1
2
3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
20
20
21
21
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
22
54 57
55 56
56
5/
58
59
60

1	Mineral contributions to the diet and health of wild chimpanzees in three
2	East African forests, with notes on mechanisms and underlying mineral con-
3	centrations
4	
5	Running title: Mineral contributions to chimpanzee diet
6	
7	Vernon Reynolds ¹⁻² , Alejandra Pascual-Garrido ³ , Andrew W. Lloyd ⁴ , Peter Lyons ⁴ , Catherine
8	Hobaiter ^{2,5}
9	
10	¹ School of Anthropology, Oxford University, Oxford, UK; ² Budongo Conservation Field Sta-
11	tion, Masindi, Uganda; ³ School of Archaeology, Oxford University, Oxford, UK; ⁴ School of
12	Environment & Technology, University of Brighton, Brighton, UK; ⁵ School of Psychology and
13	Neuroscience, University of St Andrews, St Marys College, South Street, St Andrews, Scot-
14	land
15	
16	

17 Abstract

We present new data on the ingestion of minerals from termite mound soil (TMS) by chim-panzees (Pan troglodytes schweinfurthii) living in the Budongo Forest Reserve, Uganda. Termite mound soil is here shown to be a rich source of minerals, containing high concen-trations of iron and aluminium. Termite mound soil is not, however, a source of sodium. The concentrations of iron and aluminium are the highest yet found in any of the mineral sources consumed. Levels of manganese and copper, though not so high as for iron and al-uminium, are also higher than in other dietary sources. We focus on the contribution of termite mound soil to other known sources of mineral elements consumed by these apes, and compare the mineral content of termite soil with that of control forest soil, decaying wood, clay, and the normal plant-based chimpanzee diet at Budongo. Samples obtained from Mahale Mountains National Park and Gombe National Park, both in Tanzania, show similar mineral distribution across sources. Finally, we suggest three distinct but related mechanisms by which minerals may come to be concentrated in the above-mentioned sources.

33 Keywords: geophagy; *Pan troglodytes*; termite mound soil, minerals; diet; chimpanzees;

34 Uganda; Tanzania

35 Introduction

Some bird and mammalian species, including elephants, macaques, tamarins, gorillas, chim-panzees and humans (Wilson 2003), consume soil of a variety of kinds, often in the form of clay, for its mineralogical content. In doing so they obtaining both essential minerals, which may have nutritional value, and non-nutritional minerals that can aid in the detoxification of harmful compounds such as alkaloids in the diet (Klaus. Klaus-Hugi and Schmid, 1998), and alleviate gastro-intestinal upsets (Mahaney et al., 1996). As pointed out by Wilson (2003), in a review of the literature in this field, physiological tests are needed to determine bioavaila-bility of mineral elements eaten in the course of geophagy. Probably no single characteristic of soils eaten by animals and humans can account for their consumption (Abrahams, 1999; Wilson, 2003), with mineral supplementation, medical, and detoxification functions all play-ing a part (Aufreiter, Hancock, Mahaney, Strambolic-Robb and Sanmagudas, 1997; Aufreiter et al., 2001; Ketch, Malloch, Mahaney and Huffman, 2001; Mahaney, 1993; Mahaney et al., 1999; Vermeer and Ferrell, 1985; Wilson, 2003).

The normal diet of wild chimpanzees in the Budongo Forest, Uganda, is typical of East Afri-can chimpanzee groups, and consists primarily of fruits and leaves, with additional flowers, bark, and pith. Besides these plant-based items, meat and insects are eaten sporadically when they become available. Both meat, obtained primarily by killing monkeys (Nishida, Uehara and Nyundo, 1979; Goodall, 1986; Mitani and Watts, 2001; Newton-Fisher, Notman and Reynolds, 2002) and insects, for example termites (O'Malley and Power 2014), are high-ly nutritious sources of minerals as well as proteins, fats and other dietary requirements. However the bulk of the food eaten by wild chimpanzees is plant-based and this constitutes 80% or more of the daily diet of most individuals. While high in some minerals e.g. potassi-

um and calcium, the Budongo chimpanzees' diet lacks (or has low quantities) of others e.g. aluminium, copper, manganese, and sodium, and, as a result, they need to locate these minerals from other sources (Reynolds, Lloyd, Babweteera and English, 2009). Earlier work (Reynolds et al., 2009; Reynolds, Lloyd and English, 2012; Reynolds et al., 2015) explored a number of dietary supplements for mineral acquisition, namely decaying pith of Raphia fa-rinifera and the decaying wood of *Cleistopholis patens*, which provide appreciable amounts of sodium (Reynolds et al., 2009, 2012), and clay, which provides substantial amounts of iron (Reynolds et al., 2015). In this paper we show that termite mound soil is a further valu-able source of minerals eaten by chimpanzees in the Budongo Forest Reserve, Uganda, by the Kasekela group at Gombe National Park and by the M group at the Mahale Mountains National Park (Aufreiter et al., 2001). Some discussion revolves around the extent of bioavailability of the iron ingested in termite mound soil (Aufreiter et al., 2001). In part this resolves itself into the question of whether the iron is in ferric (Fe^{3+}) or ferrous (Fe^{2+}) form. If the former, it is not bioavailable; if the lat-ter it is. Experimental work (Aufreiter et al., 2001) using a medium with low pH to simulate digestive conditions suggests that most of the iron in soil is in ferric form and only a small part is ferrous. This finding suggests that the nutritional value of ingested termite mound soil may be limited. However we should note that in humans a ferric reductase enzyme, duodenal cytochrome B, reduces ferric Fe³⁺ to Fe²⁺ (McKie et al., 2001). This enzyme, if present in chimpanzees, as seems likely, serves to increase the bioavailability of iron ingested in termite mound soil. If present, ferrihydrite, a hydrous ferric oxide mineral, is likely to be sol-ubilised (Wilson, 2003). Mahaney et al (1997) concluded that in geophagy soils eaten by chimpanzees in the Kibale Forest, Uganda, 20% of ingested iron was bioavailable, sufficient for nutritional significance. In a study of soils eaten by humans and sold in local markets in

Uganda, it was concluded that consumption of 5g of soil contributed 19-25% of daily needs for iron (Abrahams and Parsons, 1997; Abrahams 1997). Geissler et al. (1998), by contrast, found that despite consuming 30g daily of iron-rich termite mound soil, anaemia remained prevalent in a human population in Kenya. Pregnant women were particularly prone to eat-ing clays in Uganda and other tropical countries. Pregnant Chacma baboons (*Papio ursinus*) spent more time consuming iron-rich clay at monitored geophagy sites in Western Cape, South Africa than baboons of other age-sex classes (Pebsworth, Bardi and Huffman, 2011). Whereas the majority of minerals discussed in this paper can be regarded as either major minerals essential for life or minor minerals required only as trace elements, aluminium is neither of these and is not essential for life. Its ingestion in termite mound soil, probably in the form of kaolinite (Johns and Duquette, 1991; Mahaney et al., 1995) and in some cases gibbsite (Bolton, Campbell and Burton, 1998), probably serves medicinal functions, by re-ducing acidity in the gut and neutralising plant toxins such as condensed tannins (Hladik, 1977; Goodall, 1986). Condensed tannins are ingested by chimpanzees on a daily basis at Budongo, being found at high concentrations in several species of figs (*Ficus sp*), particularly in the seed component. One fig species with a high concentration of condensed tannins, Fi-cus sur, is the second most frequently eaten food of the Budongo chimpanzees. Condensed tannins thus appear to be well tolerated by chimpanzees (Reynolds, Plumtre, Greenham and Harbone, 1998; Wrangham, 1993; Aufreiter et al., 2001). Termite mound soil eating appears to be an opportunist and largely individual activity, oc-curring when the animals pass by a termite mound in the forest, often moving from one

vegetative feeding site to another. Observations by researchers and field assistants indicate

107	that "Gombe chimpanzees eat termite mound soil, on average, once a day" (Wrangham,
108	1977) and the same may be true at Mahale and Budongo. Anecdotal reports suggest that at
109	all three sites termite mound soil eating is more frequent among females than males, but
110	quantitative data are lacking. Termite mounds present a hard surface (Figure 1) and chim-
111	panzees either bite off a piece with their teeth or break off a piece with their fingers (Figure
112	2). At Mahale, chimpanzees eat the soil of termite mounds through the year, possibly to as-
113	sess the reproductive condition of the termites (Uehara, 1982), as well as during times of
114	gastrointestinal distress. At Gombe, about once a day, as they pass termite mounds, chim-
115	panzees pick off and eat a "walnut" sized piece of termite mound soil (Goodall, 1986; Ma-
116	haney, Hancock, Aufreiter and Huffman, 1996; Huffman, 1997). Time spent feeding on ter-
117	mite mound soil is short: at Gombe, 32 bouts of geophagy were measured and the mean
118	duration was 1.7 min, range 1-8 min (data from Wrangham, 1977; quoted in Uehara,
119	1982:53). Co-feeding in large groups on termite mound soil, seen for example when feeding
120	on other soils such as clay, has not been observed. And, unlike clay, termite mound soil is
121	not eaten with leaves. At Budongo, if termites are present in termite mound soil, they are
122	also eaten (Newton-Fisher, 1999), but use of tools for termite fishing has not been observed
123	at Budongo, possibly because termite mounds of Pseudacanthotermes are less fishable, hav-
124	ing few or no external holes (Collins & McGrew, 1985), unlike those of <i>Macrotermes</i> species.
125	At Mahale, use of tools for termite fishing by the M group has only been seen occasionally
126	(Takahata, 1982); while at Gombe, chimpanzees termite fish year around, though concen-
127	trate this activity around the wet months (Goodall, 1986; Uehara, 1982). Goodall (1986:256)
128	also refers to Wrangham's 1977 study at Gombe: "Analysis of samples of termite clay re-
129	vealed substantial quantities of potassium, magnesium and calcium and traces of copper,

manganese, zinc, and sodium ... feeding on termite clay may be to neutralise tannins and other poisons present in plant foods (Hladik, 1977)". In this paper we explore the concentrations of mineral elements in termite mound soil across three sites, as compared to control soil samples and other dietary sources. We go on to provide possible explanations for the mechanisms by which mineral elements are con-centrated in different soil and plant-based sources. Methods Subjects and sites Data were collected in the Budongo Forest Reserve, in north-western Uganda; and the Gombe National Park and the Mahale Mountains National Park, both in western Tanzania. Subjects at each of the three sites sampled were all wild East African chimpanzees (Pan troglodytes schweinfurthii). Males and females of all age groups, except infants (aged 0-5 years old) were seen eating at the termite mounds from which samples were collected. Samples described here were collected between July 2015 and October 2017. Termite spe-cies are shown in Table 1. Soil sample collection Across sites, termite mound soil samples were collected by removing a 10-15g piece of mound soil from a termite mound, using a sterile knife. Clean gloves were worn to prevent contamination from human sweat. In addition, control samples were collected of forest soil.

- 152 At Budongo, control samples were taken from forest soil 1-3m laterally from the termite
- 153 mound and 15-20cm deep. At Gombe control samples were taken from forest soil 1m later-

ally from the termite mound and 15-20cm deep. Control samples were not collected at Mahale. All samples were put into individual new plastic bags, marked with date, collector, block number (an indication of location within the chimpanzee territory), and sample num-ber, and taken back to base camp where they were dried at a temperature of 40° C until ful-ly dry. Five grams of each dried sample was then transferred to new sterile plastic container tubes for onward shipment to the UK.

Laboratory Analysis of Soil Samples

The soil samples were dried to constant weight in an oven at 105°C for 6 hours. The total mass of the dried material was determined. Duplicate samples were prepared by taking 0.1g of the material and 3ml of Aqua Regia in a 10ml centrifuge tube. The samples were digested in a water bath at 85°C for 3 hours. 7ml of ultrapure Type 1 water was then added to each sample and the samples mixed using a vortex mixer. A 1ml aliquot of each sample was diluted 10 fold with Type 1 water for analysis. The elemental content of each sample was then determined using a Perkin Elmer Optima 2100 DV Inductively Coupled Plasma Optical Emis-sion Spectrometer (ICP-OES). Standards and a blank were made up at 2, 4, 6, 8 and 10 ppm concentrations with 3% HNO₃ and three replicates of each element were measured. Each sample was analysed in triplicate and the average of the triplicate analysis taken for each duplicate. The mean of the duplicate analyses of the individual soil samples was then taken to be representative of that soil sample. The elemental content per kg of dried material was calculated from the raw data.

Statistical analyses

177	The data for each variable were tested for normality of distributions and equality of error
178	variances. Where these assumptions were not upheld non-parametric tests were used. Re-
179	sults were considered significant at α =0.05. All data were analysed using SPSS v24.
180	
181	
182	Results
183	Values are mg/kg except where otherwise stated. We found a wide variation in the concen-
184	tration of the mineral elements measured in termite mound and control soil samples (Table
185	2). Iron, aluminium, and potassium were the highest in both termite mound soil and control
186	samples across sites. Zinc, sodium and copper had the lowest concentrations in both soil
187	types (with the exception of Mahale where zinc was more abundant in termite mound soil,
188	see Table 2).
189	
190	Budongo
191	Potassium, phosphorus, aluminium, and copper were all more concentrated in termite
192	mound soil than in control soil; no other minerals varied in their abundance between soil
193	types (Table 2). When compared with mineral concentration in the normal diet (data taken
194	from Reynolds et al., 2 <u>012</u> , Table 3), potassium (Kruskal Wallis: X^2 = 0.95 p=0.329) and phos-
195	phorus (Kruskal Wallis: X ² = 0.80 p=0.373) are found at similar concentrations in termite
196	mound soil. Concentrations of all other minerals measured differed. Termite mound soil had
197	concentrations of iron over 75 times higher (49.1 \pm 19.6 g/kg, n=39) than found in the nor-

- mal diet ($649 \pm 1309 \text{ mg/kg}$, n=24; Kruskal Wallis: X²= 44.1 p<0.001); and a very large con-
- centration of aluminium (termite mound soil 15,300 ±4690 mg/kg, n=39), which is com-

pletely absent from the normal diet (n=24; Kruskal Wallis: X^2 = 46.4 p<0.001). Of other min-erals, calcium (X^2 = 9.09 p=0.003), magnesium (X^2 = 5.13 p=0.024) and sodium (X^2 = 44.1 p<0.001) were higher in the normal diet, while manganese (X^2 = 43.9 p<0.001) and copper $(X^2 = 18.6 \text{ p} < 0.001)$ were higher in termite mound soil.

Gombe

As at Budongo, iron had the highest concentrations in both termite mound soil and control samples from Gombe, followed by aluminium (see Table 2). Levels of magnesium were higher across Gombe soil samples (n=19) than in Budongo soil samples (n=66; Mann-Whitney: U=71, p<0.001); with concentrations in termite mound soil over 5 times higher in Gombe (Table 2; Mann-Whitney: U=22, p<0.001). As at Budongo zinc, sodium and copper had the lowest concentrations. Sodium was completely absent from termite mound soil at Gombe, but was present in small amounts in control samples. So, as at Budongo, Gombe termite mound soil provided the high concentrations of iron and aluminium, together with some magnesium and other minerals, with the notable exception of sodium. Concentrations of potassium, iron, aluminium, and copper were all higher in termite mound than in control soil samples at Gombe; concentrations of sodium and sulphur were lower (Table 2).

Mahale

As at Budongo and Gombe, iron and aluminium were present in the highest concentrations, although at Mahale aluminium, rather than iron, was highest; at almost double the concentrations present in Budongo or Gombe (Table 2; Kruskal-Wallis: $X^2 = 25.13$; p<0.001). Also as at Budongo and Gombe, sodium and copper had the lowest concentrations at Mahale. None

of the three sites compared had a consistently higher or lower overall concentration of minerals in any particular soil type. Comparisons between termite mound soil, clay, decaying wood, and the normal diet of fruit and leaves at Budongo We compare the mineral content in termite mound soil with that present in clay (data from Reynolds et al 2015, Table 3), decaying wood (*Raphia farinifera* and *Cleistopholis patens*) (data from Reynolds et al., Tables 1 and 2 combined), and the normal diet of fruit and leaves at Budongo (data from Reynolds et al., 2012, Table 3). The differences between means shown in Table 3 are significant for all minerals shown. Discussion Given the distance between the three sites (Budongo to Gombe 740km, Gombe to Mahale 180 km) there is a high degree of similarity in the concentration of soil minerals between them. Termite mound soil provides chimpanzees with iron (Fig 3) and aluminium (Fig 4) in high concentrations at all three, with provision of other essential minerals at lower concentrations at all of them, and absence or near absence of sodium at them all. Thus, a clear pic-ture emerges of the contribution of termite mound soil to the mineral intake of chimpan-zees in East Africa and possibly elsewhere. Similar differences between termite mound soil and control samples have been found by Adams et al. (2017), Mahaney et al. (1996, 1999), Aufreiter et al. (2001), Sarcinelli et al. (2009). This widespread difference indicates a process whereby some mineral elements be-

247	come concentrated in termite mound soil. What is the process? It could take place at the
248	stage of acquisition of soil by termites, which involves a prolonged process of embedding
249	grains of soil in ingested water and salivary secretions (Turner, 2005) after which they are
250	carried up into the mound to the building point. However, minerals that are relatively scarce
251	in control forest soil are also relatively scarce in termite mound soil. Sodium in particular,
252	scarce in forest soil, is very low or absent (i.e. below measurement detection limits) in ter-
253	mite mound soil (see also Tweheyo et al., 2006). The main process whereby minerals be-
254	come concentrated in termite mound soil is therefore unlikely to be selection by termites.
255	
256	Low values (or absence) of sodium in termite mound soil were found in the initial samples of
257	termite mound soil collected as part of a study of minerals in clay (n=5; Reynolds et al.,
258	2015). This finding is now validated by a larger sample size across three different sites. The
259	complete absence of sodium from termite mound soil at Gombe, while present in control
260	samples, could indicate avoidance or rejection of sodium by termites or that they consume
261	sodium for their own requirements. The latter may be the correct explanation. Kaspari et al.
262	(2009, 2014) showed experimentally that numbers of termites in the soil and litter decom-
263	position rates were higher in Amazonian forest plots to which sodium had been applied than
264	in control plots. Whether sodium consumption is a common attribute of termites or can ex-
265	plain the relative lack of sodium in Gombe termite mound soil is not known (Scheffrahn
266	pers. comm.).
267	
268	High values of aluminium and iron and low values of sodium were also found by Mahaney et
269	al. (1996, 1997, 1999) and Tweheyo et al. (2006) who emphasised the possible medicinal
270	use of aluminium in clay in the form of metahalloysite. Metahalloysite has the same formula

as kaolinite, Al₂Si₂O₅(OH)₄ (Brindley, Robinson and MacEwan, 1946) and is used by humans (commercially in the form of Kaopectate) to treat gastro-intestinal complaints (Hunter, 1973; Mahaney et al., 1997, 1999; Johns and Duquette, 1991; Wilson, 2003; Fairhead, 2016). Smectite and gibbsite are further possible contributors to the efficacy of termite mound soil (Wilson, 2003). Higher concentrations of mineral elements in termite mound soil than in surrounding control soil were found by Aufreiter et al. (2001) and Adams et al. (2017) in a study of arboreal termitaria in Peru.

Mineral accretion

It is of great interest that chimpanzees appear to have discovered these three "hidden" sources of minerals: plant-based, soil-based, and animal-generated. In two of the three (plant-based and animal-generated) mineral concentration comes about as a result of water evaporation. In each case, water containing minerals is drawn up in decaying wood by capil-lary action, in the case of termite mounds transported by termites. In the third case, clay, low levels of minerals occur in the forest substrate and these are leached out of the soil by rain-water that collects in holes under trees.

At Raphia farinifera and Cleistopholis patens sites, chimpanzees chew the fibrous, decaying wood containing minerals left behind after evaporation, following which they spit out 'wadges' of fibrous matter. At clay sites it appears that the minerals are ingested by chim-panzees by chewing the clay when it is in semi-solid form, or extracting it from clay-water with the use of leaf or moss sponges (Reynolds et al., 2015). At termite mound soil sites, chimpanzees chew pieces of mound soil in a similar way to the way they chew clay.

In each of the above cases, a low level of minerals exists in the environment, too dispersed and at concentrations too low for detection and acquisition by large mammals such as chimpanzees. Concentration of minerals may come about in three ways: (a) In the case of decaying Raphia farinifera palms, and Cleistopholis patens trees, these are located in swamp forest which periodically floods, bringing in river water which contains low levels of mineral elements leached from the soil and rocks along its course. These elements are in low concentration (Reynolds et al., 2009, 2012, 2015). swamp water upwards inside the tree's vertical, fibrous, pith-filled trunk. Because the head of the Raphia palm has previously fallen off after the tree fruited, the top of the trunk is now open and the whole trunk forms a cylinder filled with fibrous pith. Water containing low levels of minerals can enter this cylinder from below and rises up the fibres. As water evaporates from the top of the cylinder, it will leave its mineral content behind. As a result we speculate that this becomes concentrated, and it is this source that the chimpanzees have learned to access by making a hole in the bark of the lower trunk (see Reynolds et al., 2009). In the case of *Cleistopholis* patens, we believe minerals become concentrated in a similar way but without the cylindrical process, merely by the adsorption by the decaying tree of mineral-containing water, which evaporates upwards from the tree, leaving behind concentrated minerals, which are then accessed by chimpanzees chewing the decaying wood. (b) In the case, of clay, we don't believe evaporation plays a part. The action of rain water and/or river water on forest soil, especially in hollows under trees, leads to disso-lution and/or dispersion of minerals from the clay material which contains a high

2	318	level of aluminium and surrounding soil which has a high iron content (Eggeling
4	319	1947, Aufreiter 1997).
6		
7 8	320	(c) In the case of termite mound soil, the actions of the termites themselves serve to concen-
9 10	321	trate the mineral elements in surrounding soil. The mechanisms by which this happens are
11 12	322	not clear and require further study. Studies by Sieber (1982) and Hesse (1955) focus on the
13 14	323	use of water by termites in processing surrounding soil before carrying it to the surface of
15 16	324	the mound. Turner (2005, 2011) describes, with associated videos, the process of drinking
17 18	325	and carrying soil by termites. In the case of forest termites, a further process may be im-
19 20	326	portant: the ingestion of organic matter in forest soil, thus having the incidental effect of in-
21 22	327	creasing the proportion of the mineral component. Further work is needed to elucidate the
23 24	328	causes of the differences between forest soil and termite mound soil.
25 26	329	
27 28	525	
29 30	330	Summary and conclusions
31 32	331	Termite mound soil provides the highest concentrations of aluminium and iron found in any
33 34	332	of the dietary items at the sites studied here. The normal diet of chimpanzees, while high in
35 36	333	calcium and moderately high in potassium and magnesium, lacks aluminium and copper and
37 38 20	334	is low in other essential minerals. Sodium, low in the normal diet, is absent or in low con-
40 41	335	centration in termite mound soil, which is thus not a dietary source of sodium for chimpan-
42 43	336	zees. This absence is in stark contrast to the high concentration of sodium found in decaying
44 45	337	wood, which is eaten (Fig 5, see also Reynolds et al. 2009). Thus, geophagy, meat eating,
46 47	338	and insectivory all add to the intake of essential minerals obtained by chimpanzees. In both
48 49	339	Budongo and Gombe, control forest soil taken from just a few meters away from the ter-
50 51	555	
52 53	340	mite mounds contains substantially lower concentrations of potassium, aluminium and cop-
54 55	341	per. Thus we can see a concentrating effect in termite mound soil for some minerals, with
56 57 58	342	the notable exception of sodium. Termite mound soil at Mahale shows a similar pattern of

15 17 $\begin{array}{c} 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$

343	minerals to those at Budongo and Gombe, with high levels of iron and aluminium, and mod-
344	erate levels of potassium and magnesium. We suggest three possible mechanisms by which
345	minerals become concentrated: evaporation of water in decaying wood, concentration after
346	transport by termites, and dissolution or dispersion of mineral elements in clay after leach-
347	ing of soil by water. Chimpanzees have discovered these sources of minerals and now ex-
348	ploit them sporadically as an adjunct to their normal diet of fruits, leaves and other plant
349	parts.
350	
351	References
352	Abrahams, P.W. (1997). Geophagy (soil consumption) and iron supplementation in Uganda.
353	Tropical Medicine and International Health, 2, 617-623.
354	Abrahams, P.W., & Parsons, J.A. (1997). Geophagy in the tropics: a literature review. Journal
355	of Geography, 162, 63-72.
356	Abrahams, P.W. (1999). The chemistry and mineralogy of three savanna lick soils. Journal of
357	Chemical Ecology, 25, 2215-2228.
358	Adams, D.B., Rehg, J.A., & Watsa, M. (2017). Observations of termitarium geophagy by
359	Rylands' bald-faced saki monkeys (Pithecia rylandsi) in Madre de Dios, Peru. Primates, 58(3),
360	449-459.
361	Aufreiter, S., Hancock, R.G.V., Mahaney, W.C., Strambolic-Robb, A., & Sanmagudas, K.
362	(1997). Geochemistry and mineralogy of soils eaten by humans. International Journal of
363	Food Science and Nutrition, 48, 293-305.
364	Aufreiter, S., Mahaney, W.C., Milner, M.W., Huffman, M.A., Hancock, R.G.V., Wink, M., &
365	Reich, M. (2001). Mineralogical and chemical interactions of soils eaten by chimpanzees of

the Mahale Mountains and Gombe Stream National Parks, Tanzania. Journal of Chemical

- Ecology, 27, 285-311.
- Bolton, K.A., Campbell, V.M., & Burton, F.D. (1998). Chemical analysis of soils of Kowloon
- (Hong Kong) eaten by hybrid macaques. Journal of Chemical Ecology, 24, 195-205.
- Brindley, G.W., Robinson, K., & MacEwan, D.M.C. (1946). The clay minerals halloysite and
- meta-halloysite. Nature, 157, 225-226.
- Collins, D.A., & McGrew W.C. (1985). Chimpanzees' (*Pan troglodytes*) choice of prey among
- termites (Macrotermitinae) in Western Tanzania. Primates, 26 (4), 375-389.
- Deblauwe, I., & Janssens, G.P.J. (2008). New insights in insect prey choice by chimpanzees
- and gorillas in Southeast Cameroon: the role of nutritional value. American Journal of Physi-
- cal Anthropology, 135, 42-55. Doi: 10.1002/ajpa.20703.
- Eggeling W.J. (1947). Observations on the ecology of the Budongo Rain Forest, Uganda. J. *Ecol.*, 34 (1): 20-87.
 - Fairhead, J.R. (2016). Termites, Mud Daubers and their Earths: A Multispecies Approach to
 - Fertility and Power in West Africa. Conservation and Society, 14, 359-367.
- Geissler, P.W., Mwaniki, D.L., Thiong'o, F., Michaelsen, K.F., & Friis, H. (1998). Geophagy,
- iron status and anaemia among primary school children in Western Kenya. Tropical Medi-
- cine and International Health, 3, 529-534.
 - Goodall, J. (1986). The Chimpanzees of Gombe: patterns of behaviour. Cambridge, MA: Har-
- vard University Press.
 - Hesse, P.R. (1955). A chemical and physical study of the soils of termite mounds in East Afri
 - ca. The Journal of Ecology, 449-461.

Hladik, C.M. (1977). Chimpanzees of Gombe and the chimpanzees of Gabon: some compara-

tive data on the diet. In: T.H. Clutton-Brock (Ed.) Primate Ecology (pp.481-501). New York:

Academic Press.

- Hunter, J.M. (1973). Geophagy in Africa and in the United States: a culture-nutrition hy-
- pothesis. Geography Review, 63, 170-195.
- Huffman, M.A. (1997). Current evidence for self-medication in primates: A multidisciplinary perspective. Yearbook of Physical Anthropology, 40, 171-200.
- Johns, T. (1986). Detoxification function of geophagy and domestication of the potato. Jour-
- nal of Chemical Ecology, 12, 635-646.
- Johns, T., & Duquette, M. (1991). Detoxification and mineral supplementation as functions
- of geophagy. American Journal of Clinical Nutrition, 53, 448-456. PMID: 1989412
- Kaspari, M., Yanoviak, S.P., Dudley, R., Yuan, M., & Clay, N.A. (2009). Sodium shortage as a
- constraint on the carbon cycle in an inland tropical rainforest. Proceedings of the National

Academy of Sciences, 106(46), 19405-19409. DOI: 10.1073/pnas.0906448106

- Kaspari, M., Clay, N.A., Donoso, D.A., & Yanoviak, S.P. (2014). Sodium fertilization increases
- termites and enhances decomposition in an Amazonian forest. Ecology, 95(4), 795-800.
- Ketch, L.A., Malloch, D., Mahaney, W.C., & Huffman, M.A. (2001). Comparative microbial
 - analysis and clay mineralogy of soils eaten by chimpanzees (Pan troglodytes schweinfurthii)
 - in Tanzania. Soil Biology and Biochemistry, 33(2), 199-203.
- Klaus, G., Klaus-Hugi, C., & Schmid, B. (1998). Geophagy by large mammals at natural licks in the rain forest of Dzanga National Park, Central African Republic. Journal of Tropical Ecology, 14, 829-839.
- Mahaney, W.C. (1993). Scanning electron microscopy of earth mined and eaten by moun-
- tain gorillas in the Virunga Mountains, Rwanda. Primates, 34, 311-319.

412	Mahaney, W.C., Stambolic, A., Knesevich, M., Hancock, R.G.V., Aufreiter, S., Sanmugadis, K.,
413	Kessler, M.J., & Grynpas, M.D. (1995). Geophagy among rhesus macaques on Cayo Santiago,
414	Puerto Rico. <i>Primates</i> , 36, 323-333.
415	Mahaney, W.C., Hancock, R.G.V., Aufreiter, S., & Huffman, M.A. (1996). Geochemistry and
416	clay mineralogy of termite mound soil and the role of geophagy in chimpanzees of the Ma-
417	hale Mountains, Tanzania. Primates, 37, 121-134.
418	Mahaney, W.C., Milner, M.W., Sanmugadas, K., Hancock, R.G.V., Aufreiter, S., Wrangham,
419	R.W., & Pier, H.W. (1997). Analysis of geophagy soils in Kibale Forest, Uganda. Primates, 38,
420	159-176.
421	Mahaney, W.C., Zippin, J., Milner, M., Sanmugadas, K., Hancock, R.G.V., Aufreiter, S., Camp-
422	bell, S., Huffman, M.A., Wink, M., Malloch, D., & Kalm, V. (1999). Chemistry, mineralogy and
423	microbiology of termite mound soil eaten by the chimpanzees of the Mahale Mountains,
424	Western Tanzania. Journal of Tropical Ecology, 15, 565-588.
425	Mahaney, W.C., Milner, M.W., Aufreiter, S., Hancock, R.G.V., Wrangham, R.W. & Campbell,
426	S. (2005). Soils consumed by chimpanzees of the Kanyawara community in the Kibale Forest,
427	Uganda. International Journal of Primatology, 26, 1375-1398.
428	McKie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M.,
429	Richardson, C., Barlow, D., Bomford, A., Peters, T.J., Raja, K.B., Shirali, S., Hediger, M.A., Far-
430	zaneh, F., & Simpson, R.J. (2001). An iron-regulated ferric reductase associated with the ab-
431	sorption of dietary iron. Science, 291(5509), 1755-9.
432	Mitani, J.C., & Watts, D.P. (2001). Why do chimpanzees hunt and share meat? Animal Be-
433	haviour, 61, 915–924.

1	
2	
3	
-	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40 1	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
20	
59	
60	

434	Newton-Fisher, N.E. (1999). Termite eating and food sharing by male chimpanzees in the
435	Budongo Forest, Uganda. African Journal of Ecology, 37, 369-371. DOI: 10.1046/j.1365-
436	2028.1999.00187.x
437	Newton-Fisher, N.E., Notman, H., & Reynolds, V. (2002). Hunting of mammalian prey by Bu-
438	dongo Forest chimpanzees. Folia Primatologica, 73(5), 281-3.
439	Nishida, T., Uehara, S., & Nyundo, R. (1979). Predatory behaviour among wild chimpanzees
440	of the Mahale Mountains. <i>Primates,</i> 20, 1-20.
441	O'Malley, R.C., & Power, M.L. (2014). The energetic and nutritional yields from insectivory
442	for Kasekela chimpanzees. Journal of Human Evolution, 71, 46-58. DOI:
443	10.1016/j.jhevol.2013.09.014
444	Pebsworth, P.A., Bardi, M., & Huffman, M.A. (2011). Geophagy in chacma baboons: patterns
445	of soil consumption by age class, sex, and reproductive state. American Journal of Primatol-
446	оду, 74, 48-57.
447	Reynolds, V., Plumptre, A.J., Greenham, J., & Harborne, J. (1998). Condensed tannins and
448	sugars in the diet of chimpanzees (Pan troglodytes schweinfurthii) in the Budongo Forest,
449	Uganda. <i>Oecologia</i> , 115, 331-336.
450	Reynolds, V., Lloyd, A. W., Babweteera, F., & English, C.J. (2009). Decaying Raphia farinifera
451	palm trees provide a source of sodium for wild chimpanzees in the Budongo Forest, Uganda.
452	<i>PLoS ONE,</i> 4(7), e6194.
453	Reynolds, V., Lloyd, A.W., & English, C.J. (2012). Adaptation by Budongo Forest chimpanzees
454	(Pan troglodytes schweinfurthii) to loss of a primary source of dietary sodium. African Pri-
455	mates, 7(2), 156-162.

2		
3 4	456	Reynolds, V., Lloyd, A.W., English, C.J., Lyons, P., Dodd, H., Hobaiter, C., Newton-Fisher, N.,
5 6	457	Mullins, C., Lamon, N., Schel, A-M., & Fallon, B. (2015). Mineral acquisition from clay by Bu-
7 8	458	dongo Forest chimpanzees. PLoS ONE, 10(7), e0134075. DOI: 10.1371
9 10	459	Sarcinelli, T.S., Schaefer, C.E.G., de Souza Lynch, L., Arato, H.D., Viana, J.H.M., de Alburquer-
11 12 13	460	que Filho, M.R., & Gonçalves, T.T. (2009). Chemical, physical and micromorphological prop-
14 15	461	erties of thermite mounds and adjacent soils along a toposequence in Zona da Mata, Minas
16 17	462	Gerais State, Brazil. Catena, 76(2), 107-113.
18 19 20	463	Takahata, Y. (1982). Termite fishing observed in the M group chimpanzees. Mahale Moun-
20 21 22	464	tains Chimpanzee Research Project, Ecological Report No. 18, 1-2.
23 24	465	Turner, J.S. (2005). Extended physiology of an insect-built structure. American Entomologist,
25 26	466	51(1), 36-38.
27 28 29	467	Turner, J.S. (2011). http://www.esf.edu/efb/turner/media/termiteVideos.html. See in par-
30 31	468	ticular videos entitled "Initiation of building", "Termite drinking", "A brief look at termite
32 33	469	repair".
34 35 36	470	Turner, J.S. (2001). On the mound of Macrotermes michaelseni as an organ of respiratory
37 38	471	gas exchange. Physiological and Biochemical Zoology, 74(6), 798-822.
39 40	472	Turner, J.S. (2000). Architecture and morphogenesis in the mound of Macrotermes
41 42	473	michaelseni (Sjöstedt) (Isoptera: Termitidae, Macrotermitinae) in northern Namibia.
45 44 45	474	Cimbebasia, 16, 143-175.
46 47	475	Tweheyo, M., Reynolds, V., Huffman, M.A., Pebsworth, P., Goto, S., Mahaney, W.C., Milner,
48 49	476	M.W., Waddell, A., Dirzowsky, R., & Hancock, R.G.V. (2006). Geophagy in chimpanzees (Pan
50 51 52	477	troglodytes schweinfurthii) of the Budongo forest reserve, Uganda. In Primates of Western
53 54	478	Uganda (pp. 135-152). Springer, New York, NY.
55 56 57 58 59 60	479	Uehara, S. (1982). Seasonal changes in the techniques employed by wild chimpanzees in the

- 480 Mahale Mountains, Tanzania, to feed on termites (*Pseudacanthotermes spiniger*). Folia pri-
 - *matol* 37, 44-76. DOI: 10.1159/000156020

482 Vermeer, D.E., & Ferrell, R.E. (1985). Nigerian geophagical clay: a traditional antidiarrheal

483 pharmaceutical. *Science*, 227, 634-636.

484 Wilson, M.J. (2003). Clay mineralogical and related characteristics of geophagic materials.

- *Journal of Chemical Ecology*, 29(7), 1525-1547.
- 486 Wrangham, R.W. (1977). Feeding behaviour of chimpanzees in Gombe National Park, Tan-

487 zania. In T. Clutton-Brock (Ed.), Primate ecology: Studies of feeding and ranging behaviour in

488 lemurs, monkeys and apes (pp. 503-538). Academic Press, London.

491 Acknowledgments

At the Budongo Conservation Field Station we are indebted to Aliyo Jacob and Chandiya Bosco, Geresomu Muhumuza, Monday Gideon, Geoffrey Muhanguzi, Caroline Asiimwe, and P. Nyeko for termite identification. For research permission and export permits in Uganda we are grateful to the Uganda National Council for Science and Technology, the National Forest Authority, and the Uganda Wildlife Authority. For securing the necessary permission to import samples to UK for analysis we are grateful to Raymond Ward of the University of Brighton. For help at Gombe National Park we are indebted to Anthony Collins, Deus Mjun-gu, Nuhu Japhary Buke, Matendo Msafiri Katoto, and to Rudolf Scheffrahn, University of Florida, USA, for termite identification. At Mahale Mountains National Park we are grateful to Michio Nakamura, Kazuhiko Hosaka and Masaki Shimada. For research permission in Gombe National Park and Mahale Mountains National Park we are indebted to the Tanzania National Parks Service, the Tanzania Wildlife Research Institute, and the Tanzania Commis-

512	Supporting information
511	
510	Fund.
509	vation Fund, the Royal Zoological Society of Scotland, the Leverhulme Trust, and the Boise
508	and advice. For financial support we acknowledge the Mohamed bin Zayed Species Conser-
507	J.P.E.C. Darlington, Derek Pomeroy, S. Sutherland, and Andrew Smith for their comments
506	Anne-Marijke Schel for permission to use the video material in Supporting Information, and
505	Institute at Gombe and the Mahale Wildlife Conservation Society at Mahale. We thank
504	sion for Science and Technology. For logistical assistance we acknowledge The Jane Goodall

513 Video 1. Termite mound soil consumption. Young adult male (Zig) in the Budongo Forest
514 Reserve, feeding on soil from a *Pseudacanthotermes spiniger* termite mound in 2011 (video

515 Anne-Marijke Schel, # 08-29-2011_123144.

516 Tables and Figures

517 Table 1. Termite species and sampling periods across sites. TMS = termite mound soil, CTRL
518 = control soil. VR = V Reynolds, APG = A Pascual-Garrido, KH = K Hosaka, MS = M Shimada.

Site	Date(s)	Samples	Termite species	Collectors
	collected	(N)		
Budongo	July 2015	39 TMS,	Pseudacanthotermes spiniger and	VR
	– Oct	27 CTRL	Cubitermes ugandensis	
	2017			
Gombe	Dec 2015	12 TMS,	Macrotermes bellicosus, Macro-	APG
		7 CTRL	termes michaelseni and Macro-	
			termes subhyalinus	
Mahale	Aug –	11 TMS,	Likely Pseudacanthotermes spp.	КН
	Sept 2015	0 CTRL		MS

523 Table 2. Mineral element concentration in termite mound and control soil across sites. All

524 mineral concentrations reported in mean mg/kg ± standard deviations; Significant differ-

525 ences between termite mound and control soil are indicated in **bold**. Element key:

526 Al=aluminium, Ca=calcium, Cu=copper, Fe=iron, K=potassium, Mg=magnesium,

527 Mn=manganese, Na=sodium, P=phosphorus, S=sulphur, Zn=zinc

Mineral	Budongo			Gombe	Gombe		
element	TMS	CTRL	Kruskal-Wallis	TMS	CTRL	Kruskal-Wallis	TMS
	(n=39)	(n=27)		(n=12)	(n=7)		(n=11)
Na	5	14	X ² = 1.43;	0	47.1	X ² = 16.84;	41.9
	±15	±27	p=0.232		±8	p<0.0001	±43
К	1080	685	X ² = 25.5;	1980	1197	X ² = 7.78;	5140
	±395	±90	p<0.001	±724	±291	p=0.005	±2659
S	237 ±171	169	X ² = 2.94;	119	339	X ² = 12.60;	279
		±188	p=0.86	±50	±27	p<0.0001	±133
Р	694 ±219	524	X ² = 9.92;	422	329	X ² = 2.86;	264
		±109	p=0.002	±115	±35	p=0.091	±123
Са	3270	2310	X ² = 0.83;	1030	466	X ² =3.46;	1720
	±3179	±1463	p=0.361	±939	±257	p=0.063	±648
Fe	49100	43657	X ² = 0.80;	44500	28200	X ² = 12.00;	32100
	±19576	±15489	p=0.372	±6380	±4728	p=0.001	±3235
Zn	4.06	0	X ² = 3.34;	0	0	N/A	455
	±15		p=0.068				±293
Mn	1050	1130	X ² = 0.46;	383	357	X ² = 0.00;	585
	±421	±418	p=0.498	±244	±119	p=1.00	±242
Al	18100	15300	X ² = 5.36;	19400	11700	X ² = 7.76;	32600
	±4690	±4182	p=0.021	±5428	±2327	p=0.005	±8016
Cu	20.86	1.41	X ² = 12.62;	92.3	18.8	X ² = 7.39;	10.2
	±27	±4.5	p<0.0001	±62	±29	p=0.007	±12
Mg	670	604	X ² = 0.12;	3520	1600	X ² = 2.06;	5210
	±294	±125	p=0.912	±2996	±775	p=0.151	±2751

Table 3. Mean quantities of minerals in termite mound soil, decaying wood, clay, and normal fruit + leaf diet (mg/kg) in Budongo samples. All mineral concentrations reported in mean mg/kg ± standard deviations; Significant differences between termite mound and other sources are indicated in **bold**. Element key: Al=aluminium, Ca=calcium, Cu=copper, Fe=iron, K=potassium, Mg=magnesium, Mn=manganese, Na=sodium, P=phosphorus. ¹Data taken from Reynolds et al., 2015; ²Data taken from Reynolds et al., 2012.

Mineral	Termite	Clay	Decaying	Normal	Kruskal-Wallis
element	mound	soil ¹	wood ^{1,2}	diet ²	
	soil	(n=10)	(n=31)	(n=24)	
	(n=39)				
Na	5	234	3032	293	X ² = 84.33; p<0.0001
	±15	±228	±3826	±507	
К	1080	2528	9478	4074	X ² = 37.13; p<0.0001
	±395	±3613	±14282	±6485	
Р	694	414	1049	851	X ² = 9.36; p<0.025
	±219	±534	±2107	±964	
Са	3270	2381	4221	13315	X ² = 17.75; p<0.0001
	±3179	±3003	±5675	±30648	
Fe	49100	8720	141	649	X ² = 82.04; p<0.0001
	±19576	±3080	±152	±1310	
Mn	1050	306	183	66	X ² = 67.67; p<0.0001
	±421	±252	±369	±69	
Al	18100	7885	0	0	X ² = 94.83; p<0.0001
	±4690	±5245			
Cu	20.9	17	0	0	X ² = 40.36; p<0.0001
	±27	±13			-
Mg	670	1012	2240	1557	X ² = 18.71; p<0.0001
-	±294	±1165	±2071	±1272	-

552 Figure 1. Termite mound (*Pseudacanthotermes spiniger*) in the Budongo Forest, Uganda.

556 Figure 2. Site where chimpanzee has removed a piece of termite mound soil, Budongo

557 Forest, Uganda.

Iron content of termite mound soil across 3 sites and in normal diet

Fig. 4 Aluminium content of termite mound soil at Budongo, Gombe, Mahale and in the normal diet of chimpanzees at Budongo

Aluminum content of termite mound soil across 3 sites and in normal diet

1	
2	
3	Termite mound soil provides the highest concentrations of aluminium and iron
4	remite mound son provides the ingrest concentrations of aramman and non
5	formed in our of the distance its as at the sites studied bith sub-
6	found in any of the dietary items at the sites studied hitherto.
7	
8	We describe concentrating mechanisms in termite mound soil for some minerals.
9	
10 •	Chimpanzees have discovered these sources of minerals and how to exploit them.
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/	
38 20	
39 40	
4U 41	
++ I 10	
∠ Δ3	
5 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	