, if p̄ ∈ c, p1 covering p3

precludes p0 covering c1. Similarly, if p ∈ c, p0 covering p4
precludes p1 covering c1. Accordingly, if T is a completion
of Gϕ in which X is the uncovered set, one can read off a
valuation satisfying ϕ from how the edges between p0, p1,
and 1 are set in T . For the opposite direction, a satisfying
valuation for ϕ is a recipe for extending Gϕ to a tourna-
ment in which X is the uncovered set. It can be checked
that every alternative in X reaches every other alternative
in at most two steps, whereas every alternative in Vϕ \X is
covered by some alternative in X.

5. WEIGHTED TOURNAMENTS
We now turn to weighted tournaments, and in particular

consider the solution concepts Borda, maximin, and ranked
pairs.

5.1 Borda
The Borda solution (BO) is typically used in a voting

context, where it is construed as based on voters’ rankings
of the alternatives: each alternative receives |V | − 1 points
for each time it is ranked first, |V | − 2 points for each time
it is ranked second, and so forth; the solution concept then
chooses the alternatives with the highest total number of
points. In the more general setting of weighted tournaments,
the Borda score of alternative x ∈ V in G = (V,w) is defined
as sBO(x,G) =

∑
y∈V \{x} w(x, y) and the Borda winners

are the alternatives with the highest Borda score. If w(x, y)
represents the number of voters that rank x higher than y,
the two definitions are equivalent.

Before we proceed further, we define the notion of a b-
matching, which will be used in the proofs of two of our
results. Let H = (VH , EH) be an undirected graph with
vertex capacities b : VH → N0. Then, a b-matching of H
is a function m : EH → N0 such that for all v ∈ VH ,∑

e∈{e′∈EH :v∈e′}m(e) ≤ b(v). The size of b-matching m is

defined as
∑

e∈EH
m(e). It is easy to see that if b(v) = 1 for

all v ∈ VH , then a maximum size b-matching is equivalent to
a maximum cardinality matching. In a b-matching problem
with upper and lower bounds, there further is a function
a : VH → N0. A feasible b-matching then is a function m :
EH → N0 such that a(v) ≤

∑
e∈{e′∈EH :v∈e′}m(e) ≤ b(v).

If H is bipartite, then the problem of computing a maxi-
mum size feasible b-matching with lower and upper bounds
can be solved in strongly polynomial time ([21], Chapter
21). We will use this fact to show that PWBO and PWSBO

can both be solved in polynomial time. While the following
result for PWBO can be shown using Theorem 6.1 of [14], we
give a direct proof that can then be extended to PWSBO .

Theorem 7. PWBO can be solved in polynomial time.

Proof Sketch. Let G = (V,w) be a partial n-weighted
tournament, x ∈ V . We give a polynomial-time algorithm
for checking whether x ∈ PWBO(G), via a reduction to the
problem of computing a maximum size b-matching of a bi-
partite graph.

LetGx→ = (V,wx→) denote the graph obtained fromG by
maximally reinforcing x, and s∗ = sBO(x,Gx→) the Borda
score of x in Gx→. From Gx→, we then construct a bipartite
graph H = (VH , EH) with vertices VH = V \ {x} ∪ E<n,
where E<n = {{i, j} ⊆ V \ {x} : w(i, j) + w(j, i) < n},6
and edges EH = {{v, e} : v ∈ V \ {x} and v ∈ e ∈ E<n}.
We further define vertex capacities b : VH → N0 such that
b({i, j}) = n − w(i, j) − w(j, i) for {i, j} ∈ E<n and b(v) =
s∗ − sBO(v,Gx→) for v ∈ V \ {x}.

Now observe that in any completion T = (V,w′) ∈ [Gx→],
w′(i, j) + w′(j, i) = n for all i, j ∈ V with i 6= j. The sum
of the Borda scores in T is therefore n|V |(|V | − 1)/2. Some
of the weight has already been used up in Gx→; the weight
which has not yet been used up is equal to α = n|V |(|V | −
1)/2−

∑
v∈V sBO(v,Gx→). We claim that x ∈ PWBO(G) if

and only if H has a b-matching of size at least α.
Since H can be constructed efficiently, and since a maxi-

mum size b-matching can be computed in strongly polyno-
mial time, our algorithm runs in polynomial time.

We now extend this proof to a pseudo-polynomial time
algorithm for PWSBO .

Theorem 8. PWSBO can be solved in pseudo-polynomial
time.

Proof Sketch. Let G = (V,w) be a partial n-weighted
tournament, and X ⊆ V . We give a pseudo-polynomial time
algorithm for checking whether X ∈ PWSBO(G), via a re-
duction to the problem of computing a maximum b-matching
of a graph with lower and upper bounds.

Assume that there is a target Borda score s∗ and a com-
pletion T ∈ [G] with X ∈ PWSBO(T ) and sBO(x, T ) = s∗

for all x ∈ X. Then, the maximum Borda score of an al-
ternative not in X is s∗ − 1. As we do not know s∗ in ad-
vance, we initialize it to the maximum possible Borda score
of n(|V |− 1) and decrease it until we find a completion that
makes X the set of Borda winners or until s∗ = 0.

For a given s∗, we construct a bipartite graph H =
(VH , EH) with vertices VH = V ∪ E<n, where E<n =
{{i, j} ⊆ V : i 6= j, w(i, j) + w(j, i) < n}, and edges
EH = {{v, e} : v ∈ V and v ∈ e ∈ E<n}. Lower bounds
b : VH → N0 and upper bounds a : VH → N0 are defined
as follows: For vertices x ∈ X, lower and upper bounds
coincide and are given by a(x) = b(x) = s∗ − sBO(x,G).
All other vertices v ∈ VH \ X have a lower bound of
a(v) = 0. Upper bounds for these vertices are defined
such that b(v) = s∗ − sBO(v,G) − 1 for v ∈ V \ X, and
b({i, j}) = n− w(i, j)− w(j, i) for {i, j} ∈ E<n.

Observe that the weight not yet used up in G is equal
to α = n|V |(|V | − 1)/2 −

∑
v∈V sBO(v,G). We claim that

membership of X in PWSBO(G) can be decided via the fol-
lowing algorithm. Start by initializing s∗ to n(|V | − 1). In
each step, construct the bipartite graph H described above
for the current value of s∗. If H has a feasible b-matching
of size at least α, return “yes.” Otherwise decrement s∗ by
one and repeat. If s∗ = 0 and no feasible b-matching of size
at least α has been found, return “no.”

6Note that w(i, j) = wx→(i, j) for alternatives i, j ∈ V \{x}.



It is straightforward to prove that this algorithm is cor-
rect. The essential idea is that a feasible b-matching of size α
corresponds to a completion of G in which all alternatives in
X have the same Borda score s∗, while all other alternatives
have a strictly smaller Borda score.

The algorithm requires at most n(|V |−1) iterations, each
of which involves the computation of a maximum size b-
matching of a bipartite graph H. The latter can be done
in strongly polynomial time, so the algorithm has an overall
running time of O(n · |V |k) for some constant k.

We conclude this section by showing that NWBO can be
solved in polynomial time as well.

Theorem 9. NWBO can be solved in polynomial time.

Proof. Let G = (V,w) be a partial weighted tourna-
ment, x ∈ V . We give a polynomial-time algorithm for
checking whether x ∈ NWBO(G).

Let G′ = Gx←. We want to check whether some other
alternative y ∈ V \ {x} can achieve a Borda score of more
than s∗ = sBO(x,G′). This can be done separately for each
y ∈ V \ {x} by reinforcing it as much as possible in G′. If
for some y, sBO(y,G′

y→
) > s∗, then x /∈ NWBO(G). If, on

the other hand, sBO(y,G′
y→

) ≤ s∗ for all y ∈ V \ {x}, then
x ∈ NWBO(G).

Since the Borda and Copeland solutions coincide in un-
weighted tournaments, the above results imply that PWCO

and NWCO can be solved in polynomial time. The same is
true for PWSCO , because the Copeland score is bounded by
|V | − 1.

5.2 Maximin
The maximin score sMM (x, T ) of an alternative x in a

weighted tournament T = (V,w), is given by its worst pair-
wise comparison, i.e., sMM (x, T ) = miny∈V \{x} w(x, y). The
maximin solution, also known as Simpson’s method and de-
noted by MM , returns the set of all alternatives with the
highest maximin score.

We first show that PWMM is polynomial-time solvable by
reducing it to the problem of finding a maximum cardinality
matching of a graph.

Theorem 10. PWMM can be solved in polynomial time.

Proof Sketch. We show how to check whether x ∈
PWMM (G) for a partial n-weighted tournament G = (V,w).
Consider the graph Gx→ = (V,wx→). Then, sMM (x,Gx→)
is the best possible maximin score x can get among all
completions of G. If sMM (x,Gx→) ≥ n

2
, then we have

sMM (y, T ) ≤ wx→(y, x) ≤ n
2

for every y ∈ V \ {x} and
every completion T ∈ [Gx→] and therefore x ∈ PWMM (G).
Now consider sMM (x,Gx→) < n

2
. We will reduce the prob-

lem of checking whether x ∈ PWMM (G) to that of find-
ing a maximum cardinality matching, which is known to be
solvable in polynomial time [11]. We want to find a com-
pletion T ∈ [Gx→] such that sMM (x, T ) ≥ sMM (y, T ) for
all y ∈ V \ {x}. If there exists a y ∈ V \ {x} such that
sMM (x,Gx→) < sMM (y,Gx→), then we already know that
x /∈ PWMM (G). Otherwise, each y ∈ V \ {x} derives its
maximin score from at least one particular edge (y, z) where
z ∈ V \ {x, y} and w(y, z) ≤ sMM (x,Gx→). Moreover, it is
clear that in any completion, y and z cannot both achieve
a maximin score of less than sMM (x,Gx→) from edges (y, z)
and (z, y) at the same time.

Construct the following undirected and unweighted graph
H = (VH , EH) where VH = V \ {x} ∪ {{i, j} ⊆ V : i 6= j}.
Build up EH such that: {i, {i, j}} ∈ EH if and only if i 6= j
and wx→(i, j) ≤ sMM (x,Gx→). In this way, if i is matched
to {i, j} in H, then i derives a maximin score of less than or
equal to sMM (x,Gx→) from his comparison with j. Clearly,
H is polynomial in the size of G. Then, the claim is that
x ∈ PWMM (G) if and only if there exists a matching of
cardinality |V | − 1 in H.

For NWMM we apply a similar technique as for NWBO :
to see whether x ∈ NWMM (G), we start from the graph
Gx← and check whether some other alternative can achieve
a higher maximin score than x in a completion of Gx←.

Theorem 11. NWMM can be solved in polynomial time.

We conclude the section by showing that PWSMM can
be solved in pseudo-polynomial time. The proof proceeds
by identifying the maximin values that could potentially be
achieved simultaneously by all elements of the set in ques-
tion, and solving the problem for each of these values using
similar techniques as in the proof of Theorem 10.

Theorem 12. PWSMM can be solved in pseudo-
polynomial time.

Proof Sketch. Let G = (V,w) be a partial n-weighted
tournament, and X ⊆ V . We give a pseudo-polynomial time
algorithm for checking whether X ∈ PWSMM (G).

If X ∈ PWSMM (G) there must be a completion T ∈ [G]
and s∗ ∈ {0, . . . , n} such that sMM (i, T ) = s∗ for all i ∈ X.
We check for each possible s∗ whether X can be made the
set of maximin winners with a maximin score of s∗.

Assume that s∗ > n
2

. Then, X ∈ PWSMM if and only if
X is a singleton {x} and wx→(x, j) > n

2
for all j ∈ V \ {x}.

Let s∗ < n
2

. Similarly as in the proof of Theorem 10, we
construct an undirected unweighted graph H = (VH , EH)
with VH = V ∪ {{i, j} ⊆ V : i 6= j} and capacity function
c. Build up EH such that if i ∈ X then {i, {i, j}} ∈ EH if
and only if w(i, j) ≤ s∗ ≤ n− w(j, i), and if i ∈ V \X then
{i, {i, j}} ∈ EH if and only if w(i, j) < s∗. We claim that
there is a matching of cardinality |V | in H if and only if there
is a completion T in which for all i ∈ X, sMM (i, T ) = s∗ and
for all i ∈ V \ X, sMM (i, T ) < s∗. Intuitively speaking, an
edge {i, {i, j}} in such a matching corresponds to w(i, j) =
s∗ in the completion if i ∈ X and to w(i, j) < s∗ if x ∈ V \X.

Finally, we study separately the case s∗ = n
2

. The differ-
ence with the case s∗ < n

2
is that now, it is possible that both

(i, j) and (j, i) account for the maximin score of i and j in the
completion. We create a flow network N = (VN , EN , s, t, c)
where VN = VH ∪ {s, t}. For each i ∈ V , there is an edge
(s, i) in EN with capacity 1. For all distinct i, j ∈ V , there
are two edges (i, {i, j}) and (j, {i, j}) in EN with capacity 1
if w(i, j) ≤ s∗ ≤ n − w(j, i); otherwise there are no edges
between i, j and {i, j} in N . For all i, j ∈ X, there is an
edge ({i, j}, t) in EN with capacity 2. For each i ∈ V and
each j ∈ V \ X, EN contains an edge ({i, j}, t) with ca-
pacity 1. We claim that the maximum value of the flow
equals |V | if and only if X ∈ PWSMM (G). Here, an edge
(i, {i, j}) with nonzero flow in a maximum flow corresponds
to w(i, j) = w(j, i) = s∗ in the completion if i, j ∈ X and to
w(i, j) < s∗ if i ∈ V \X.

Obviously, all cases can be completed in pseudo-
polynomial time.



5.3 Ranked Pairs
The method of ranked pairs (RP) is the only resolute so-

lution concept considered in this paper. Given a weighted
tournament T = (V,w), it returns the unique undominated
alternative of a transitive tournament T ′ on V constructed
in the following manner. First order the (directed) edges of
T in decreasing order of weight, breaking ties according to
some exogenously given tie-breaking rule. Then consider the
edges one by one according to this ordering. If the current
edge can be added to T ′ without creating a cycle, then do
so; otherwise discard the edge.7

It is readily appreciated that this procedure, and thus the
winner determination problem for RP , is computationally
tractable. The possible winner problem, on the other hand,
turns out to be NP-hard. This also shows that tractability
of the winner determination problem, while necessary for
tractability of PW , is not generally sufficient.

Theorem 13. PWRP is NP-complete.

Proof Sketch. Membership in NP is obvious, as for a
given completion and a given tie-breaking rule, the ranked
pairs winner can be found efficiently.

NP-hardness can be shown by a reduction from Sat. For a
Boolean formula ϕ in conjunctive normal-form with a set C
of clauses and set P of propositional variables, we construct
a partial 8-weighted tournament Gϕ = (Vϕ, wϕ) as follows.
For each variable p ∈ P , Vϕ contains two literal alternatives
p and p̄ and two auxiliary alternatives p′ and p̄′. For each
clause c ∈ C, there is an alternative c. Finally, there is an
alternative d for which membership in PWRP (Gϕ) is to be
decided.

In order to conveniently describe the weight function wϕ,
let us introduce the following terminology. For two alter-
natives x, y ∈ Vϕ, say that there is a heavy edge from x to
y if wϕ(x, y) = 8 (and therefore wϕ(y, x) = 0). A medium
edge from x to y means wϕ(x, y) = 6 and wϕ(y, x) = 2,
and a light edge from x to y means wϕ(x, y) = 5 and
wϕ(y, x) = 3. Finally, a partial edge between x and y means
wϕ(x, y) = wϕ(y, x) = 1.

We are now ready to define wϕ. For each variable p ∈ P ,
we have heavy edges from p to p̄′ and from p̄ to p′, and
partial edges between p and p′ and between p̄ and p̄′. For
each clause c ∈ C, we have a medium edge from c to d and
a heavy edge from the literal alternative `i ∈ {p, p̄} to c if
the corresponding literal `i appears in the clause c. Finally,
we have heavy edges from d to all auxiliary alternatives and
light edges from d to all literal alternatives. For all pairs x, y
for which no edge has been specified, we define wϕ(x, y) =
wϕ(y, x) = 4.

Observe that the only pairs of alternatives for which wϕ

is not fully specified are those pairs that are connected by a
partial edge. It can be shown that alternative d is a possible
ranked pairs winner in Gϕ if and only if ϕ is satisfiable. In-
tuitively, choosing a completion w′ of wϕ such that w′(p′, p)

7The variant of ranked pairs originally proposed by Tide-
man [23], which was also used by Xia and Conitzer [25],
instead chooses a set of alternatives, containing any alter-
native that is selected by the above procedure for some way
of breaking ties among edges with equal weight. We do not
consider this irresolute version of ranked pairs because it was
recently shown that winner determination for this variant is
NP-hard [5]. As mentioned in Section 3, this immediately
implies that all problems concerning possible or necessary
winners are NP-hard as well.

is large and w′(p̄′, p̄) is small corresponds to setting the vari-
able p to “true.”

Since the ranked pairs method is resolute, hardness of
PWSRP follows immediately.

Corollary 1. PWSRP is NP-complete.

Computing necessary ranked pairs winners turns out to be
coNP-complete. This is again somewhat surprising, as com-
puting necessary winners is often considerably easier than
computing possible winners, both for partial tournaments
and partial preference profiles [25].

Theorem 14. NWRP is coNP-complete.

Proof Sketch. Membership in coNP is again obvious.
For hardness, we give a reduction from UnSat that is a
slight variation of the reduction in the proof of Theorem 13.
We introduce a new alternative d∗, which has heavy edges to
all alternatives in Vϕ except d. Furthermore, there is a light
edge from d to d∗. It can be shown that d∗ is a necessary
ranked pairs winner in this partial 8-weighted tournament if
and only if ϕ is unsatisfiable.

6. DISCUSSION
The problem of computing possible and necessary winners

for partial preference profiles has recently received a lot of at-
tention. In this paper, we have investigated this problem in
a setting where partially specified (weighted or unweighted)
tournaments instead of profiles are given as input. We have
summarized our findings in Table 1.

A key conclusion is that computational problems for par-
tial tournaments can be significantly easier than their coun-
terparts for partial profiles. For example, possible Borda or
maximin winners can be found efficiently for partial tourna-
ments, whereas the corresponding problems for partial pro-
files are NP-complete [25].

While tractability of the winner determination problem is
necessary for tractability of the possible or necessary winners
problems, the results for ranked pairs in Section 5.3 show
that it is not sufficient. We further considered the problem
of deciding whether a given subset of alternatives equals the
winner set for some completion of the partial tournament.
The results for the uncovered set in Section 4.4 imply that
this problem cannot be reduced to the computation of pos-
sible or necessary winners, but whether a reduction exists in
the opposite direction remains an open problem.

Partial tournaments have also been studied in their own
right, independent of their possible completions. For in-
stance, Peris and Subiza [18] and Dutta and Laslier [10]
have generalized several tournament solutions to incomplete
tournaments by directly adapting their definitions. In this
context, the notion of possible winners suggests a canonical
way to generalize a tournament solution to incomplete tour-
naments. The positive computational results in this paper
are an indication that this may be a promising approach.

Other open problems follow more directly from our re-
sults. For example, it will be interesting to see whether
strongly polynomial-time algorithms exist for PWSBO and
PWSMM . Furthermore, we have not examined the complex-
ity of computing possible and necessary winners for some
attractive tournament solutions such as the minimal cover-
ing set, the bipartisan set [17] and weighted versions of the
top cycle and the uncovered set [9].



An interesting related question that goes beyond the com-
putation of possible and necessary winners is the following:
when the winners are not yet fully determined, which un-
known comparisons need to be learned, or which matches
should be played? The construction of a policy tree defin-
ing an optimal protocol minimizing the number of questions
to be asked or the number of matches to be played, in the
worst case or on average, is an even more challenging issue
that we leave for further research.
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