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Possible loss and recovery of Gibbsianness during 
the stochastic evolution of Gibbs measures 

A.CD. van Enter * 
R. Fernandez j 

F. den Hollander I 
F. Redig § 

23rd April 2()(1l 

Abstract: \Ve consider Ising~spin sy-stems starting from an initial Gibbs measure v and evolving 
under a Spildiip dynamics towards a reversible Gibbs measure 1* i- v. Both v and 1* arc assumed 
to have a finite~range interaction. \Ve study the Gibbsian character of the measure vS(t) at time 
t and show the follO\ving: 
(1) For all v and /k. vS(t) is Gibbs for small t. 
(2) If both v and 1* have a high or infinite temperature) then vS(t) is Gibbs for all t > O. 
(3) If v has a low IlOIHIcro temperature and a lIoro magnetic field and 1* has a high or infinite 
temperature) then vS(t) is Gibbs for small t and non~Gibbs for large t. 
(4) If v has a low IlOIHIcro temperature and a IlOIHIcro magnetic field and 1* has a high or infinite 
temperature) then vS(t) is Gibbs for small t) non~Gibbs for intermediate t) and Gibbs for large t. 
The regime where 1* has a low or lIero temperature and t is not small remains open. This rebrime 
presumably allo\\'S for many different scenarios. 

1 Introduction 

Changing interaction parameters, like the temperature or the magnetic field, in a thermody
namical system is the pr"'eminent way of studying such a system. In the theory of interacting 
particle systems, which are used as microscopic models for thermodynamic systems, one as
sociates with each such interaction parameter a class of stochastic evolutions, like Glauber 
dynamics or Kawasaki dynamics. 

In recent years there has been extensive interest in the qv,enchin!l re!lime, in which one 
starts from a high- or infinit,,~temperature Gibbs state and considers the behavior of the 
system under a low- or /,ero-temperature dynamics. This is interpreted as a fast cooling 
procedure (which is different from the slow cooling procedure of simulated annealing). One is 
interested in the asymptotic behavior of the system, in particular, the occurrence of trapping 
in metastable fro/,en or semi-fro/'en states (see [11], [34], [35], [12], [33], [36], [5]). 
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Another regime that has b"",n intensively studied is the one where, starting from a low
non-/,ero-temperature Gibbs state of Ising spins in a positive magnetic field, one considers a 
low-non-/,ero-temperature negativ,,~magnetic-field Glauber dynamics (see [38] and references 
therein). Under an appropriate rescaling of the time and the magnetic-field strength, one 
finds a metastable transition from the initial plus-state to the final minus-state. 

In this paper we concentrate on the opposite case of the v.nqv.enchin!lre!lime, in which one 
starts from a low-non-/,ero-temperature Gibbs state of Ising spins and considers the behavior 
of the system under a high- or infinit"~temperature Glauber dynamics. This is interpreted as 
a fast heating procedure. As far as we know, this regime has not b"",n studied much (s"", e.g. 
[1]), as no singular behavior was expected to occur. Although we ind"",d know that there is 
exponentially fast convergence (ef. [23], Chapter 1, Tlworem 4.1, and [31], [32]) to the high
or infinit,,~temperature Gibbs state (i.e., the asymptotic behavior is unproblematic), we will 
show that at sharp finite times there can be transitions between re!limes where the evolved state 
is Gibbsian and re!limes where the evolved state is non-Gibbsian. 

In the light of the results in [9], Chapter 4, on renormali/,ation-group transformations, it 
should perhaps not come as a surprise that such transitions can happen. Ind"",d, we can view 
the tinK~evolved measure as a kind of (single-site) renormali/'ed Gibbs measure. Even though 
the image spin <It(;r;) at time t at site;r; is not a (random) function of the original spins <lOry) 
at time 0 for Y in only a finite block around ;r;, by the Feller character of the Glauber dynamics 
it depends only weakly on the spins <lOry) with y large. In that sense the time evolution is 
close to a standard renormali/,ation-group transformation, without rescaling, and so we can 
expect G rifli ths-Pearce pathologies. 

We will prove the following: 

(1) For an arbitrary initial Gibbs measure and an arbitrary Glauber dynamics, both having 
finite range, the measure stays Gibbs in a small time interval, whose length depends on 
both the initial measure and the dynamics (Tlworem 4.1). This result, though somewhat 
surprising, essentially comes from the fact that for small times the set of sites where a 
spin flip has occurred consists of "small islands" that are far apart in a "sea" of sites 
where no spin flip has occurred. 

(2) For a high- or infinite-temperature initial Gibbs measure and a high- or infinit"~tempera
ture Glauber dynamics, the measure is Gibbs for all t > 0 (Tlworems 5.11 and 6.15). 

(3) For a low-non-/,ero-temperature initial Gibbs measure and a high- or infinit"~temperature 
Glauber dynamics, there is a transition from Gibbs to non-Gibbs (Tlworems 5.16 and 
6.18). This result is somewhat counter-intuitive: after some time of heating the system 
it reaches a high temperature, where a priori we would expect the measure to be well
behaved because it should be exponentially close to a Completely Analytic (see [7]) 
high-temperature Gibbs measure. As we will S""', this intuition is wrong. However, from 
the results of [29] it follows that this transition does not occur when the initial measure 
is a rigid ground state (/,ero-temperature) measure (i.e., a Dirac measure). 

(4) For a low-non-/,ero-temperature initial Gibbs measure and a high- or infinit"~temperature 
Glauber dynamics, there possibly is a transition back from non-Gibbs to Gibbs when 
the Hamiltonian of the initial Gibbs measure has a non-/'ero magnetic field (Tlworems 
5.16 and 6.18). 
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The complementary regimes, with a low- or "ero-temperature Glauber dynamics acting over 
large titnes, are left open. 

In Section 2 we start by giving some basic notations and definitions, and formulating some 
general facts. 

In Section 3 we give representations of the conditional probabilities of the tim,,"~evolved 
measure and clari(y the link betw,,"'en the Gibbsian character of the tinK~evolved measure and 
the Feller property of the backwards process. These results are useful for proving the "positive 
side", i.e., for showing that the time-evolved measure is Gibbsian. \Ve use a criterion of [9], 
Chapter 4, Step 1, or [10] to identify bad conji!lv.mtions (points of essential discontinuity of 
every version of the conditional probabilities) as those configurations for which the constmined 
system (i.e., the measure at time 0 conditioned on the fv.tv.r-e bad configuration at time t > 0) 
exhibits a phase transition. This criterion will serve for the "negative side", i.e., for showing 
that the tinK~evolved measure is non-Gibbsian. 

In Section 4 we prove that for an arbitrary initial measure and an arbitrary dynamics, 
both having finit,,"~range interactions, the measure at time t is Gibbs for all t E [0, to], where 
to depends on the interactions. 

In Section 5 we treat the case of infinite-temperature dynamics, i.e., a product of ind,,"~ 
pendent Markov chains. This example already exhibits all the transitions betw,,"'en Gibbs and 
non-Gibbs we are after. Moreover, it has the advantage of fitting exactly in the framework of 
the renorrnaliy;ation-group transforrnations: the tinK'-evolved rneasure is nothing but a singk'
site Kadanoff transform of the original measure, where the parameter p(t) of this transform 
varies continuously from prO) = 00 to p( 00) = O. For the case of a low-temperature initial 
measure we restrict ourselves to the d-dimensional Ising modeL 

In Section 6 we show that the results of Section 5 also apply in the case of a high
temperature dynamics. The basic ingredient is a cluster expansion in space and time, as 
developed in [28] and worked out in detail in [25]. This is formulated in Tlworem 6.3 and is 
the technical tool needed to develop the "perturbation theory" around the infinit""~temperature 
case. 

In Section 7 we give a dynamical interpretation of the transition from Gibbs to non-Gibbs 
in terms of a change in the most pr-obable histor-y of an impr-obable conji!lv.mtion. We show 
that the transition is not linked with a wrong behavior in the large deviations at fixed time, 
and we close by formulating a number of open problems. 

2 Notations and definitions 

2.1 Configuration space 

The configuration space of our system is !l = {-I, + 1 }Zd, endowed with the product topology. 
Elements of !l are denoted by u, q. A configuration u assigns to each lattice point ;r; E Zd a 
spin value u(;r;) E {-I, + I}. The set of all finite subsets of Zd is denoted by S. For A E S 

and u E !l, we denote by U,\ the restriction of u to A, while !l,\ denotes the set of all such 
restrictions. A function f : !l --+ lR is called local if there exists a finite set ~ C Zd such that 
f(q) = f(u) for u and q coinciding on~. The minimal such ~ is called the dependence set 
of f and is denoted by D f. The vector space of all local functions is denoted by L. This is 
a uniformly dense subalgebra of the set of all continuous functions e(!l). A local function 
f : !l --+ lR with dependence set D f c A can be viewed as a function on !l,\. With a slight 
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abuse of notation we use f for both objects. For u, q E!l and A C Zd, we denote by UVI,'" the 
configuration whose restriction to A (resp. AC) coincides with U,I (resp. "hId. For:r; E Zd and 
U E!l, we denote by TxU the shifted configuration defined by Txu(Y) = u(y+:r;). A sequence of 
probability measures P"I on !l,1 is said to converge to a probability measure p, on !l (notation 
P"I --+ p,) if 

lim /. f dp,,1 = /. f dp, 
·\fZd , , 

Vf E L. (2.1) 

2.2 Dynamics 

The dynamics we consider in this paper is governed by a collection of spin-flip rates c(:r;, U), 
:r; E Zd, U E !l, satis(ying the following conditions: 

L Finite ran!le: Cx : U f--+ c(:r;, u) is a local function of U for all :r;, with diam(Dcx) c:: R < 00. 

2. Translation invariance: TxCO = Cx for all :r;. 

3. Strict positivity: c(:r;, u) > 0 for all:r; and u. 

Note that these conditions imply that there exist f, 11;1 E (0,00) such that 

0< f c:: c(:r;,u) c:: 11;1 < 00 (2.2) 

Given the rates (cx ), we consider the generator defined by 

Lf = L cx\1x f Vf E L, (2.3) 
XEZ,d 

where 
(2.4) 

Here. UX denotes the configuration defined by UX(:r;) = -u(:r;) and UX(y) = u(y) for y fc :r;. 
In [23], Theorem 3.9, it is proved that the closure of Lon e(!l) is the generator of a unique 
Feller process {Ut : t::c O}. We denote by S(t) = exp(tL) the corresponding semigroup, by IFq 
the path-space measure given Uo = u, and by lEq expectation over IF q. 

A probability measure p, on the Borel u-field of !l is called invariant if 

./ Lfdp, = 0 Vf E L. (2.5) 

It is called reversible if 

./ (Lflgdp, = ./ f(Lg)dp, Vf,g E L. (2.6) 

Reversibility implies invariance. For spin-flip dynamics with generator L defined by (2.3), 
reversibility of p, is equivalent to 

x dp,x 
c(:r;,u )-d = c(:r;,u) 

p, 
(2.7) 

where p,x denotes the distribution of U X when u is distributed according to p,. Note that (2.7) 
implies the existence of a continuous version of the Radon-Nikodym (RN)-derivative dp,x /dp,. 
This will be important in the sequeL 
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2.3 Interactions and Gibbs measures 

A !lood interaction is a function 
u:sxn--+lR, (2.8) 

such that the following two conditions are satisfied: 

L Local potentials in the interaction: UtA, u) depends on u(;r;),;r; E A, only. 

2. Uniform sv.mmability: 

:L sup IU(A, u)1 < 00 

A3X (TEn 

;r; E zd (2.9) 

The set of all good interactions will be denoted by B. A good interaction is called translation 
invariant if 

UtA + ;r;, T -xu) = UtA, u) (2.10) 

The set of all translation-invariant good interactions is denoted by Bli . An interaction U 
is called finite-ran!le if there exists an R > 0 such that UtA, u) = 0 for all A E S with 
diam(A) > R. The set of all finit'Hange interactions is denoted by BfT and the set of all 
translation-invariant finite-range interactions by B{,T. For U E B, ( En, A E S, we define the 
finite-volume Hamiltonian with boundary condition ( as 

HX(u) = :L U(A,uI(I') (2.11 ) 
An,l# 

and the Hamiltonian with fr"'" boundary condition as 

HI(u) = :L UtA, u), (2.12) 
Acl 

which depends only on the spins inside A. Corresponding to the Hamiltonian in (2.11) we 
have the finite-volume Gibbs measures ,/;", A E S, defined on n by 

where Z,{ denotes the partition function normali/,ing ,/;,' to a probability measure. 

For a probability measure p, on n, we denote by p,X the conditional probability distribution 
of u(;r;),;r; E A, given U,I' = (Ie Of course, this object is only defined on a set of p,-measure 
one. For A E S, rES and A c r, we denote by p,du,ll() the conditional probability to 
find U,I inside A, given that ( occurs on r \ A. For U E B, we call p, a Gibbs measure with 
interaction U if its conditional probabilities coincide with the ones prescribed in (2.13), Le., if 

p, - a.s. A E S,( E n. (2.14) 

We denote by g(U) the set of all Gibbs measures with interaction U. For any U E B, g(U) is 
a non-empty compact convex set. The set of all Gibbs measures is 

9 = U g(U). (2.15) 
C'EB 
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Note that 9 is not a convex set, since for U and V in Eli, convex combinations of 9 (U) and 
g(V) are not in 9 unless g(U) = g(V) (SIC'e [9] section 4.5.1). 
Remar k: \Ve will often use the notation H = I: A U (A, .) for the "Hamiltonian" correspond
ing to the interaction U. This formal sum has to be interpreted as the collection of "energy 
differences", i.e., if u and "I agrIC'e outside a finite volume A, then: 

H(q) - H(u) = :L [UtA, "I) - UtA, u)]. (2.16) 
Anc\# 

Definition 2.17 A measv.r-e p, is called Gibbsian if p, E g, other-wise it is called non
Gibbsian. 

2.4 Gibbsian and non-Gibbsian measures 

In this paper we study the timIC~dependence of the Gibbsian property of a measure under the 
stochastic evolution S(t). In other words, we want to investigate whether or not vS(t) E 9 at 
a given titne t > O. 

Proposition 2.18 The followin!l thr-ee statements ar-e eqv.ivalent: 

1. p,Eg. 

2. P, admits a continv.ov.8 and str-ictly positive ver-sion of its conditional pr-obabilities p,\' 
A E S,( Ell. 

3. P, admits a continv.ov.s ver-sion of the RN-derivatives dp,x I dp" ;r; E Zd. 

Pr-ooj. SIC'e [21] and [39]. • 
We will mainly use item 3 and look for a continuous version of the RN-derivatives dp,x I dp, by 
approximating them uniformly with local functions. 

A necessary and sufficient condition for p, not to be Gibbsian (p, 5i Y) is the existence of a 
bad configuration, i.e., a point of essential discontinuity. This is defined as follows: 

Definition 2.19 A conji!lv.mtion "I Ellis called bad for- a pr-obability measv.r-e p, if ther-e 
exists f > 0 and ;r; E Zd sv.ch that for- all A E S ther-e exist r :J A and ( ( E II sv.ch that: 

(2.20) 

Note that in this definition only the finitIC~dimensional distributions of p, enter. It is clear that 
a bad configuration is a point of discontinuity of every version of the conditional probabilities 
of p,. Conversely, a measure that has no bad configurations is Gibbsian (SIC'e e.g. [27]). 

2.5 Main question 

Our starting points in this paper are the following ingredients: 

L A translation invariant initial measure v E 9 (Uv ), corresponding to a finite-range 
translation-invariant interaction Uv E E{,T as introduced in Section 2.3. 
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2. A spin-flip dynamics, with flip rates as introduced in Section 2.2. This dynamics has 
a reversible measure p" which satisfies 

d x P, 

dp, 

c(:r;, u) 
c(:r;, U X )' 

(2.21 ) 

Hence, by Proposition 2.18 there exists an interaction U,t E S such that p, E g(U,tl. Since 
the rates are translation invariant and have finite range, this interaction can actually be 
chosen in S{,T and satisfies (recall (2.11) and (2.14)) 

(2.22) 

\Vithout loss of generality we can take the rates c(:r;, u) of the form 

c(:r;, u) = exp (~ :Z:::)U,t(A, u) - U,trA, UX)l) . 
A3X 

(2.23) 

A finit,,~volume approximation of the rates in (2.23) that we will often use is given by 

(2.24) 

where H;~ is the Hamiltonian with fr"'" boundary condition associated with the interaction U,t 
(recall (2.12)). These rates generate a pure-jump process on lh = {-I, + 1 yl with generator 

(Llf)() = :L CI(:r;,)'lxf() Vf E L. (2.25) 
xe\ 

Since L ,If converges to Lf as A r Zd for any local function f E L, the corresponding semigroup 
S,I (t) converges strongly in the uniform topology on ern) to the semigroup S(t), i.e., S,I (t)f --+ 

S(t)f as A r Zd in the uniform topology for any f E C(n). Therefore we have the following 
useful approximation result. Let v be a probability measure on nand V,I its restriction to n,1 
(viewed as a subset of n). Then 

(2.26) 

where the limit is in the sense of (2.1). If v E g(Uv ) is a Gibbs measure, then we can replace 
the finite-volume restriction V,I by the fr"",-boundary-condition finit"~volume Gibbs measure 
(in the case of no phase transition), or by the appropriate finite-volume Gibbs measure with 
generali/,ed boundary condition that approximates v (in the case of a phase transition). 

The main question that we will address in this paper is the following: 

Question: 

Is vS(t) = Vt a Gibbs measure'! 

In order to study this rather general question we have to distinguish betw"",n different regimes, 
as defined next. 
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Definition 2.27 U E B is a hi!!h-temperatv,1'e interaction if 

sup :l)IAI- 1) sup IU(A, cr) - UtA, crl)1 < 2, 
XE'lj{ A3X ry;ry' En 

(2,28) 

Equation (2,28) implies the Dobrushin uniqueness condition for the associated conditional 
probabilities p.~;'(, A E S, ( E ll, In particular, it implies that Ig(U)1 = 1 (i.e" no phase 
transition), Note that it is independent of the "single-site part" of the interaction, i.e" of the 
interactions U( {;r;}, cr), 
Remark: \Ve interpret the above norm as an inverse temperature, so small norm means high 
tern perature. 

Definition 2.29 We call: 

1. an initial meaSV,1'e v "hi!!h-temperatv,1'e" if it has an interaction satisfyin!! (2.28), and 
write Tv > > 1. 

2. an initial meaSV,1'e v "infinite-temperatv,1'e" if it is a pmdv,ct meaSV,1'e, (i.e., if the C01'-
1'espondin!! interaction Uv satisfies Uv(A, cr) = 0 fo1' all A with IAI > 1), and write 
Tv = 00. 

3. a dynamics "hi!!h-temperatv,1'e" if the associated 1'eve1'sible Gibbs meaSV,1'e p. has an in
teraction U,t satisfyin!! (2.28), and w1'ite T,t » 1. 

4. a dynamics "infinite-temperatv,1'e" if the associated 1'eve1'sible meaSV,1'e p. is a pmdv,ct 
meaSV,1'e (i.e., if the co1'1'espondin!! interaction U,t satisfies U,trA, cr) = 0 fo1' all A with 
IAI > 1), and w1'ite Tit = 00. 

As we will s,,'" in Section 5, the study of infinite-temperature dynamics is particularly instruc
tive, since it can be treated essentially completely and already contains all the interesting 
phenolnena we are after. 

3 General facts 

3.1 Representation of the RN-derivative 

As summari/'ed in Proposition 2,18, an object of particular use in the investigation of the 
Gibbsian character of a measure is its RN-derivative dp.x /dp. w,r,L a spin flip at site ;r;, In 
this section we show how to exploit the reversibility of the dynamics in order to obtain a 
sequence of continuous functions converging to the RN-derivative of the tinK~evolved measure 
Vt = vS(t) w,r,L spin flip, Let us first consider the finit,,~volume case, \Ve start from the 
finite-volulne generator 

Llf(cr) =:L cI(;r;,cr)(f(crX
) - f(cr)), (3,1) 

XE.\ 

where the finit,,~volume rates c,I(;r;, ,) are given by (2,24), Suppose that our starting measure 
v E g(Uv) is such that Ig(Uv)1 = 1, which implies that the fr"",-boundary-condition finit,,~ 

volume approximations VI converge to v, The fr"",~boundary-condition finit,,~volume Gibbs 
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measure p"I, corresponding to the interaction U,,, is the reversible measure of the generator 
L ,I. \Ve can then compute, using reversibility, 

(3.2) 

Definition 3.3 H;~'v (u) = I:AcdU" (A, u) - Uv(A, u)]. Note that this "differ-ence Hamilto
nian" depends on both the initial measv.r-e and the dynamics. 

Using this definition, we may rewrite (3.2) as 

dVISI(W ( ) = dp,X ( )lE~x (exp[H;~,V(utl]) 
dVISI(t) u dp,1 u lE~ (exp[H;~,V(utl]) , 

(3.4) 

where lE~ denotes the expectation for the process with semigroup S,I (t) starting from u. Since 
this semigroup converges to the semigroup S(t) of the infinite-volume process as A --+ Zd, we 
obtain the following: 

Proposition 3.5 For- any u E nand t ::c 0, 

dvS(W() dp,X() l' lEqx (exp[H;~,V(utl]) 
U=-(J lIn ( V) 

dvS(t) dp, ,liZ" lEq exp[H;~' (utl] 
(3.6) 

wher-e this eqv.ality is to be interpr-eted as follows: if the limit in the RHS of (3.6) is a limit 
in the v.nifor-m topolo!lY, then it defines a continv.ov.8 ver-sion of the LHS. 

Pr-ooj. The claim follows from a combination of (2.26) and (3.4) with Lemma 3.7 below. • 

Lemma 3.7 If Vn --+ v weakly as n --+ 00, and dv~/dvn E ern) exists for- any n E Nand 
converyes v.nifor-mly to a continv.ov.8 fv.nction W, then 

,T, l' dv~ dvx 
'±' = lln-=-. 

nioo dVn dv 

Pr-ooj. Let f : n --+ lR be a continuous function. Define (Ix : n --+ n by (lx(u) = uX. 
f 0 (Ix : n --+ lR is a continuous function. Therefore 

./fdVX = ./Uo(lx(U))V(dU) 

lim /. U 0 (Ix (u)) vn(du) 
ntoo , 

lim vn (u)f(u)vn(du) 
/

. d x 

ntoo, dUn 

lim /. w(u)f(u)vn(du) 
ntoo , 

./ wfdv, 
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Then also 

(3.9) 



where the fourth equality follows from 

(3.10) 

Since (3.9) holds for any continuous function f, the statement of the lemma follows from the 
Ries/, representation thwrem. • 

Proposition 3.5, combined with Proposition 2.18, will be used in Sections 46 to prove 
Gibbsianness. 

3.2 Path-space representation of the RN-derivative 

An alternative representation of the RN-derivative dvf I dVt is obtained by observing that 

Vt = vS(t) is the restriction of the path-space measure IF~,tl to the "layer" {t} x ll. In 
some sense, this path-space measure can be given a Gibbsian representation with the help 
of Girsanov's formula. The "relative energy for spin flip" of this path-space measure is a 
well-defined (though unbounded) random variable. Conditioning the path-space measure RN
derivative for a spin flip at site:r; in the layer {t} x ll, we get the RN-derivative dvf IdVt. More 
formally, let us denote by 7rt the projection on time t in path space, i.e., 7rt(w) = Wt with 
W E D([O, t], ll) the Skorokhod space. By a spin flip at site :r; in path space we mean a 
transforrnation 

E-)x : D([O, t], ll) --+ D([O, t], ll) (3.11 ) 

such that 
(3.12) 

Different choices are possible, but in this section we choose 

(E-' ( ))('. ) _ { -W( .. B, :r;) for y = :r;, ° c:: B c:: t. 
7x W B. Y - () . 

W B. Y otherwIse. 
(3.13) 

Let Fitl denote the (T-field generated by the projection 7rt. Then we can write the following 
formula: 

dvS(W = lEiO,tl (dIF0),t
l 

0 E-)x IF, ) 
dvS(t) v dIF~,tl ttl' 

(3.14) 

This equation is useful because of the Gibbsian form of the RHS of (3.14) given by Girsanov's 
formula, as shown in the proof of the following: 

Proposition 3.15 Let v be a Gibbs measv.r-e on ll. For- any t > 0, 

vS(W « vS(t) (3.16) 

and the RN-der-ivative can be written in the for-m 

dvS(W = lEiO,tl [(dVX 0 ) W IF, ] 
dvS(t) v dv 7ro x ttl' (3.17) 

wher-e Wx : D([O, t], ll) --+ lR is a continv.ov.8 fv.nction on path space (in the Skor-okhod topolo!lY). 
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Pmoj. \Ve first approximate our process by finit,,~volume pure-jump processes and use Gir
sanov's formula to obtain the densities of these processes w.r.t. the independent spin-flip 
process. Ind"",d, denote by IF~ the path-space measure of the finit"~volume approximation 
with generator (2.25) and by IF~'o the path-space measure of the independent spin-flip process 
in A, i.e., the process with generator 

LV = LVxf f E L. (3.18) 
XE.\ 

We have for f : n --+ lR such that D f c A, 

(3.19) 

S· "",1.0. I I fl' d d . fl' "lHee .lr ()" ~ IS t le pat l-space rneasure 0 t le III epen ent 8p1n- Ip process, the transformed 
measure IF~'O 0 E-)x equals IF;ko Abbreviate 

(3.20) 

Then we obtain 

(3.21 ) 

where W,I can be computed from Girsanov's formula (see [24] p. 314) and for A large enough 
reads 

where Nf(w) is the number of spin flips at site y up to time t along the trajectory w. \Ve thus 
obtain the representation of (3.17) by observing that W x.,1 does not depend on A for A large 
enough and using the convergence of IF~ to IF q as A r Zd. Ind"",d, the only point to check is 
that 

(
dVX) I 
dv 07f0 Wx E L (IFv), 

so that the conditional expectation in (3.17) is well-defined. 
of the following two observations: 

L dvx I dv is uniformly bounded because v E g. 

11 

(3.23) 

However, this is a consequence 



2. For \Ii x we have the bound 

(3.24) 

where, as before, 11;1 and f are the maximum and minimum rates, N/,'X(w) is the total 
number of spin flips in the region {y : Iy - ;r;1 c:: R} up to time t along the trajectory w. 
Since the rates are bounded from above, the expectation of the RHS of (3.24) over IF q 

is finite uniformly in u. 

• 
3.3 Backwards process 

Proposition 3.15 provides us with a representation of the RN-derivative dvf Idvt that can be 
interpreted as the expectation of a continuous function on path space in the backwar-ds pr-ocess. 
The backwards process is the Markov process with a time-dependent transition operator given 
by 

o c:: S c:: t. (3.25) 

where (-Iut = u) is conditional expectation with respect to the u-field at time t. Notice that 
this transition operator depends on the initial Gibbs measure v and is a function of sand 
t (timf~inhomogeneous process). Although the evolution has a reversible measure p" at any 
finite time the distribution at time t is not p,. This causes essential differences between the 
forward and the backwards process. 

The dependence of Tv(s, t) on v is crucial and shows that even for innocent dynamics, like 
the independent spin-flip process, the transition operators of the backwards process may fail 
to be Feller for certain choices of v (see Section 5 below). In general, the independence of the 
Poisson clocks that govern where the spins are flipped (in the backwards process this means 
wer-e flipped) is lost. 

In order to have continuity of the RN-derivative dvf Idvt, it is sufficient that the operators 
Tv(s, t) have the Feller property, i.e., map continuous functions to continuous functions. 

Proposition 3.26 If v is a Gibbs measv.r-e, then: 

Tv(s, t)C(n) c c(n) V 0 c:: s < t c:: to vS(t) E 9 V 0 c:: t c:: to. (3.27) 

Pr-ooj. This is an immediate consequence of Proposition 3.15. See also [20]. • 
As in Section 3.1, we can thus hope to approximate the transition operators of the back

wards process by "local operators" (operators mapping L onto L). 

Proposition 3.28 For- any u E nand 0 c:: s < t, 

(3.29) 

wher-e this eqv.ality is to be interpr-eted as follows: if the limit in the RHS of (3.29) is a limit 
in the v.nifor-m topolo!lY, then it defines a continv.ov.8 ver-sion of the LHS. 
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Pmoj. Let us first compute Tv(s, t) in the case of the finite-volume reversible Markov chain 
with generator (2.25). For the sake of notational simplicity, we omit the indices A referring 
to the finite volume, and abbreviate Vs = vS(s): 

(Tv(s, t)f)(u) = 

(3.30) 

where H;~'v is defined in Definition 3.3. • 
Propositions 3.26 and 3.28 are the analogues of Propositions 2.18 and 3.5. We will not 

actually use them, but they provide useful insight. 

3.4 Criterion for Gibbsianness of lJS(t) 

A useful tool to study whether vS(t) Egis to consider the joint distribution of (uo,utl, 
where 170 is distributed according to v. Let us denote this joint distribution by Vt, which can 
be viewed as a distribution on {-I, + 1 r; with S = Zd EB Zd consisting of two "layers" of Zd 
The correspondence betw"'en Vt and vS(t) is made explicit by the formula 

./ vttdu, dq)f(u)g(q) = ./ v(du) (fS(t)g)(u) f,gEL. (3.31 ) 

Now. for reasons that will become clear later, Vt has more chance of being Gibbsian than 
vS(t). The latter can then be viewed as the restriction of a Gibbs measure of a two-layer 
system to the second layer. Restrictions of Gibbs measures have b"'en studied e.g. in [37], 
[29] [10], [27], [26], and it is well-known that they can fail to be Gibbsian, and most examples 
of non-Gibbsian measures can be viewed as restrictions of Gibbs measures. Formally, the 
Hamiltonian of Vt is 

(3.32) 

where Pt(u, 'I) is the transition kernel of the dynamics. Of course, the object logpt(u, 'I) has 
to be interpreted in the sense of the formal sums :LA UtA, (7) introduced in Section 2.3. More 
precisely, if OqS(t) is a Gibbs measure for any 17, then logpt(u, 'I) is the Hamiltonian of this 
Gibbs measure. In order to prove or disprove Gibbsianness of the measure vS(t), one has to 
study the Hamiltonian (3.32) for fixed q. Let us denote by 9(H~) the set of Gibbs measures 
associated with the Hamiltonian H~ = Hte, 'I). From [10] we have the following: 

Proposition 3.33 FOT any t ::c 0: 
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1. If 19(H~)1 = 1 for- all q En, then vS(t) is a Gibbs measvr-e. 

2. For- monotone specifications, if 19(H~)1 ::c 2, then q is a bad confi!lv.ration for- vS(t), so 
vS(t) is not a Gibbs measv.r-e (by Pr-oposition 2.18). 

Pr-oof. SIC'e [10]. Part 2 is expected to be true without the requirement of monotonicity but 
this has not bIC'en proved. • 

A monotone specification arises e.g. when the Hamiltonian of (3.32) comes from a ferromag
netic pair potential and an arbitrary single-site part (possibly an inhornogen~'Ous rnagnetic 
field). 

In the case of a high-temperature dynamics (T,t » 1), OqS(t) converges to p, for any (J. 

This implies that for large t we can view the Hamiltonian of (3.32) as follows: 

(3.34) 

where O(T,ll(t) rneans SOllle Harniltonian with corresponding interaction converging to y;ero as 
t r 00 in B. Therefore, if H v does not have a phase transition, then H~ should not have a 
phase transition either for large t. On the other hand, if Hv does have a phase transition, 
then the ()q.~(t)-term will be important to select one of the phases. In Sections 56 we will 
come back to this description in more detail. 

The case of independent spin flips corresponds to Hit = O. 

4 Conservation of Gibbsianness for small times 

Having put the technical machinery in place in Sections 23, we are now ready to formulate 
and prove our main results in Sections 46. 

In this section we prove that for every finitIC~range spin-flip dynamics starting from a Gibbs 
rneasure v corresponding to a finite-range interaction the rneasure vS(t) rernains Gibbsian in 
a small interval of time [0, to]. The intuition behind this tlworem is that for small times the 
set of sites where a spin flip has occurred consists of "small islands" that are far apart in a 
"sea" of sites where no spin flip has occurred. This means that sites that are far apart have 
more or less disjoint histories. 

Theorem 4.1 Let both the initial measv.r-e v and the r-ever-sible measv.r-e p, be Gibbs measv.r-es 
for- finite-ran!le interactions Uv r-esp. U,t . Then ther-e exists to = to(p" v) > 0 sv.ch that vS(t) 
is a Gibbs measv.r-e for- all 0 c:: t c:: to. 

Pr-oof. During the proof we abbreviate H,\ = H;~·v. \Ve prove that the limit 

converges uniformly in t E [0, to] for to small enough when Uv , U,t E BfT. The to depends on 
both Uv and U,t . 

Let us write Rv, R,t to denote the range of Uv, U,t (SIC'e Section 2.2). 

I: Rv < 00, R,t = O. 
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To warm up, we first deal with unbiased independent spin-flip dynamics. For this dynamics 
the distribution of Ut under IF~x coincides with the distribution of ut under IF~. Therefore we 
can write 

where 

lE~ (exp[H\(utlll 
lE~ (exp[H\(utlll 

WX(u) = exp[(H{x} - H)(u)] 

is a continuous function of u. the sum runs over 

while 
Ot = IF~(ut(;r;) fc uo(;r;)) = 1- ,,-2t. 

The notation H"l, A c A, is defined by 

with uA the configuration obtained from 17 by flipping all the spins in A. 

Suppose first that Rv = L Then 

VA,B: d(A,B»L 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

For A c A we can decompose A into disjoint nearest-neighbor connected subsets 'II, ... ,'Ik 
and thus rewrite (4.3) as follows: 

with 
w~h) = cl71 exp[H7"{X} (17) - H{x}(u)] 

wqh) = cl71 exp[H7(u) - H(u)] 

and Ct = ot!(l - otl. Note that w~h) = wqh) for all 'I that do not contain ;r;. 

Next, since 

with 
, IH\(u)1 c. = 2 sup sup 1 \1 

• \ ()" L 

< 00 • 

we have the estirnate 

with at = -C + log(l/ctl. 
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(4.9) 

(4.10) 

(4.11 ) 

(4.12) 

(4.13) 



A similar estimate holds for Iw~(--y) I. Since at r 00 as t 1 0, it follows that for t small enough we 
can expand the logarithm of both the numerator and the denominator in (4.9) in a uniformly 
convergent duster expansion: 

(

00 1 
100

' "'-
b Ln.! 

n=O 'YJ 

}] W~(--y;)) L a(r)w~(r), 
[' 

100
' "'-

(

00 1 

b Ln.! 
n=O 'YJ 

}] Wq(--y;)) (4.14) 

By the estimate (4.13) we have, for t small enough, 

(4.15) 

and hence we obtain uniform convergence of the limit in (4.2). 

The case Rv < 00 is treated in the same way. \Ve only have to redefine the 1;'S as the 
Rv-connected decomposition of A. Note that to depends on Rv and converges to "ero when 
Rv r 00. 

II: Rv < 00, R,t < 00. 

Next we prove that the limit (4.2) converges uniformly if both interactions U,,, Uv are finite 
range. For the sake of notational simplicity we first restrict ourselves to the case Rv = R,t = L 

We abbreviate U = U,t - Uv . The idea is that we go back to the independent spin-flip 
dynamics via Girsanov's formula. After that we can again set up a cluster expansion, which 
includes additional factors in the weights due to the dynamics. 

The first step is to rewrite (4.2) in terms of the independent spin-flip dynamics: 

lEqx (exp[Hc\(utlll 
lEq (exp[Hc\(utlll 

lE~ (exp (I:YEC\ .r,~ log cry, undNf + .[,~(1 - cry, unlds) exp[H\ (utl]) 

lE~ (exp (I:YEC\ .r,~ log cry, u,)dNf + .[,~ (1 - cry, u,) )ds) exp[H\ (utl]) . 

(4.16) 

For a given reali"ation w of the independent spin-flip process, we say that a site y is w-active 
if the spin at that site has flipped at least once. The set of all w-active sites is denoted by 
J(w). Let iJ denote the trajectory that stays fixed at u over the time interval [0, t]. For A c A. 
define 

and put 

Also define 

.r,~ 10gc(y,w,)dNf(w) + .[,~(1 - c(y,w,))ds 

° 
U(A,wtl, 
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if A = Dc" 
ifAfcDc", (4.17) 

(4.18) 

(4.19) 



where the trajectory W X is defined as 

o c:: B c:: t. (4.20) 

With this notation we can rewrite the right-hand side of (4.16) as 

(4.21 ) 

where 

(4.22) 

is a continuous function of (J. In order to obtain the uniform convergence of (4.2), it suffices 
now to prove the uniform convergence of the expression betw"",,,n brackets in (4.21). 

As in part I, we decompose the set of w-active sites into disjoint nearest-neighbor connected 
sets 'II,' .. ,'Ik and rewrite, using the product character of lE~, 

lE~ (exp (2::AcIlUX(A,w) -UX(A,u)])) 

lE~ (exp (2::AcIlU(A,w) -U(A,(J)])) 

2::=0 ~ L;J) .. ;'Ync.\,/;n'Yj=0 n~=l 1J)~(fd 
2::::"=0;h 2::71 m=1 wq (,,;)' 

The cluster weights are now given by 

W q (.,) =etI7IlE~ (l{J(W) :J'I}exp ( :L [U(A'W7U\\7)-U(A'U)l)) ' 
An7i"0 

(4.23) 

(4.24) 

and an analogous expression for w~ after we replace U by UX. The factor etl71 arises from the 
probability 

(4.25) 

Having arrived at this point, we can proc"",,,d as in the case of the independent spin-flip 
dynamics. Namely, we estimate the weights Wq and prove that 

(4.26) 

with at r 00 as t 1 O. To obtain this estimate, note that 

(4.27) 

Then apply to (4.24) Cauchy-Schwar/" the bounds c c:: ('v c:: 11;1 on the flip rates, and the 
estirnate 

1 
C = sup sup -IAI :L IU(A, (J) I < 00, 

.\ q Anl\# 

to obtain 
wq (.,) c:: e/(t I71 (1 - e-t)-~171 

This clearly implies (4.26). 

for some K = K(c, 11;1, C). 

The case R v , R,t < 00 is straightforward after redefining the 'I;'s. 
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(4.28) 

(4.29) 
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5 Infinite-temperature dynamics 

5.1 Set-up 

In this section we consider the evolution of a Gibbs measure v under a product dynamics, Le., 
the flip rates c(:r;, 0") depend only on O"(:r;). The associated process {O"t: t::c O} is a product of 
independent Markov chains on {-I, + I}: 

(5.1) 

where iFq(x) is the Markov chain on {-1,+1} with generator 

Lx'P(a) = c(:r;, a)['P( -a) - 'P(a)]. (5.2) 

Let us denote by pf (a, {3) the probability for this Markov chain to go from a to {3 in time t. 
The Hamiltonian (3.32) of the joint distribution of (0"0, O"tl is then given by 

Ht(O",q) = Hv(O") - :l)ogpf(O"(:r;),q(:r;)). (5.3) 
x 

This equation can be rewritten as 

x x x 

with 

hf(t) 

h~(t) 

(5.5) 

The fields hy resp. h~ tend to pull 0" resp. q in their direction, while hY2 is a coup lin!! betw"",n 
0" and q that tends to align them. Ind"",d, note that hY2(t) is positive because 

pf( +, + )pf( -, -) - pf( +, - )pf( -, +) = det(exp(tLx)) ::c O. (5.6) 

In what follows we will consider the case where the singk~site generators Lx are independent 
of :r; and are given by 

L=~(-I+f 
2 1 + f 

1- f ) 

-1- f 
for some 0 c:: f < L (5.7) 

For f > 0 this means independent spin flips favoring plus spins, for f = 0 it means independent 
unbiased spin flips. The invariant measure of the singk~site Markov chain is (v( +), v( -)) = 

~(1 + f, 1 - f). The relevant parameter in what follows is 

v(-) I-f 
0=-=-

v(+) l+f' 
(5.8) 
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In terms of this parameter the fields in (5.5) become 

hl(t) -10 0 1 (1 + oct) 
4 b 1 + te-t 

1 
h2(t) -210g0+hl(t) 

1 (1 + OCt)(1 + tct) 
hI2(t) 4 log (1 _ e t)2 . (5.9) 

In particular, for 0 = 1 we get hI (t) = h2(t) = 0 and 

1 1 + c t 

h 12 (t) = 2 log 1 _ e t' (5.10) 

5.2 1 « Tv <:: 00, T" = 00 

Theorem 5.11 Let v be a hi!lh- or- injinite-temperatv.r-e Gibbs measv.r-e, i.e., its interaction 
Uv satisjies {2.28}. Let S(t) be the semi!lTOv.p of an ar-bitrar-y injinite-temperatv.r-e dynamics. 
Then vS(t) is a Gibbs measv.r-e for- all t ::c o. 

PTOOj. The joint distribution of (uo, utl is Gibbs with Hamiltonian (recall (3.32) and (5.4)) 

(5.12) 
x x 

For fixed "I, the last term is constant in u and can therefore be forgotten. Since H t (-, "I) 
differs from HvO only in the singk~site interaction, Ht(-, "I) satisfies (2.28) if and only if 
Hv 0 satisfies (2.28). Hence 19 (Ht (-, "I) 1 = 1 for any "I, and we conclude from Proposition 3.33 
that vS(t) is Gibbsian. • 

Thwrem 5.11 should not come as a surprise: the infinite-temperature dynamics act as a 
single-site Kadanoff transformation and in the Dobrushin uniqueness regime such renormali/'ed 
measures stay Gibbsian [14], [18], [9]. 

5.3 () < Tv < < 1, T" = 00, 8 = 1 

For the initial measure we choose the low-temperature plus-phase of the d-dimensional Ising 
model, v = v[!,h, i.e., the Hamiltonian Hv is specified to be 

Hv(u) = -13 :L u(;r;)u(y) - h :L u(;r;), (5.13) 
<X,V> x 

where I:<x,y> denotes the sum over nearest-neighbor pairs, and 13 > > Pc with Pc the critical 
inverse tern perature. The dynarnics has generator 

Lf=:Lvxf, (5.14) 
x 

corresponding to the case 0 = L The joint measure has Hamiltonian as in (5.12), with 
hI (t) = h2(t) = 0 and h I2(t) = hl' 

Ht(u, "I) = -13 :L u(;r;)u(y) - h:L u(;r;) - ht:L u(;r;)q(;r;). (5.15) 
<X,V> x x 

The "dynamical field" is given by h t = -(1/2) log[tanh(t/2)]. 
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Theorem 5.16 Fo1' 13 » j3c: 

1. The1'e exists a to = to (13, h) sv,ch that V;!,hS(t) is a Gibbs meaSV,1'e fo1' all 0 c:: t c:: to. 

2. If h > O. then the1'e exists a tl = tl (13, h) sv,ch that V;!,hS(t) is a Gibbs meaSV,1'e fo1' all 
t::c t l · 

3. If h = O. then the1'e exists a t2 = t2(j3) sv,ch that V;!,oS(t) is not a Gibbs meaSV,1'e fo1' all 
t::c t2' 

4. Fo1' d ::c 3. if h c:: h(j3) small enovgh. then the1'e exist t3 = t3(j3, h) and t4 = t4(j3, h) 
sv,ch that V;!,hS(t) is not a Gibbs meaSV,1'e fo1' all t3 c:: t c:: t4' 

Pmof The proof uses (5,15), 

L For small t the dynamical field ht is large and, for !liven "I, forces u in the direction of "I, 
Rewrite the joint Hamiltonian in (5,15) as 

Ht(u, "I) = !ht (- ~ L u(:r;)u(y) - ~ L u(:r;) - !htL u(:r;)q(:r;)) 
v Ht <X,V> V Ht x x 

!htHt(u, "I)' (5,17) 

For 0 c:: t c:: to small enough, Ht has the unique ground state "I and so, for A ::c AO large 
enough, AHt satisfies (2,28) (SIC'e [13], example 2, p, 147), Therefore, for 0 c:: t c:: tl such 
that v'ht ::c AO, HtC, "I) has a unique Gibbs measure for any "I, Hence, vS(t) is Gibbs by 
Proposition 3,33(1), 

2, For large t the dynamical field h t is small and cannot cancel the effect of the external field 
h > 0, Rewrite the joint Hamiltonian as 

Ht(u, "I) = j7j (-j7j L u(:r;)u(y) - '; L u(:r;) - '~ L u(:r;)q(:r;)) 
<X,V> v;:, x v;:, x 

j7jHt(u, "I)' (5,18) 

For t ::c tl large enough (independently of 13), HtC, "I) has the unique ground state u = hllhl, 
Hence, for 13 large enough, V!3Ht C, "I) has a unique Gibbs measure by (2,28) (again, see [13], 
example 2, p, 147), Hence, vS(t) is Gibbs by Proposition 3,33(1), 

3, This fact is a consequence of the results in [9], section 4,3.4, for the singk~site Kadanoff 
transformation, Since the joint Hamiltonian in (5,15) is ferromagnetic, it suffices to show that 
there is a special configuration qspec such that Ig(HC, qspec) I ::c 2, \Ve choose qspec to be the 
alternating configuration, For t ::c t2 large enough, HtC, qspec) has two ground states, and 
by an application of Pirogov-Sinai tlwory (see [9] Appendix B), it follows that, for 13 large 
enough, Ig(HtC, qspec) I ::c 2, Therefore qspec is a bad configuration for vS(t), implying that 
vS(t) is not Gibbs by Proposition 3,33(2), 

4, In this case we rewrite the Hamiltonian in (5,15) as 

(5,19) 
<X,V> x 
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For "intermediate" t we have that hand h t are of the same order. As explained in [9] 
section 4.3.6, we can find a bad configuration qspec such that the term :Lx h(q(;r;)o-(;r;) in the 
Hamiltonian "compensates" the effect of the homogenwus-field term :Lx hu(;r;) and for which 
HtC, qspec) has two ground states which are predominatly plus and minus. Since the proof of 
existence of qspec requires analysis of the random field Ising model, we have to restrict to the 
case d::C 3 (unlike the previous case qspec is not constructed, but chosen from a measure one 
set). Then for 13 large enough, by a Pirogov-Sinai argument (s(.'<3 appendix B, Theorem B 31 
of [9]) Ig(HtC, qspec) I ::c 2, implying that vS(t) is not Gibbs by Proposition 3.33(2). • 

Remark: 

From the estimate (B89) in [9], Appendix B, we can conclude the following: 

L to (13, h) --+ 0 as 13 --+ 00 and to (13, h) --+ 00 as h --+ 00. 

2. t2(j3) --+ 0 as 13 --+ 00. 

3. t:)(j3, h) --+ 0 as 13 --+ 00. 

5.4 () < Tv < < 1, T,t = 00, 8 < 1 

Let us now consider a biased dynamics. At first sight one might expect this case to be 
analogous to the case of an unbiased dynamics with an initial measure having h > O. However. 
this intuition is false. 

Theorem 5.20 The same r-esu./ts as in Theor-em 5.16 hold, bu.t with the ti's also dependin!l 
on O. For- item 4 we need the r-estrictions d::C 3 and Ih + t log 01 small enough. 

Pr-ooj. The last term in (5.4) being irrelevant, we can drop it and study the Hamiltonian 

Ht(u, "I) = -13 :L u(;r;)u(y) - :L 17 (;r;) [(h + hI (t)) + h I2 (t)q(;r;)]. (5.21 ) 
<X,V> x 

This Hamiltonian is of the same form as (5.15), but with h becoming t-dependent. \Ve have 
limttoo hI (t) = 0 and limttoo hI2(t) = 0 with 

lim h I 2(t) = 1 + 0 > I, (5.22) 
ttoo hI (t) 1 - 0 

so that, in the regime where 13 » j3c. h = 0, t » 1, we find that the effect of hI2(t) 
dominates. Hence we can find a special configuration that compensates the effect of the field 
hI (t) and for which the Hamiltonian (5.21) has two ground states, implying that vS(t) 5i g. 
Similarly, when h > 0 we can find t intermediate such that :Lx(h+h l (t) )o-(;r;) is "compensated" 
by :L hI2(t)0-(;r;)q(;r;). • 

Remark: 

Note that if Tv = 0, Tit = 00, then vS(t) is a product measure for all t > 0 and hence is Gibbs. 
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6 High-temperature dynamics 

6.1 Set-up 

In this section we generali/,e our results in Section 5 for the infinite-temperature dynamics to 
the case of a high-temperature dynamics. The key technical tool is a cluster expansion that 
allows us to obtain Gibbsianness of the joint distribution of (uo, utl with a Hamiltonian of 
the form (3.32). The main difficulty is to give meaning to the term logpt(u, "I), Le., to obtain 
Gibbsianness of the measure OqS(t) for any u. In the whole of this section we will assume 
that the rates c(:r;, u) satisfy the conditions in Section 2.2 and, in addition, 

with 

c(:r;,u) = 1 + f(:r;,U) 

SUPq.x !c(:r;, u)1 = 0 « 1 

f(:r;, u) = f(:r;, -u). 

(6.1) 

(6.2) 

The latter corresponds to a high-temperature unbiased dynamics, Le., a small unbiased per
turbation of the unbiased independent spin-flip process. For the initial measure we consider 
two cases: 

L A high- or infinit'Hemperature Gibbs measure v. In that case we will find that vS(t) 
stays Gibbsian for all t > O. 

2. The plus-phase of the low-non-/,ero-temperature d-dimensional Ising model, v[!,h, corre
sponding to the Hamiltonian in (5.13). In that case we will find the same transitions as 
for the infinite-temperature dynamics. 

6.2 Representation of the joint Hamiltonian 

In this section we formulate the main result of the spac'Hime cluster expansion in [28] and 
[25]. We indicate the line of proof of this result, and refer the reader to [25] for the complete 
details. 

Theorem 6.3 Let v be a Gibbs measv.r-e with Hamiltonian Hv. and let the dynamics be !lOV
er-ned by rates satisfyin!l (6.16.2). Then the joint distr-ibv.tion of (uo, utl. when uo is dis
tr-ibv.ted accor-din!l to v. is a Gibbs measv.r-e with Hamiltonian 

(6.4) 

The Hamiltonian H$yn(u,q) cor-r-esponds to an interaction U$yn(A,u,"I), A E S. that has the 
followin!l pr-oper-ties: 

1. The interaction splits into two ter-ms 

V•t V·t V·t 
dyn = 0 + " 

wher-e U6 is the sin!lle-site potential cor-r-espondin!l to the K adanoff transfonnation: 

U6({:r;}, u, "I) 
U6(A, u, "I) 

-1 10g[tanh(t/2)]u(:r;)q(:r;) 
o 
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:r; E Zd. 

if IAI fc L 

(6.5) 

(6.6) 



2. The teno UJ = UJrA., u, "I) decays exponentially in the diameter- of A., i.e., ther-e exists 
a( 0) > 0 sv.ch that 

sup sup L supen(6)diam(A)luJrA.,u, "1)1 < 00. 

t;:::o x A3X (T;1l 

and a( 0) r 00 as 0 1 o. 

(6.7) 

3. The potential U$yn converyes exponentially fast to the potential U,t of the hi!lh-temperatv.r-e 
r-ever-sible Gibbs measv.r-e: 

lim sup L supen(6)diam(A)luJrA., u, "I) - U,t(A., "1)1 = o. 
ttoo X (T,TI 

A3X ~'I 

(6.8) 

4. The teno UJ is a per-tv.r-bation of the ter-m U6, i.e., 

Remarks: 

1. Equation (6.6) corresponds to the infinit'Hemperature dynamics (Le., c == 1). 

2. Equation (6.9) expresses that the potential as a function of the rates c is continuous at 
the point c == 1, and that the Kadanoff term is dominant for 0 < < 1. 

Main steps in the proof of Theorem 6.3 in [25]: 

• Discretization: The semigroup S(t) can be approximated in a strong sense by discret"~ 
time probabilistic cellular automata with transition operator of the form Pn (u1Iu) 
IL Pn(ul(;r;)lu), where 

(6.10) 

• Space-time cluster expansion for fixed discretization n: For n fixed the quantity 

(6.11) 

is defined by the convergent cluster expansion 

(jJ~(u, "I) = L VJ;:~(r), (6.12) 
['3x;['EC 

where C is an appropriate set of clusters on Zd+ I . 

• Uniformity in the discretization n: The functions (jJ~ converge uniformly as n r 00 

to a continuous function (jJX (which defines a continuous version of dp,x /dp,). This is 
shown in two steps: 
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L Uniform boundedness: 

sup sup sup IqJ~(u,q)1 < 00. (6.13) 
n x (T;1l 

2. Uniform continuity: 

Vu,q E n. (6.14) 

Equations (6.13) and (6.14) imply that qJ~ as a function of n contains a uniformly 
convergent subsequence. The limiting qJx is independent of the subsequence, since it is 
a continuous version of dp,x / dp,. 

6.3 1« Tv <:: 00, 1 «T" < 00 

Given the result of Theorem 6.3, the case of a high- or infinit'Hemperature initial measure is 
dealt with via Dobrushin's uniqueness criterion (recall Thwrem 5.11 in Section 5.2). 

Theorem 6.15 Let v be a hi!lh-temperatv.r-e Gibbs measv.r-e, i.e., its interaction Uv satisfies 
{2.28}. Let the rates satisfy {6.16.2}. Then, for- 0 small enovgh, vS(t) is a Gibbs measv.r-e 
for- all t ::c o. 

Pr-ooj. For fixed 'I, the Hamiltonian H t (-, 'I) of (6.4) corresponds to an interaction U["'- By 
(6.7) and (6.9), this interaction satisfies 

lim sup sup L(IAI-l)sup IUt~"(u) - U["'(ul)1 
OtO t x ()" ryl 

A3X ) 

= L(IAI-l)IUv(u) - Uv(ul)1 < 2. (6.16) 
A3X 

Therefore, for 0 small enough, (2.28) is satisfied for the interaction U['" for all t ::c 0 and all 
q. Hence Ig(Ht (-, '1))1 = 1, and we conclude from Proposition 3.33(1) that vS(t) E g. • 

6.4 () < Tv < < 1, 1 < < T" < 00. 

\Ve consider as the initial measure the plus-phase of the low-temperature Ising model v;!,h, 
introduced in Section 5.3. The joint distribution of (uo, utl has the Hamiltonian 

Ht(u, 'I) = -/3 L u(;r;)u(y) - h L u(;r;) - ~ log[tanh(t/2)] L u(;r;)q(;r;) + HZ(u, 'I), (6.17) 
<x~> x x 

where HZ corresponds to the interaction U$yn introduced in (6.5). The following is the ana
logue of Thwrem 5.16 

Theorem 6.18 For- /3» /3c and 0 < 0« 1: 

1. Ther-e exists to = to(/3, h, 0) sv.ch that V;!,hS(t) is a Gibbs measv.r-e for- all 0 <:: t <:: to. 
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2. If h > 0, then ther-e exists tl = tl ({3, h, 0) sv.ch that V;!,hS(t) is a Gibbs measv.r-e for- all 
t::c t l • 

3. If h = 0, then ther-e exists t2 = t2({3, 0) sv.ch that V;!,oS(t) is not a Gibbs measv.r-e for- all 
t> t2' 

4. For- d ::c 3, if 0 < h < h({3) and 0 < 0 < 0({3, hl, then ther-e exists t:l({3, h, 0), t4 ({3, h, 0) 
sv.ch that V;!,hS(t) is not a Gibbs measv.r-e for- all t E [t3, t4]' 

Pr-oof. 

1. This a consequence of Thwrem 4.1. 

2. This is proved in exactly the same way as the corresponding point in Thwrem 5.16. 

3. Here we cannot rely on monotonicity as was the case in Thwrem 5.16. It is therefore 
not sufficient to show that for the fully alternating configuration "10, the Hamiltonian 
He, "10) exhibits a phase transition. We have to show the following slightly stronger fact: 
if m.t(du) is any Gibbs measure corresponding to the interaction H(·, q~ + ,\,,), then 

./ m.t(du)u(O) > 'I > O. (6.19) 

This proof of this fact relies on Pirogov-Sinai thwry for the Hamiltonian Hte, q~ + ,\,,). 
The first step is to prove that the all-plus-configuration is the unique ground state of this 
Hamiltonian. Since the Ising Hamiltonian satisfies the Peierls condition, we conclude 
from [9] Proposition B.24 that the set of ground states of Hte, q~ +~\l is a subset of 
{+, -}. If we drop the term HZ e, q~ + ,\,,) (Le., if 0 = 0), then the remaining Hamilto
nian has as the unique ground state the all-plus-configuration and satisfies the Peierls 
condition. Therefore, for 0 small enough, we conclude from [9] Proposition B.24 that 
Hte, q~ + ",.) has the all-plus-configuration as the only possible ground state. From (6.17) 
it is easy to veri(y that the all-plus-configuration is actually a ground state for 0 small 
enough. In order to conclude that for {3 large enough, the unique phase of H t e, q~ + ,\" ) 
is a weak perturbation of the all plus configuration (uniformly in A), we can rely on 
the thwry developed in [3], or [6] which allows exponentially decaying perturbations of 
a finite range interaction satis(ying the Peierls condition (SIC'e e.g. equations (1.3),(2.2) 
of [3]). Similarly, H t e, q~ - ",.) has a unique phase which is a weak perturbation of the 
all minus configuration. This is sufficient to conclude that no version of the conditional 
probabilities is continuous at "10, SIC'e the discussion [9] p. 980-981. 

4. \Ve can use the same argument as developed in [9], section 4.3.6, introducing a random 
perturbation of the alternating configuration to "compensate the uniform magnetic field" 
(since this requires analysis of the random field Ising model, we have the restriction 
d ::c 3). The only complication is the extra term in the Hamiltonian arising from 
o fc O. This requires Pirogov Sinai theory for the interaction H t (17, "I), where "I = "If 
is a random modification of the fully alternating configuration obtained by flipping the 
spins in the alternating configuration with probability c/2{3 for a flip from + to -. Since 
the couplings between "I and 17 are not finite range, we cannot apply directly Tlworem 
B31 of [9] for the random Hamiltonian Ht(u, "If). However, as the interaction decays 
exponentially fast and Pirogov-Sinai analyses do not distinguish betwIC'en finite range 
and exponentially decaying interactions, similar arguments as those developed in [40] 
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still work in our case and yield the analogue of Theorem B31 of [9]. However we have 
not written out the details. 

• 
Remark: 

A result related to Thwrem 6.15 was obtained in [28]. Although the abstract of that paper is 
formulated in a somewhat ambiguous manner, its results apply only to initial measures which 
are product measures (in particular Dirac measures) . In particular this includes the case 
Tv = 0 and 1 «Tit < 00. The results of [28] (or [25]) then imply that the measure is Gibbs 
for all t > O. This seems surprising, because t2({3, 0) 1 0 as {3 r 00. It is therefore better for 
the intuition to imagine a Dirac-measure as a product measure than to view it as a limit of 
low-ternperature lneasures. 

7 Discussion 

7.1 Dynamical interpretation 

In the case of renormali"ation-group pathologies, the interpretation of non-Gibbsianness is 
usually the presence of a hidden phase transition in the original system conditioned on the 
image spins (the constrained system). In the context of the present paper, we would like to 
view the phenomenon of transition from Gibbs to non-Gibbs as a chan!le in the choice of most 
pr-obab/e histor-y of an impr-obab/e conji!lv.mtion at time t > O. 

To that end, let us consider the case of the low-temperature plus-phase of the Ising model 
in "ero magnetic field ({3 > > {3", h = 0) with an unbiased (0 = 1) infinit'Hemperature 
dynamics. Consider the spin at the origin at time t conditioned on a neutral (say alternating) 
configuration in a svfficiently /arye annv./v.8 A around it. For small times the occurrence of 
such an improbable configuration indicates that with overwhelming probability a configuration 
very similar was present already at time O. As the initial measure is an Ising Gibbs measure, 
the distribution at time 0 of the spin at the origin is determined by its local environment only 
and does not depend on what happens outside the annulus A. As all spins flip independently, 
no such dependence can appear within small times. 

However, after a sufficient amount of time (larger than the transition time t2), if the 
same improbable configuration is observed, then it has much more chance of being recently 
created (due to atypical fluctuations in the spin-flip processes) than of being the survivor of 
an initial state of affairs. Ind"",d, to have been there at time 0 is improbable, but to have 
survived for a large time is even more improbable. Suppose now that outside the annulus A we 
observe an enonnov.s annv./v.s r in which the magneti"ation is more negative than -'{(I,*(t)/2, 
where '{(I,*(t) is the value of the evolved magneti"ation (which starts from '((I,*(O) and decays 
exponentially fast to "ero). Because a large droplet of the minus-phase shrinks only at finite 
sp"",d and typically carries a magneti"ation characteristic of the evolved minus-phase, with 
large probability there was an enor-mov.8 dr-op/et of the minus phase (even a bit larger than r) 
at time 0, which the spin at the origin remembers. Ind"",d, the probability of this happening 
is governed by the si"e of the sv,rjace of r. In contrast, the probability of a large negatively 
magneti"ed droplet, arising through a large fluctuation in the spin-flip process starting from 
a typical plus-phase configuration, is governed by the vo/v,me of r. Therefore, this second 
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scenario can safely be forgotten. Although for any si/,e of the initial droplet of the minus
phase there is a time after which it has shrunk away, for each fixed time t we can choose an 
initial droplet si/,e such that at time t it has shrunk no more than to si/,e r. Since we want the 
shrinkage until time t to be negligible with respect to the linear si/,e of r, we need to choose 
r larger when t is larger. 

Thus, the transition reflects a changwver betw"",,,n two improbable histories for seeing an 
improbable (alternating) annulus configuration. It can be viewed as a kind of large deviation 
phenomenon for a tinK~inhomogelwous system. One could alternatively describe it by saying 
that for small times a large alternating droplet must have occurred at time 0, while after the 
transition time t2 a large alternating droplet must have been created by the random spin-flips: 
a "natv.r-e to nv.r-tv.r-e" transition [35]. The mathematical analysis of this interpretation would 
rely on finding the (constrained) minimum of an entropy function on the space of trajectories. 
Alternatively, one could try to study the large deviation rate function for the magneti/,ation 
of the measure at time 0 conditioned on an alternating configuration at time t. This rate 
function should exhibit a unique minimum for 0 c:: t < t2 and two minima for t > t2' 

7.2 Large deviations 

A measure can be non-Gibbsian for different reasons (s"",,, [9], section 4.5.5) One of the possi
bilities is having "wrong large deviations", i.e., the probability 

vS(t) (~Txf(U) ~ n) (7.1) 

for fixed t and n fc J S(t)fdv does not decay exponentially in IAI, i.e., not as exp[-IAVj(n) + 
o(IAI)], or equivalently, there exists a function f E L, f ::c 0, f fc 0 such that 

.;~l~){ 1'~IIOg/ vS(t)(du)exp l~ Txf(U)] = o. (7.2) 

An example where this phenomenon of "wrong large deviations" occurs is the stationary 
measure of the voter model (s"",,, e.g. [22]). However, it does not occur in our setting. Namely, 
if the scale of the large deviations of the random measure L.I = I:xel OTx q under v is the 
volume IAI, then the same holds under vS(t) for any t > O. Indeed, by Jensen's inequality 
and by the translation invariance of the dynamics we have, for f E L, f ::c 0, f fc 0, 

lims~p 1'~IIOg.l· vS(t)(du)exp [LTxf(U)] 
.liZ xE.I 

::c lims~p 1'~IIOg.l· v(du)exp [LTxS(t)f(U)] 
.1 iZ xE.I 

= s~p [/ S(t)fdp. - h(plvl] 

>0 (7.3) 

with h( ·1·) denoting relative entropy density. The equality follows from the volume-scale large 
deviations of v, and the last inequality follows from the fact that S(t)f E ern), S(t)f ::c 0, 
S(t)f fc 0 imply J S(t)fdv > O. 
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7.3 Reversibility 

Throughout the whole paper, we have assumed the stationary measure p, to be reversible. 
However, this is a condition that only serves to make formulas nicer. It is not at all a 
necessary condition: if we consider any high-temperature spin-flip dynamics, then we know 
that the stationary measure p, is a high-temperature Gibbs-measure. Equation (3.2) can be 
rewritten in the general situation: we have to replace S,I(t) in the right-hand side by SA (t), 
where S*(t) is the semigroup corresponding to the rates of the reversed process, Le., the rates 

* x dp,x 
c (:r;,u) =c(:r;,u )-d . 

p, 
(7.4) 

In all the formulas of Section 2, we then have to replace lEq by lE~, referring to expectation in 
the process with semigroup S*(t). 

7.4 Open problems 

L Infinite-range interactions. How much can we save when relaxing the condition that 
the interactions be finite-range? 

2. Trajectory of the interaction. In the regime 1 < < Tv c:: 00, 1 < < T,t c:: 00, what 
can we say about the trajectory t f--+ Ut ,! It is not hard to prove that it is analytic 
in Bti and converges to U,t- But can we say sOlnething about the rate of convergence? 
Note that we can view the tv.r-ve {UVt : t ::c O} as a continuous trajectory in the space 
E, interpolating betw"",,,n Uv and U!*' which implies that 9 contains an arc-connected 
subset. Other topological characteristics of 9 are discussed in [9], section 4.5.6. 

3. Uniqueness of the transitions. Even in the case Tit = 00 we have not proved that 
the transition from Gibbs to non-Gibbs is unique e.g. that to(j3, 0) = t2(j3) in Tlworem 
5.16. However, we expect that when h = 0 the alternating configuration is "the worst 
configuration", Le., the transition is sharp and occurs at the first time at which the 
alternating configuration is bad. 

4. Estimates for the transition times. Can we find good estimates for the t;'s as a 
function of e.g. the temperatures, the magnetic fields and the ranges of the interaction 
in v and p,. 

5. Weak Gibbsianness. In the regimes where vS(t) is not a Gibbs measure we expect that 
we can still define a vS(t)-a.s. converging interaction Ut for which vS(t) is a "weakly 
Gibbsian measure" (see [8], [27]). This interaction Ut can e.g. be constructed along 
similar lines as are followed in the proof of Ko/'lov's tlworem (s"",,, [21],[26]) and its 
convergence is to be controlled by the decay of "quenched correlations", Le., the decay 
of correlations in the measure at time 0 conditioned on having a fixed configuration "I at 
time t. These correlations are expected to decay exponentially for vS(t)-a.e. "I, which 
would lead to vS(t)-a.s. convergence of the Ko/'lov-potentiaL 

6. Low-temperature dynamics. The main problem of analy/,ing the regime 0 < Tit < < 
1 for large t is the impossibility of a perturbative representation of - log Pt (u, "I). If we 
still continue to work with the picture of the joint Hamiltonian in (3.32), then the term 
-logpt(u, "I) will not converge to a u-independent Hamiltonian as t roo. Therefore we 
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cannot argue that for large t the Gibbsianness of the measure vS(t) depends only on the 
presence or absence of a phase transition in the Hamiltonian Hv of the initial measure 
v. The dynamical part of the joint Hamiltonian can induce a phase transition. The 
regime 0 < T,t < < 1 is very delicate and there is no reason to expect a robust result for 
general models. Metastability will enter. 

7. Zero-temperature dynamics. \Vhat happens when T,t = 0'1 In this case there is only 
nature, no nurture. \Ve therefore expect the behavior to be different from 0 < Tit < < 1. 
Trapping phenomena will enter. 

8. Other dynamics. Do similar phenomena occur under spin-exchange dynamics, like 
Kawasaki dynamics? In particular, how do conservation laws influence the picture (s(.'<3 
[16], [17], [1]) 
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