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  The maximum entropy method (MEM) suggested by Burg is claimed 
to give power spectral estimates with high resolution, especially for short 

records. However, we can produce examples for which Burg's algorithm 

gives unrealistic spectra. It is shown that the algorithm fails when applied 
to minimum phase wavelets. A new algorithm, one-sided Burg algorithm, 
is proposed to circumvent this difficulty. Both the new and original algo-

rithms give reasonable spectral estimates when they are applied to station-
ary data.

  The maximum entropy method (MEM) suggested by Burg is claimed to 
give power spectral estimates with high resolution, especially for short re-
cords. Various applications have been reported and results are now accumu-
lating (ULRYCH, 1972a, b; SMYLIE et al., 1973; ULRYCH et al., 1973). The 
MEM is a natural extension of the autoregressive analysis and is based on the 
Wold decomposition theorem which says that a discrete stationary stochastic 
process can always be written as an autoregressive process. It consists of 
estimating an optimum prediction error filter and the variance of prediction 
errors. Optimum prediction error filter will be solved most conveniently by 
Levinson's algorithm (see, WIGGINS and ROBINSON, 1965), provided that the 
autocorrelation functions are known. For a short record, however, an esti-
mate of the autocorrelation function is, if not impossible, a difficult problem.

  Burg proposed a slightly different approach by which not only the pre-
diction error filter but also the autocorrelation function is obtained (see, for 
example, ULRYCH, 1972b; SMYLIE et al., 1973; ANDERSEN, 1974). Let am,t

(t=0,1,…,m,am,0=1) be the (m+1)-term optimum prediction error filter.

By a well-known recursive solution (WIGGINS and RAOBINSON, 1965), we have

βm+kmαm=0, (1)

am+1
,t=am,t+kma*m,m+1-t t=0,1,…,m+1, (2)

αm+1=αm+kmβ*m=αm(1-|k m||km|2), α0=r0, (3)

where * denotes complex conjugate and βm is defined in terms of the auto-

correlation function of input data xt by

123



124 M. SAITO

 (4)

Instead of giving the autocorrelation function rt and finding km by the use of 
Eqs. (4) and (1), Burg proposed that km be determined so that the square sum 
of the actual forward and backward prediction errors might be minimized. 
The backward prediction error (or hindsight error) is defined as the output 
of a*m,t when applied to the same data but in the time reversed direction. 
Thus, the forward prediction error em,t and the backward prediction error 

fm,t are defined by

 (5)

Where it is assumed that xt is given at t=0,1,…,N. Using Eq. (2), we have

 (6)

Thus, Burg's requirement that

 (7)

will be met by

 (8)

  However, condition (7) is not a unique choice. On the contrary it might 
be irrelevant in some cases. For example, suppose xt is a minimum phase 
wavelet. It is well known that a minimum phase wavelet is completely pre-
dictable in the forward direction with a minimum phase prediction filter, 
except at the first point. Since a prediction error filter has to be the minimum 

phase (otherwise the process xt becomes unrealizable), it turns out that a 
minimum phase wavelet cannot be predicted in the backward direction. 
Minimization of the sum of the forward and backward prediction errors 
might therefore result in a non-optimum prediction error filter in a sense 
that its output is non-white. 

  The original Burg algorithm, which will be called a 'two-sided' algorithm, 
because the prediction errors in the two directions are minimized, will be 
modified so that it might work on minimum phase data. We simply replace 
condition (7) with

 (9)
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Proceeding as before we find that the optimum km in this case is given by

(10)

Hereafter we call this algorithm 'one-sided'.

  The one-sided algorithm has a definite statistical meaning that it produces 
the maximum likelihood estimate of am,t provided that the prediction error is 
normally distributed (JENKINS and WATTS, 1968, p. 189), while the two-sided 
algorithm has no such meaning. There is no point in minimizing the back-
ward prediction error. It should be mentioned, however, that for stationary 
data both algorithms give almost the same results. Thus, even if the two may 
lead to the same estimates for sufficiently long stationary data, it is possible 
that they result in different estimates for finite non-stationary data. 

  To illustrate this point, let us consider a minimum phase wavelet

(11)

The exact prediction error filter coefficients for this wavelet are

a1=-2e-αcos(2πf0) a2=e-2α,

and the energy spectral density of (11) is

at frequency f. Figure 1 shows the energy spectrum of (11) computed by the

two-sided Burg algorithm using 100 data points (0〓t<100) for f0=0.1 and

α=0.05. As seen in this figure the two-sided algorithm produced a very sharp

peak near f=0.1 at m=2. Without the knowledge of the true spectrum, one 
would be tempted to draw a conclusion that the two-sided algorithm gave a 
sharp resolution. On the contrary, the estimate is quite unreliable and the 
instability seems to develop with increasing m, although the square sum 
is steadily decreasing with m. The instability is clearly seen in the plot of 

 am,t, and the systematic errors in the autocorrelation function computed by 
the algorithm are also evident (Fig. 2). 

  The one-sided Burg algorithm and the conventional method, in which 
the autocorrelation function is first estimated by a zero extension of the given 
data and the normal equation is solved by Levinson's algorithm, were also 
applied to the same data, and it was found that they both reproduced the 
true spectrum after two interactions. The estimated and the true spectra 
could not be distinguished in Fig. 1. Thus it is concluded that the one-sided 
algorithm and the conventional algorithm are preferred over the original 
two-sided Burg algorithm, at least for this specific example.
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Fig. 1. Energy spectral density estimates computed by the 

  two-sided Burg algorithm. Estimates by the one-sided 

  and the conventional algorithms could not be distin-

  guished from the exact curve in this figure.

Fig. 2. Prediction error filter coefficients (left) and autocorrelation function 

  (right) computed by the two-sided Burg algorithm.

  The failure of the two-sided algorithm is not surprising because a mini-

mum phase wavelet is predictable with a realizable minimum phase filter. 

But as mentioned before, both algorithms will work for stationary time series. 

Numerical experiments have been performed in which computer generated 

random numbers were fed into a two-pole recursive filter and the resulting
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time series were processed by the three methods. It was found that they all 

gave almost identical spectral estimates within the accuracy of computation. 
  Although the two-sided algorithm might give unreliable spectra, it is 

numerically stable and it produces minimum phase prediction error filters

almost always. To show this we note |km|〓1 because of Eq. (8) and use a

theorem due to Rouche:

If two polynomials P(z) and Q(z) satisfy

         |P(z)|>|Q(z)| on |z|=1,

then P(z) and P(z)+Q(z) have the same number of zeros inside the unit circle,

|z|<1.

 Let Am(z) be the z-transform of am ,t, i.e., Am(z)=Σtam,tzt, then Eq. (2)

will be written as

Am+1(z)=Am(z)+kmzm+1A*m(1/z).

We take P(z)=Am(z) and Q(z)=kmzm+1A*m(1/z) and the theorem holds true 

provided that |km|<1. Hence P(z)=Am(z) and P(z)+Q(z)=Am+1(z) have the 
same number of zeros inside the unit circle on the complex z-plane. Repeat-
ing the same argument we find that Am(z) and A0(z)=1, which has no zero, 
have the same number of zeros inside the unit circle. Thus it is proved that
Am(z) has no zeros in the unit circle provided that |km|<1. This completes

the proof that am,t obtained by the two-sided Burg algorithm is always the 
minimum phase (the proof by SMYLIE et al. (1973) seems valid only when m 
is infinite).

On the other hand |km|〓1 is not always true in the one-sided algorithm

and it is probable that it diverges. It certainly fails when applied to maximum 
phase wavelets, but this could be an advantage rather than a drawback, because 
one can easily find that the algorithm has been applied in a wrong direction. 

  Finally, the time requirement and storage requirement for each algorithm 
are estimated (Table 1). The large differences are due to the fact that em,t and 

       Table 1. Approximate estimates of computation time 

         and storage requirements.



128 M. SAITO

  have to be computed in the Burg algorithms. The conventional algorithm 

is best from a computational point of view, provided that the length of data 

is sufficiently long.
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