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Possible New Strange Attractors With Spiral Structure
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Abstract. We define a class of three-dimensional differential equations which
might present strange attractors of a new kind. This is illustrated by numerical
observations on an explicit example.

I. Introduction

These last years a lot of efforts have been devoted to the study of chaotic
behaviours which may arise in some dynamical systems. The relevance of these
works to understand the transition to turbulence in physical and chemical
experiments seems now well established [1]. A mathematical theory of Axiom A
"strange attractors" has been fairly achieved and provides a satisfying description
of some systems which do have complicated asymptotic behaviour [2,3].
Nevertheless this theory does not allow us to understand the stochasticity
generated in numerical investigations of diffeomorphisms and differential equa-
tions given by explicit algebraic expressions. Indeed most of these numerical
studies deal with generalizations of the Henon mapping [4,5] or its suspensions
[6]. The existence of chaotic behaviour can be proved in these cases [7-10] but,
according to [11], the very existence of strange attractors is far from being settled
since homoclinic tangencies [12] arise quite naturally with one-parameter families
of such systems1. Perhaps a special status should be attributed to the Lorenz
system [14] which could fall in the class of topological models defined by
Guckenheimer [15] and which posses effective strange attractors [16,17].

In this paper we propose a construction of what might reveal to be a new kind
of strange attractors. This construction is illustrated by numerical observations on
an explicit example of differential equations describing a forced oscillator [18].

* Equipe de Recherche Associee au C.N.R.S.
** Laboratoire de Physique de la Matiere Condensee Associe au C.N.R.S.
1 Recently Misiurewicz [13] proved the existence of strange attractors for the homeomorphism
(x,)/)->• (1 — a\x\-\-by,x\ under some conditions on the parameters a and b
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II. A Class of Differential Equations

Our main tool is the following theorem:

Theorem. Consider the system

x = ρx — ωy + P(x, y, z)

y = ωx + ρy + Q(x,y,z) (1)

z = λz + R(x9y,z)

where P, Q, R are Cr functions (l^grrgoo) vanishing together with their first
derivatives at the origin 0 = (0,0,0)2. Let us assume that one of the orbits, denoted
by Γo, leaves the origin and returns to it as t-> + oo. Then if

λ>-ρ>0 (2)

every neighbourhood of the orbit Γo contains a denumerable set of unstable periodic
solutions of saddle type.

Proof This theorem was proved in [19] under the inessential assumption that P,
β, R are analytic functions in R3. The associated symbolic dynamics was
investigated in any dimension by the same author in [20] where it is shown that a
Birkhoff-Morse system (shift with infinitely many symbols) is contained in a
neighbourhood of the homoclinic trajectory Γo.

We will however sketch a proof of the above theorem based on a geometrical
construction (Fig. 1) which explains the structure of the attract or we shall get.

Following Hartman-Grobman theorem [21,22]3, instead of (1) we can work
with a vector field which is conjugate to (1) and linear in some neighbourhood V of
the origin 0 (then the local invariant manifolds of 0 are linear in V).

Let Ωo be a point of the homoclinic curve Γ o close enough to the saddle focus
0, and Πo part of a plane orthogonal to the local stable manifold W?oc of 0 and
containing Ωo. We define Po as the Poincare's first return map on Πo. Then let
A1eΠ0 and A\ =P0(Aί). We can construct B\ and B1 in Πo such that A1 B\ A\ Bx

is a rectangle (we choose Aγ such that the distances from Ωo to A1 and B\ are
equal). We set A'2 = B\ and A 2 = PQ1(Ά2). Then continuing this iterative pro-
cedure, we generate a sequence of rectangles {At B\ A[ Bt} in Πo.

Let Ωx be a point of the local unstable manifold W"oc of 0, close enough to 0,
and Πx part of a plane orthogonal to W{

U

QC and containing Ω1. We define
T0:Π0^>Πί as the map which associates to each point M of 77O, the first
intersection with Π1 of the orbit issued from M. Then the family of rectangles {At

B[ A[ Bt} transforms under To as represented on Fig. 1.
Now let Tx :Π1-+Π0 be the map which associates to each point M of Πv the

first intersection with Πo of the orbit originating from M. Then T=TχoT0 maps
Πo into itself. The above theorem results from the fact that if A1 is close enough to
W£c then (2) and the regularity of the vector field imply that for each i, T\A.B,.A,ιBι

is a topological horseshoe [2, 7]. •

2 Using Poincare's terminology, the origin is then a saddle focus

3 Actually a C linearization (1 ̂  r ^ oo) would be available under mild (non resonance) assumptions
on eigenvalues [23]. This let Tλ regular enough. One then uses density of non resonant systems and
stability of topological horseshoes to conclude
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Fig. 1. Geometrical construction used for the proof of ShiΓnikov's theorem. We have also represented

how acts the map T=T1oT0

At this point let us remark that T maps parts of each rectangle At B[ A\ Bt on
the opposite side of W?oc, which prevents defining a T-invariant region in Πo. This
leads us to specify the dynamics on both side of W{

s

oc. We proceed in a simple way
by imposing on (1) the symmetry with respect to the origin:
(x,y,z)->( — x9—y,—z). Then if Ά\ and B1 are symmetric to A\ and Bx with
respect to Wfoc(W*oc is linear in V), we can find systems such that, as soon as Aγ is
far enough from W?oc, the set theoretical complementary of W{

s

oc in the open
rectangle Bγ A\ A\Bί9 is invariant under the Poincare first-return map defined on
it. (The rectangles {At B[ A\ Bt} with i large enough still support topological
horseshoes.)

For such systems it is obvious that T0({J A{ B\ A[ Bλ is invariant under the
i= 1

Poincare first-return map Px defined on Π1. Using the foliation depicted in Fig. 1,
we can conclude that any attractor of Pί must be included in a spiral asymptotic
to Ωv

III. An Example

Now we come to the numerical investigation of a specific example choosen in a
class of differential equations introduced in [18].

\x+βx + x =

or (3)
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Fig. 2. For system (3) with fμ(x) given by (5) and α~0.2171604 and μ~0.2061612, the image under Px of
a lattice of 1000 points taken in the polygon ABCDEFGH with 4(0.000001, -0.162), £(0.000001,
0.108), C(U.141, 0.270), D(0.329, 0.270), £(0.470, 0.108), F(0.470, -0.108), G(0.329, -0.270), H(0.141,
-0.270)

where β > 0 is the dissipation and / a real function depending on the parameter μ.
In a previous paper [24], we considered system (3) with the particular choice

(4)
1+ax if x^O

1 — μx if x^O

and proved the existence for some α0, μ0 of a homoclinic orbit Γ o satisfying the
conditions of ShiFnikov's theorem [19]. This allowed us to understand the
structure of the chaotic behaviours numerically displayed by (3) for values of μ less
than μ0. Nevertheless let us emphasize that for such functions fμ(x) with only one
extrenium, no attractor is observable simultaneously with Γ o [24]. In order to
remedy this fact, we impose the above mentioned symmetry (x9y,z)—>( — x, —y,
— z) by choosing fμ(x) as defined by

i— μx — μ — a if x^ — 1

ax if \x\£l .. (5)

-μx + μ + a if x^>l

Two main reasons lead us to consider a piece wise linear function4'5:
i) Using the method developed in [24], we can prove the existence of values of

the parameters such that there exist two homoclinic orbits Γ o and Γ'o symmetric
with respect to the saddle focus (0,0,0), all conditions of ShiPnikov's theorem
being fulfilled.
4 Analogous results have also been obtained with analytical functions

5 The above theorem is readily adapted to this case
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Fig. 3. a The spiral like attractor numerically observed for Pί b Magnification of the boxed-in region
in a same model as in Fig. 2

ii) The solutions of (3) can be computed with a very accurate numerical
scheme: the solutions are known analytically in each of the strata x £Ξ — 1, |x| ^ 1
and x ^ 1, and we only need to compute with Newton's method the return times on
the planes

x = — 1 and x = + 1.

Our numerical procedure makes easy the computation of the Poincare first
return map on the plane x = 1, which we consider as including Π1. Figure 2 gives
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Fig. 4. A three-dimensional representation of the attractor same model as in Fig. 2

Fig. 5. A typical sample of the time evolution of the x-coordinate same model as in Fig. 2

evidence that this Poincare map Px admits an invariant polygonal surface for
values of the parameters such that Γ o and Γ'o exist (α0 ~ 0.2171604,
μ o ~ 0.2061612). The corresponding attractor is represented in Fig. 3a, where the
spiral structure previously predicted is clearly observed (this spiral structure can
be guessed on a 3-dimensional plot of the attractor of the corresponding flow: See
Figs. 4 and 5). The magnification of the boxed-in region (Fig. 3b) strongly suggests
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that the attractor is scale-invariant and comes in each neighbourhood of Ωx which
has no image under P1. If it turns out to be true, the attractor cannot be a periodic
orbit, and we conjecture that we are faced with a strange attractor of a new kind.

IV. Conclusion

We must emphasize that when we increase the parameter μ from 0 to the value μ0

where Γ o and Γo exist, the dynamics associated with system (3) becomes more and
more complicated. The initial evolution (when observed on an arbitrary Poincare
first-return map) is similar ,to what is obtained when strengthening the non-
linearities in the Henon mapping [4]. Further evolution corresponds to a
succession of topological horseshoes with more and more branches i.e. semi-
conjugate to full shifts on a alphabet with more and more symbols.
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