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Possible numbers of ones in 0–1 matrices
with a given rank
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We determine the possible numbers of ones in a 0–1 matrix with given rank in the generic case
and in the symmetric case. There are some unexpected phenomena. The rank 2 symmetric case
is subtle.
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1. Introduction

A 0–1 matrix is a matrix whose entries are either 0 or 1. Such matrices arise
frequently in combinatorics and graph theory. It is known [1, p. 243] that the largest
number of ones in an n� n nonsingular 0–1 matrix is n2 � nþ 1: Interpreting non-
singularity as full rank, we may ask further the question: What are the possible
numbers of ones in a 0–1 matrix with given rank? We will answer this question
in the generic case and in the symmetric case. The rank 2 symmetric case is
subtle. Valiant [2] defined the rigidity RA(k) of a matrix A to be the minimal
number of entries in the matrix that have to be changed in order to reduce the
rank of A to less than or equal to k. So our work is along lower bounds on rigidity
of explicit matrices. See [3]. In section 2 we prove the main results. In section 3 we
give some examples.
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2. Main results

THEOREM 1 Let k , n be positive integers with k � n: There exists an n� n 0–1 matrix
of rank k with exactly d ones if and only if

(i) d¼ xy for some integers x and y with 1 � x � n, 1 � y � n when k ¼ 1;
(ii) k � d � n2 � kþ 1 when k � 2:

Proof First note that any n� n 0–1 matrix of rank k has at least k ones and has at
most n2 � kþ 1 ones. Thus the condition k � d � n2 � kþ 1 is always necessary.
Throughout, we denote by f (A) the number of ones in a 0–1 matrix A.

(i) Let A be an n� n 0–1 matrix of rank 1: Let � be any nonzero row of A. Then each

row � is either equal to � or equal to 0: Suppose � contains y ones and A has x

nonzero rows. Then f ðAÞ ¼ xy: The ‘if ’ part is obvious.
(ii) It suffices to prove the ‘if ’ part. The case k � 3 is covered by Theorem 4 (iii), which

follows. So we need to prove only the case k¼ 2 here. Let 2 � d � n2 � 1: For
every such d, we will exhibit an n� n 0–1 matrix of rank 2 with d ones. Let

B ¼

1 0 0 � � � 0
0 1 0 � � � 0
0 0 0 � � � 0
..
. ..

. ..
.

� � � ..
.

0 0 0 � � � 0

2
66664

3
77775:

Then f ðBÞ ¼ 2: Next starting with B we increase the number of ones by one in each
step, up to n2 � 1: At the same time all these matrices are of rank 2, which can be
seen by looking at the rows. Keeping the entry Bð2, 1Þ ¼ 0 fixed and successively chang-
ing the 0’s in the first two rows to 1’s, we obtain the matrix

B1 ¼

1 1 1 � � � 1
0 1 1 � � � 1
0 0 0 � � � 0
..
. ..

. ..
.

� � � ..
.

0 0 0 � � � 0

2
66664

3
77775:

Then in B1 successively setting B1ði, 1Þ ¼ 1, i ¼ 3, 4, . . . , n we obtain the matrix

C1 ¼

1 1 1 � � � 1
0 1 1 � � � 1
1 0 0 � � � 0
..
. ..

. ..
.

� � � ..
.

1 0 0 � � � 0

2
66664

3
77775:

In general we denote by Bt the n� n 0–1 matrix whose first tþ 1 rows consist of ones
and other rows consist of zeros except that the first column has only one nonzero entry
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at (1, 1) position, and denote by Ct the matrix obtained from Bt by making the first
column all ones except that the (2, 1) entry is 0, t ¼ 1, . . . , n� 1: Thus

B2 ¼

1 1 1 � � � 1
0 1 1 � � � 1
0 1 1 � � � 1
..
. ..

. ..
.

� � � ..
.

0 0 0 � � � 0

2
66664

3
77775:

Note that f ðB2Þ ¼ f ðC1Þ þ 1: Set B2ði, 1Þ ¼ 1 and retain the other entries for
i ¼ 3, 4, . . . , n successively. We obtain

C2 ¼

1 1 1 1 � � � 1
0 1 1 1 � � � 1
1 1 1 1 � � � 1
1 0 0 0 � � � 0
..
. ..

. ..
. ..

.
� � � ..

.

1 0 0 0 � � � 0

2
6666664

3
7777775
:

Observe that

B3 ¼

1 1 1 1 1 � � � 1
0 1 1 1 1 � � � 1
0 1 1 1 1 � � � 1
0 1 1 1 1 � � � 1
0 0 0 0 0 � � � 0
..
. ..

. ..
. ..

. ..
.

� � � ..
.

0 0 0 0 0 � � � 0

2
666666664

3
777777775

and f ðB3Þ ¼ f ðC2Þ þ 1: Repeating the above process by using the last n� 2 entries of
the first column we finally obtain the matrix Cn�1 whose only zero entry is Cn�1ð2, 1Þ
and f ðCn�1Þ ¼ n2 � 1: This completes the proof. g

Now we turn to the study of symmetric 0–1 matrices. To establish the second main
result, we first prove two lemmas. Denote by A½1, 2, . . . , k� the principal submatrix of A
lying in the first k rows and first k columns.

LEMMA 2 Let A be a symmetric complex matrix with rankðAÞ ¼ k: If the first k rows of
A are linearly independent, then A½1, 2, . . . , k� is nonsingular.

Proof In fact it is easy to show the following more general result: Let A be an m� n
complex matrix with rankðAÞ ¼ k: If the first k rows of A are linearly independent and
the first k columns of A are linearly independent, then A½1, 2, . . . , k� is nonsingular. This
follows since the rank remains unchanged after deleting the last m� k rows of A, and
then deleting the last n� k columns of the resulting matrix. g

LEMMA 3 Let A be a symmetric 0–1 matrix with rankðAÞ ¼ 2: Let � and � be two
linearly independent rows of A and � be any row of A. Then � ¼ �, or � ¼ �, or � ¼ 0:
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Proof � ¼ u�þ v� for some real numbers u, v: Since � and � are linearly independent,
it is not hard to show that u, v 2 f0, 1, � 1g: By simultaneous row and column permuta-
tions if necessary, without loss of generality we may suppose that �,�and � are respec-
tively, the first, second, and i th rows. By Lemma 2, A½1, 2� must be one of the following
four matrices

1 1

1 0

" #
,

0 1

1 0

" #
,

1 0

0 1

" #
,

0 1

1 1

" #
,

which are the only nonsingular 2� 2 symmetric 0–1 matrices. Let A ¼ ðaijÞ: We have

ai1 ¼ ua11 þ va21, ai2 ¼ ua12 þ va22, ð1Þ

aii ¼ uai1 þ vai2 ¼ u2a11 þ 2uva12 þ v2a22: ð2Þ

We need to show ðu, vÞ 2 fð1, 0Þ, ð0, 1Þ, ð0, 0Þg: Suppose this is not the case. Then

ðu, vÞ 2 fð1, 1Þ, ð1, �1Þ, ð�1, 1Þ, ð�1, �1Þ, ð0, �1Þ, ð�1, 0Þg:

(i)

a11 a12

a21 a22

" #
¼

1 1

1 0

" #
:

By (1), we must have u ¼ 1, v ¼ �1: But then by (2), aii ¼ �1, contradicting the
fact that A is a 0–1 matrix.

(ii)

a11 a12

a21 a22

" #
¼

0 1

1 0

" #
:

By (1), u ¼ v ¼ 1: But then by (2), aii ¼ 2, a contradiction.
(iii)

a11 a12

a21 a22

" #
¼

1 0

0 1

" #
:

In the same way as in Case (ii) we have a contradiction.
(iv)

a11 a12

a21 a22

" #
¼

0 1

1 1

" #
:

By (1), u ¼ �1, v ¼ 1: But then by (2), aii ¼ �1, a contradiction. The above
contradictions complete the proof. g
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We remark that the conclusion of Lemma 3 does not hold when rank � 3: Consider

E ¼

1 1 1 0
1 1 0 0
1 0 0 1
0 0 1 0

2
664

3
775:

The first three rows of E are linearly independent, and the fourth row is the difference
of the first two rows. So E is a symmetric 0–1 matrix of rank 3. But the fourth row is not
equal to any of the first three rows and it is not a zero row. This example can be
extended in an obvious way to a matrix of arbitrary rank k � 3 and of order kþ 1.

THEOREM 4 Let k, n be positive integers with k � n: There exists an n� n symmetric 0–1
matrix of rank k with exactly d ones if and only if

(i) d ¼ x2 for some integer x with 1 � x � n when k¼ 1;
(ii)

d ¼

s2 � t2 for some integers s and t with 1 � t < s � n, or

s2 þ t2 for some integers s and t with s � 1, t � 1 and sþ t � n, or

2st for some integers s and t with s � 1, t � 1 and sþ t � n

8><
>:

when k¼ 2;
(iii) k � d � n2 � kþ 1 when k � 3:

Proof (i) Let A ¼ ðaijÞ be an n� n symmetric 0–1 matrix of rank 1: If all the diagonal
entries of A are 0, then since A has at least one 1, A has a submatrix of the form ½0 1

1 0
�

which is nonsingular. Thus rankðAÞ � 2, contradicts the rank 1 assumption. So A has a
diagonal entry, say, aii ¼ 1: Suppose the i th row contains x 1’s. Any other row is either
a zero row or equal to the i th row. If aji ¼ 0, then the jth row is a zero row; if aji ¼ 1,
then the jth row is equal to the i th row. But by the symmetry the i th column contains x
1’s. Hence A has x rows equal to the i th row and has the remaining rows equal to 0.
Therefore, A has x2 1’s.

Conversely, for 1 � x � n let Jx denote the all-one matrix of order x. Then the n� n
matrix ½Jx 0

0 0
� is a symmetric 0–1 matrix of rank 1 and has x2 1’s.

(ii) Let A ¼ ðaijÞ be an n� n symmetric 0–1 matrix of rank 2: By simultaneous row and
column permutations if necessary, we may suppose that the first two rows are linearly
independent. By Lemma 2, A½1, 2� is nonsingular. Thus A½1, 2� is one of the following
four matrices:

1 1
1 0

� �
,

1 0
0 1

� �
,

0 1
1 0

� �
,

0 1
1 1

� �
:

If A½1, 2� ¼ ½0 1
1 1

�, then we may interchange the first two rows and interchange the first
two columns so that A½1, 2� ¼ ½1 1

1 0
�. Therefore we need to consider only the first three

possibilities. It is easy to check that the conclusions are true for n ¼ 2: Next we
assume n � 3:
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Case 1 A½1, 2� ¼ ½1 1
1 0

�. By Lemma 3, each row of A is equal to the first row, or the
second row, or 0: For every i, ðai1, ai2Þ is equal to ð1, 1Þ, or ð1, 0Þ, or ð0, 0Þ:
Correspondingly the i th row is equal to the first row, or the second row, or 0.
Suppose that the first row contains s 1’s and that there are t rows equal to the
second row. Using the symmetry of A and considering the numbers of 1’s in
the first and second columns, we see that 1 � t < s � n, there are s�t rows equal to
the first row, and the second row contains s�t 1’s. The number of 1’s in A is
ðs� tÞsþ tðs� tÞ ¼ s2 � t2:

Denote by Jp,q the p� q matrix all of whose entries are equal to 1, by 0p, q the p� q
zero matrix. We write Jp and 0p for Jp,p and 0p, p, respectively. Then for any
1 � t < s � n, the matrix

G1 ¼

1 1 J1, s�t�1 J1, t�1 01, n�s

1 0 J1, s�t�1 01, t�1 01, n�s

Js�t�1, 1 Js�t�1, 1 Js�t�1 Js�t�1, t�1 0s�t�1, n�s

Jt�1, 1 0t�1, 1 Jt�1, s�t�1 0t�1 0t�1, n�s

0n�s, 1 0n�s, 1 0n�s, s�t�1 0n�s, t�1 0n�s

2
66664

3
77775

is an n� n symmetric 0–1 matrix of rank 2 with s2 � t2 1’s.

Case 2 A½1, 2� ¼ ½1 0
0 1

�. Suppose the first row of A contains s 1’s and the second
row contains t 1’s. Obviously s � 1, t � 1, and sþ t � n by applying Lemma 3 to
the columns of A. Using the same analysis as in Case 1, we deduce that the number
of 1’s in A is s2 þ t2:

Conversely, for any s � 1, t � 1 with sþ t � n, the matrix

G2 ¼

1 0 J1, s�1 01, t�1 01, n�s�t

0 1 01, s�1 J1, t�1 01, n�s�t

Js�1, 1 0s�1, 1 Js�1 0s�1, t�1 0s�1, n�s�t

0t�1, 1 Jt�1, 1 0t�1, s�1 Jt�1 0t�1, n�s�t

0n�s�t, 1 0n�s�t, 1 0n�s�t, s�1 0n�s�t, t�1 0n�s�t

2
66664

3
77775

is an n� n symmetric 0–1 matrix of rank 2 with s2 þ t2 1’s.

Case 3 A½1, 2� ¼ ½0 1
1 0

�. Suppose the first row of A contains s 1’s and the second row
contains t 1’s. Then s � 1, t � 1, sþ t � n: Using the same analysis once more as in
Case 1, we deduce that the number of 1’s in A is 2st:

Conversely, for any s � 1, t � 1 with sþ t � n, the matrix

G3 ¼

0 1 J1, s�1 01, t�1 01, n�s�t

1 0 01, s�1 J1, t�1 01, n�s�t

Js�1, 1 0s�1, 1 0s�1 Js�1, t�1 0s�1, n�s�t

0t�1, 1 Jt�1, 1 Jt�1, s�1 0t�1 0t�1, n�s�t

0n�s�t, 1 0n�s�t, 1 0n�s�t, s�1 0n�s�t, t�1 0n�s�t

2
66664

3
77775

is an n� n symmetric 0–1 matrix of rank 2 with 2st 1’s.

(iii) For any rank k � 1, the number d of ones obviously satisfies k � d � n2 � kþ 1:
Let Ik be the identity matrix of order k. Let Hk ¼ ðhijÞ be the k� k matrix with hii ¼ 0

for i ¼ 2, 3, . . . , n and with all other entries equal to 1: Then Hk is nonsingular. In fact,
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H�1
k ¼ ½

2�k J1, k�1

Jk�1, 1 �Ik�1
�: So both ½Ik 0

0 0
� and Zn, k � ½

Jn�k Jn�k, k

Jk, n�k Hk
� are of rank k and they have k

and n2 � kþ 1 1’s, respectively. This shows that the lower bound k and the upper

bound n2 � kþ 1 are attained. Now assume k � 3: Let P(n, k) denote the proposition

that for every positive integer d with k � d � n2 � kþ 1 there exists an n� n symmetric

0–1 matrix of rank k with exactly d ones. It remains to prove Pðn, kÞ: We divide the

proof into three steps.

Step 1 Pðn, 3Þ is true for all n � 3:
We use induction on n. The following matrices

1 0 0
0 1 0
0 0 1

2
4

3
5, 1 1 0

1 0 0
0 0 1

2
4

3
5, 1 1 0

1 0 1
0 1 0

2
4

3
5, 1 1 0

1 0 1
0 1 1

2
4

3
5, 1 1 1

1 0 1
1 1 0

2
4

3
5

are of rank 3 and have 3, 4, 5, 6, 7 ones, respectively. So Pð3, 3Þ holds. Denote by �k
n the

set of n� n symmetric 0–1 matrices of rank k. Suppose Pðn, 3Þ holds, i.e., there are
matrices in �3

n with d ones for 3 � d � n2 � 2: We will show that Pðnþ 1, 3Þ holds,
i.e., there are matrices in �3

nþ1 with d ones for 3 � d � ðnþ 1Þ2 � 2: The range
3 � d � n2 � 2 is covered by P(n,3): Just add one zero row and one zero column to
the attaining matrices of order n. Consider

Zn, 3 ¼

Jn�2 Jn�2, 1 Jn�2, 1

J1, n�2 0 1
J1, n�2 1 0

2
4

3
5 2 �3

n:

Our strategy is to change the entries of the 2� 2 submatrix in the right-bottom corner
of Zn,3 and add one row and one column to Zn,3 so that the resulting matrix is in �3

nþ1

and has the required number of 1’s. In the following matrices Aj, for each j ¼ 1, 2, 3, 4,
Aj ½n� 1, n, nþ 1� is nonsingular and hence the last three rows of Aj are linearly
independent, while every other row is a linear combination of these three rows. Thus
Aj 2 �3

nþ1: Let

A1 ¼

Jn�2 Jn�2, 1 Jn�2, 1 0n�2, 1

J1, n�2 1 0 0
J1, n�2 0 0 1
01, n�2 0 1 0

2
664

3
775:

The number of 1’s in A1 is f ðA1Þ ¼ n2 � 1: Let

A2 ¼

Jn�2 Jn�2, 1 Jn�2, 1 0n�2, 1

J1, n�2 1 1 0
J1, n�2 1 0 0
01, n�2 0 0 1

2
664

3
775:
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Then f ðA2Þ ¼ n2: Let

A3 ¼

Jn�2 Jn�2, 1 Jn�2, 1 0n�2, 1

J1, n�2 1 1 0
J1, n�2 1 0 1
01, n�2 0 1 0

2
664

3
775:

Then f ðA3Þ ¼ n2 þ 1: Let

A4 ¼
Jn �T

� an�1

� �

where � ¼ ða1, a2, . . . , an�2, 1, 0Þ and ai¼ 0 or 1 which will be specified. For any d
with n2 þ 2 � d � ðnþ 1Þ2 � 2, if d ¼ n2 þ 2þ 2p for some nonnegative integer p,
set a1 ¼ a2 ¼ � � � ¼ ap ¼ 1, apþ1 ¼ � � � ¼ an�1 ¼ 0; if d ¼ n2 þ 2þ 2pþ 1 for some non-
negative integer p, set a1 ¼ a2 ¼ � � � ¼ ap ¼ an�1 ¼ 1, apþ1 ¼ � � � ¼ an�2 ¼ 0: Then
f ðA4Þ ¼ d: Therefore Pðnþ 1, 3Þ holds.

Step 2 P(n, k) implies Pðnþ 1, kþ 1Þ:
Suppose P(n, k) holds. Then for every d with k � d � n2 � kþ 1 there exists an

Ad 2 �k
n with f ðAdÞ ¼ d: We have Bd � ½Ad 0

0 1
� 2 �kþ1

nþ1 and f ðBdÞ ¼ d þ 1: So the
range kþ 1 � d � n2 � kþ 2 is attained by these Bd :

Denote by Zn,k the n� n 0–1 matrix whose only zero entries are the last k� 1
diagonal entries. Our strategy is to construct matrices Wj 2 �kþ1

nþ1 for j ¼ 1, 2, 3 based
on Zn,k with desired numbers d of 1’s. For each j, the principal submatrix of Aj lying
in the last kþ 1 rows is nonsingular and every other row is a linear combination
of the last kþ 1 rows. Thus Wj 2 �kþ1

nþ1: We will omit the verifications of these easily
seen facts.

Let W1 ¼ ½
Zn, k �T

� 0
� where � ¼ ð0, 0, . . . , 0, 1Þ: Then f ðW1Þ ¼ n2 � kþ 3:

Let W2 ¼ ½
Zn, k �T

� 1
� where � is as mentioned earlier. Then f ðW2Þ ¼ n2 � kþ 4:

Let

W3 ¼

Jn�kþ1 Jn�kþ1, k�1 �T

Jk�1, n�kþ1 Hk�1 !T

� ! an�1

2
4

3
5

where Hk�1 is the 0–1 matrix of order k� 1 whose only zero entries are the last k� 2
diagonal entries, � ¼ ða1, . . . , an�k, 1Þ, ! ¼ ð0, an�kþ1, . . . , an�2Þ, and the ai are to be
specified. For any d with n2 � kþ 5 � d � ðnþ 1Þ2 � ðkþ 1Þ þ 1, if d ¼ n2 � kþ
4þ 2p, set a1 ¼ � � � ¼ ap ¼ 1, apþ1 ¼ � � � ¼ an�1 ¼ 0; if d ¼ n2 � kþ 4þ 2pþ 1, set
a1 ¼ � � � ¼ ap ¼ an�1 ¼ 1, apþ1 ¼ � � � ¼ an�2 ¼ 0: Then f ðW3Þ ¼ d: Thus we have
proved Pðnþ 1, kþ 1Þ:

Step 3 P(n, k) is true for all n � k � 3:
By Step 1, Pðn� kþ 3, 3Þ is true. Using Step 2 we have the following implications:

Pðn� kþ 3, 3Þ ) Pðn� kþ 4, 4Þ ) � � � ) Pðn, kÞ:

This completes the proof. g
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3. Examples

Example 1 By Theorem 1 (i),

f1, 2, 3, 4, 6, 8, 9, 12, 16g

¼ fd jThere is a 4� 4 0�1 matrix of rank 1 with d 1’sg:

Note that 5, 7, 10, 11, 13, 14, 15 are missing. By Theorem 4 (i),

f1, 4, 9, 16g

¼ fd jThere is a 4� 4 symmetric 0�1 matrix of rank 1 with d 1’sg:

Example 2 By Theorem 4 (ii),

f2, 3, 4, 5, 6, 7, 8, 10, 12, 15g

¼ fd jThere is a 4� 4 symmetric 0�1 matrix of rank 2 with d 1’sg:

Note that 9, 11, 13, 14 are missing.

Example 3 By Theorem 4 (iii),

f3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14g

¼ fd jThere is a 4� 4 symmetric 0�1 matrix of rank 3 with d 1’sg:
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