Possible numbers of ones in $\mathbf{0} \mathbf{- 1}$ matrices with a given rank

QI HU, YAQIN LI and XINGZHI ZHAN*
Department of Mathematics, East China Normal University, Shanghai 200062, China
Communicated by R.B. Bapat

(Received 15 October 2004)

Abstract

We determine the possible numbers of ones in a $0-1$ matrix with given rank in the generic case and in the symmetric case. There are some unexpected phenomena. The rank 2 symmetric case is subtle.

Keywords: 0-1 Matrix; Rank; Number of ones; Symmetric matrix
AMS Classifications: 15A03; 15A36; 05B20

1. Introduction

A $0-1$ matrix is a matrix whose entries are either 0 or 1 . Such matrices arise frequently in combinatorics and graph theory. It is known [1, p. 243] that the largest number of ones in an $n \times n$ nonsingular $0-1$ matrix is $n^{2}-n+1$. Interpreting nonsingularity as full rank, we may ask further the question: What are the possible numbers of ones in a $0-1$ matrix with given rank? We will answer this question in the generic case and in the symmetric case. The rank 2 symmetric case is subtle. Valiant [2] defined the rigidity $R_{A}(k)$ of a matrix A to be the minimal number of entries in the matrix that have to be changed in order to reduce the rank of A to less than or equal to k. So our work is along lower bounds on rigidity of explicit matrices. See [3]. In section 2 we prove the main results. In section 3 we give some examples.

[^0]
2. Main results

Theorem 1 Let k, n be positive integers with $k \leq n$. There exists an $n \times n 0-1$ matrix of rank k with exactly d ones if and only if
(i) $d=x y$ for some integers x and y with $1 \leq x \leq n, 1 \leq y \leq n$ when $k=1$;
(ii) $k \leq d \leq n^{2}-k+1$ when $k \geq 2$.

Proof First note that any $n \times n 0-1$ matrix of rank k has at least k ones and has at most $n^{2}-k+1$ ones. Thus the condition $k \leq d \leq n^{2}-k+1$ is always necessary. Throughout, we denote by $f(A)$ the number of ones in a $0-1$ matrix A.
(i) Let A be an $n \times n 0-1$ matrix of rank 1 . Let α be any nonzero row of A. Then each row β is either equal to α or equal to 0 . Suppose α contains y ones and A has x nonzero rows. Then $f(A)=x y$. The 'if' part is obvious.
(ii) It suffices to prove the 'if' part. The case $k \geq 3$ is covered by Theorem 4 (iii), which follows. So we need to prove only the case $k=2$ here. Let $2 \leq d \leq n^{2}-1$. For every such d, we will exhibit an $n \times n 0-1$ matrix of rank 2 with d ones. Let

$$
B=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

Then $f(B)=2$. Next starting with B we increase the number of ones by one in each step, up to $n^{2}-1$. At the same time all these matrices are of rank 2 , which can be seen by looking at the rows. Keeping the entry $B(2,1)=0$ fixed and successively changing the 0 's in the first two rows to 1 's, we obtain the matrix

$$
B_{1}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

Then in B_{1} successively setting $B_{1}(i, 1)=1, i=3,4, \ldots, n$ we obtain the matrix

$$
C_{1}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

In general we denote by B_{t} the $n \times n 0-1$ matrix whose first $t+1$ rows consist of ones and other rows consist of zeros except that the first column has only one nonzero entry
at $(1,1)$ position, and denote by C_{t} the matrix obtained from B_{t} by making the first column all ones except that the $(2,1)$ entry is $0, t=1, \ldots, n-1$. Thus

$$
B_{2}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

Note that $f\left(B_{2}\right)=f\left(C_{1}\right)+1$. Set $B_{2}(i, 1)=1$ and retain the other entries for $i=3,4, \ldots, n$ successively. We obtain

$$
C_{2}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
1 & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Observe that

$$
B_{3}=\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

and $f\left(B_{3}\right)=f\left(C_{2}\right)+1$. Repeating the above process by using the last $n-2$ entries of the first column we finally obtain the matrix C_{n-1} whose only zero entry is $C_{n-1}(2,1)$ and $f\left(C_{n-1}\right)=n^{2}-1$. This completes the proof.

Now we turn to the study of symmetric $0-1$ matrices. To establish the second main result, we first prove two lemmas. Denote by $A[1,2, \ldots, k]$ the principal submatrix of A lying in the first k rows and first k columns.
Lemma 2 Let A be a symmetric complex matrix with $\operatorname{rank}(A)=k$. If the first k rows of A are linearly independent, then $A[1,2, \ldots, k]$ is nonsingular.

Proof In fact it is easy to show the following more general result: Let A be an $m \times n$ complex matrix with $\operatorname{rank}(A)=k$. If the first k rows of A are linearly independent and the first k columns of A are linearly independent, then $A[1,2, \ldots, k]$ is nonsingular. This follows since the rank remains unchanged after deleting the last $m-k$ rows of A, and then deleting the last $n-k$ columns of the resulting matrix.

Lemma 3 Let A be a symmetric $0-1$ matrix with $\operatorname{rank}(A)=2$. Let α and β be two linearly independent rows of A and γ be any row of A. Then $\gamma=\alpha$, or $\gamma=\beta$, or $\gamma=0$.

Proof $\gamma=u \alpha+v \beta$ for some real numbers u, v. Since α and β are linearly independent, it is not hard to show that $u, v \in\{0,1,-1\}$. By simultaneous row and column permutations if necessary, without loss of generality we may suppose that α, β and γ are respectively, the first, second, and i th rows. By Lemma 2, $A[1,2]$ must be one of the following four matrices

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right],
$$

which are the only nonsingular 2×2 symmetric $0-1$ matrices. Let $A=\left(a_{i j}\right)$. We have

$$
\begin{align*}
& a_{i 1}=u a_{11}+v a_{21}, \quad a_{i 2}=u a_{12}+v a_{22}, \tag{1}\\
& a_{i i}=u a_{i 1}+v a_{i 2}=u^{2} a_{11}+2 u v a_{12}+v^{2} a_{22} . \tag{2}
\end{align*}
$$

We need to show $(u, v) \in\{(1,0),(0,1),(0,0)\}$. Suppose this is not the case. Then

$$
(u, v) \in\{(1,1),(1,-1),(-1,1),(-1,-1),(0,-1),(-1,0)\} .
$$

(i)

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] .
$$

By (1), we must have $u=1, v=-1$. But then by (2), $a_{i i}=-1$, contradicting the fact that A is a $0-1$ matrix.
(ii)

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

By (1), $u=v=1$. But then by (2), $a_{i i}=2$, a contradiction.
(iii)

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

In the same way as in Case (ii) we have a contradiction.
(iv)

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] .
$$

By (1), $u=-1, v=1$. But then by (2), $a_{i i}=-1$, a contradiction. The above contradictions complete the proof.

We remark that the conclusion of Lemma 3 does not hold when rank ≥ 3. Consider

$$
E=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

The first three rows of E are linearly independent, and the fourth row is the difference of the first two rows. So E is a symmetric $0-1$ matrix of rank 3 . But the fourth row is not equal to any of the first three rows and it is not a zero row. This example can be extended in an obvious way to a matrix of arbitrary rank $k \geq 3$ and of order $k+1$.

Theorem 4 Let k, n be positive integers with $k \leq n$. There exists an $n \times n$ symmetric $0-1$ matrix of rank k with exactly d ones if and only if
(i) $d=x^{2}$ for some integer x with $1 \leq x \leq n$ when $k=1$;
(ii)
$d= \begin{cases}s^{2}-t^{2} & \text { for some integers } s \text { and } t \text { with } 1 \leq t<s \leq n, \text { or } \\ s^{2}+t^{2} & \text { for some integers } s \text { and } t \text { with } s \geq 1, t \geq 1 \text { and } s+t \leq n, \text { or } \\ 2 s t & \text { for some integers } s \text { and } t \text { with } s \geq 1, t \geq 1 \text { and } s+t \leq n\end{cases}$
when $k=2$;
(iii) $k \leq d \leq n^{2}-k+1$ when $k \geq 3$.

Proof (i) Let $A=\left(a_{i j}\right)$ be an $n \times n$ symmetric $0-1$ matrix of rank 1 . If all the diagonal entries of A are 0 , then since A has at least one $1, A$ has a submatrix of the form $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ which is nonsingular. Thus $\operatorname{rank}(A) \geq 2$, contradicts the rank 1 assumption. So A has a diagonal entry, say, $a_{i i}=1$. Suppose the i th row contains x l's. Any other row is either a zero row or equal to the i th row. If $a_{j i}=0$, then the j th row is a zero row; if $a_{j i}=1$, then the j th row is equal to the i th row. But by the symmetry the i th column contains x 1 's. Hence A has x rows equal to the i th row and has the remaining rows equal to 0 . Therefore, A has $x^{2} 1$'s.

Conversely, for $1 \leq x \leq n$ let J_{x} denote the all-one matrix of order x. Then the $n \times n$ matrix $\left[\begin{array}{cc}J_{x} & 0 \\ 0 & 0\end{array}\right]$ is a symmetric $0-1$ matrix of rank 1 and has $x^{2} 1$'s.
(ii) Let $A=\left(a_{i j}\right)$ be an $n \times n$ symmetric $0-1$ matrix of rank 2 . By simultaneous row and column permutations if necessary, we may suppose that the first two rows are linearly independent. By Lemma 2, $A[1,2]$ is nonsingular. Thus $A[1,2]$ is one of the following four matrices:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] .
$$

If $A[1,2]=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$, then we may interchange the first two rows and interchange the first two columns so that $A[1,2]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Therefore we need to consider only the first three possibilities. It is easy to check that the conclusions are true for $n=2$. Next we assume $n \geq 3$.

Case $1 \quad A[1,2]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. By Lemma 3, each row of A is equal to the first row, or the second row, or 0 . For every $i,\left(a_{i 1}, a_{i 2}\right)$ is equal to $(1,1)$, or $(1,0)$, or $(0,0)$. Correspondingly the i th row is equal to the first row, or the second row, or 0 . Suppose that the first row contains s l's and that there are t rows equal to the second row. Using the symmetry of A and considering the numbers of 1 's in the first and second columns, we see that $1 \leq t<s \leq n$, there are $s-t$ rows equal to the first row, and the second row contains $s-t$ 1's. The number of 1's in A is $(s-t) s+t(s-t)=s^{2}-t^{2}$.

Denote by $J_{p, q}$ the $p \times q$ matrix all of whose entries are equal to 1 , by $0_{p, q}$ the $p \times q$ zero matrix. We write J_{p} and 0_{p} for $J_{p, p}$ and $0_{p, p}$, respectively. Then for any $1 \leq t<s \leq n$, the matrix

$$
G_{1}=\left[\begin{array}{ccccc}
1 & 1 & J_{1, s-t-1} & J_{1, t-1} & 0_{1, n-s} \\
1 & 0 & J_{1, s-t-1} & 0_{1, t-1} & 0_{1, n-s} \\
J_{s-t-1,1} & J_{s-t-1,1} & J_{s-t-1} & J_{s-t-1, t-1} & 0_{s-t-1, n-s} \\
J_{t-1,1} & 0_{t-1,1} & J_{t-1, s-t-1} & 0_{t-1} & 0_{t-1, n-s} \\
0_{n-s, 1} & 0_{n-s, 1} & 0_{n-s, s-t-1} & 0_{n-s, t-1} & 0_{n-s}
\end{array}\right]
$$

is an $n \times n$ symmetric $0-1$ matrix of rank 2 with $s^{2}-t^{2} 1$'s.
Case $2 A[1,2]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Suppose the first row of A contains $s 1$'s and the second row contains t 1's. Obviously $s \geq 1, t \geq 1$, and $s+t \leq n$ by applying Lemma 3 to the columns of A. Using the same analysis as in Case 1, we deduce that the number of 1 's in A is $s^{2}+t^{2}$.

Conversely, for any $s \geq 1, t \geq 1$ with $s+t \leq n$, the matrix

$$
G_{2}=\left[\begin{array}{ccccc}
1 & 0 & J_{1, s-1} & 0_{1, t-1} & 0_{1, n-s-t} \\
0 & 1 & 0_{1, s-1} & J_{1, t-1} & 0_{1, n-s-t} \\
J_{s-1,1} & 0_{s-1,1} & J_{s-1} & 0_{s-1, t-1} & 0_{s-1, n-s-t} \\
0_{t-1,1} & J_{t-1,1} & 0_{t-1, s-1} & J_{t-1} & 0_{t-1, n-s-t} \\
0_{n-s-t, 1} & 0_{n-s-t, 1} & 0_{n-s-t, s-1} & 0_{n-s-t, t-1} & 0_{n-s-t}
\end{array}\right]
$$

is an $n \times n$ symmetric $0-1$ matrix of rank 2 with $s^{2}+t^{2} 1$'s.
Case $3 A[1,2]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Suppose the first row of A contains s 's and the second row contains t l's. Then $s \geq 1, t \geq 1, s+t \leq n$. Using the same analysis once more as in Case 1, we deduce that the number of 1's in A is $2 s t$.

Conversely, for any $s \geq 1, t \geq 1$ with $s+t \leq n$, the matrix

$$
G_{3}=\left[\begin{array}{ccccc}
0 & 1 & J_{1, s-1} & 0_{1, t-1} & 0_{1, n-s-t} \\
1 & 0 & 0_{1, s-1} & J_{1, t-1} & 0_{1, n-s-t} \\
J_{s-1,1} & 0_{s-1,1} & 0_{s-1} & J_{s-1, t-1} & 0_{s-1, n-s-t} \\
0_{t-1,1} & J_{t-1,1} & J_{t-1, s-1} & 0_{t-1} & 0_{t-1, n-s-t} \\
0_{n-s-t, 1} & 0_{n-s-t, 1} & 0_{n-s-t, s-1} & 0_{n-s-t, t-1} & 0_{n-s-t}
\end{array}\right]
$$

is an $n \times n$ symmetric $0-1$ matrix of rank 2 with 2 st 1 's.
(iii) For any rank $k \geq 1$, the number d of ones obviously satisfies $k \leq d \leq n^{2}-k+1$. Let I_{k} be the identity matrix of order k. Let $H_{k}=\left(h_{i j}\right)$ be the $k \times k$ matrix with $h_{i i}=0$ for $i=2,3, \ldots, n$ and with all other entries equal to 1 . Then H_{k} is nonsingular. In fact,
$H_{k}^{-1}=\left[\begin{array}{cc}2-k & J_{1, k-1} \\ J_{k-1,1}, 1 \\ k & I_{k-1}\end{array}\right]$. So both $\left[\begin{array}{cc}I_{k} & 0 \\ 0 & 0\end{array}\right]$ and $Z_{n, k} \equiv\left[\begin{array}{cc}J_{n-k} & J_{n-k, k} \\ J_{k, n-k} & H_{k}\end{array}\right]$ are of rank k and they have k and $n^{2}-k+1$, 1 's, respectively. This shows that the lower bound k and the upper bound $n^{2}-k+1$ are attained. Now assume $k \geq 3$. Let $P(n, k)$ denote the proposition that for every positive integer d with $k \leq d \leq n^{2}-k+1$ there exists an $n \times n$ symmetric $0-1$ matrix of rank k with exactly d ones. It remains to prove $P(n, k)$. We divide the proof into three steps.

Step $1 \quad P(n, 3)$ is true for all $n \geq 3$.
We use induction on n. The following matrices

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

are of rank 3 and have 3, 4, 5, 6, 7 ones, respectively. So $P(3,3)$ holds. Denote by Ω_{n}^{k} the set of $n \times n$ symmetric $0-1$ matrices of rank k. Suppose $P(n, 3)$ holds, i.e., there are matrices in Ω_{n}^{3} with d ones for $3 \leq d \leq n^{2}-2$. We will show that $P(n+1,3)$ holds, i.e., there are matrices in Ω_{n+1}^{3} with d ones for $3 \leq d \leq(n+1)^{2}-2$. The range $3 \leq d \leq n^{2}-2$ is covered by $P(n, 3)$: Just add one zero row and one zero column to the attaining matrices of order n. Consider

$$
Z_{n, 3}=\left[\begin{array}{ccc}
J_{n-2} & J_{n-2,1} & J_{n-2,1} \\
J_{1, n-2} & 0 & 1 \\
J_{1, n-2} & 1 & 0
\end{array}\right] \in \Omega_{n}^{3} .
$$

Our strategy is to change the entries of the 2×2 submatrix in the right-bottom corner of $Z_{n, 3}$ and add one row and one column to $Z_{n, 3}$ so that the resulting matrix is in Ω_{n+1}^{3} and has the required number of 1 's. In the following matrices A_{j}, for each $j=1,2,3,4$, $A_{j}[n-1, n, n+1]$ is nonsingular and hence the last three rows of A_{j} are linearly independent, while every other row is a linear combination of these three rows. Thus $A_{j} \in \Omega_{n+1}^{3}$. Let

$$
A_{1}=\left[\begin{array}{cccc}
J_{n-2} & J_{n-2,1} & J_{n-2,1} & 0_{n-2,1} \\
J_{1, n-2} & 1 & 0 & 0 \\
J_{1, n-2} & 0 & 0 & 1 \\
0_{1, n-2} & 0 & 1 & 0
\end{array}\right] .
$$

The number of 1's in A_{1} is $f\left(A_{1}\right)=n^{2}-1$. Let

$$
A_{2}=\left[\begin{array}{cccc}
J_{n-2} & J_{n-2,1} & J_{n-2,1} & 0_{n-2,1} \\
J_{1, n-2} & 1 & 1 & 0 \\
J_{1, n-2} & 1 & 0 & 0 \\
0_{1, n-2} & 0 & 0 & 1
\end{array}\right]
$$

Then $f\left(A_{2}\right)=n^{2}$. Let

$$
A_{3}=\left[\begin{array}{cccc}
J_{n-2} & J_{n-2,1} & J_{n-2,1} & 0_{n-2,1} \\
J_{1, n-2} & 1 & 1 & 0 \\
J_{1, n-2} & 1 & 0 & 1 \\
0_{1, n-2} & 0 & 1 & 0
\end{array}\right]
$$

Then $f\left(A_{3}\right)=n^{2}+1$. Let

$$
A_{4}=\left[\begin{array}{cc}
J_{n} & \alpha^{T} \\
\alpha & a_{n-1}
\end{array}\right]
$$

where $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n-2}, 1,0\right)$ and $a_{i}=0$ or 1 which will be specified. For any d with $n^{2}+2 \leq d \leq(n+1)^{2}-2$, if $d=n^{2}+2+2 p$ for some nonnegative integer p, set $a_{1}=a_{2}=\cdots=a_{p}=1, a_{p+1}=\cdots=a_{n-1}=0$; if $d=n^{2}+2+2 p+1$ for some nonnegative integer p, set $a_{1}=a_{2}=\cdots=a_{p}=a_{n-1}=1, \quad a_{p+1}=\cdots=a_{n-2}=0$. Then $f\left(A_{4}\right)=d$. Therefore $P(n+1,3)$ holds.

Step $2 P(n, k)$ implies $P(n+1, k+1)$.
Suppose $P(n, k)$ holds. Then for every d with $k \leq d \leq n^{2}-k+1$ there exists an $A_{d} \in \Omega_{n}^{k}$ with $f\left(A_{d}\right)=d$. We have $B_{d} \equiv\left[\begin{array}{cc}A_{d} & 0 \\ 0 & 1\end{array}\right] \in \Omega_{n+1}^{k+1}$ and $f\left(B_{d}\right)=d+1$. So the range $k+1 \leq d \leq n^{2}-k+2$ is attained by these B_{d}.

Denote by $Z_{n, k}$ the $n \times n 0-1$ matrix whose only zero entries are the last $k-1$ diagonal entries. Our strategy is to construct matrices $W_{j} \in \Omega_{n+1}^{k+1}$ for $j=1,2,3$ based on $Z_{n, k}$ with desired numbers d of l's. For each j, the principal submatrix of A_{j} lying in the last $k+1$ rows is nonsingular and every other row is a linear combination of the last $k+1$ rows. Thus $W_{j} \in \Omega_{n+1}^{k+1}$. We will omit the verifications of these easily seen facts.

Let $W_{1}=\left[\begin{array}{cc}Z_{n, k} & \beta^{T} \\ \beta & 0\end{array}\right]$ where $\beta=(0,0, \ldots, 0,1)$. Then $f\left(W_{1}\right)=n^{2}-k+3$.
Let $W_{2}=\left[\begin{array}{cc}Z_{n, k} & \beta^{T} \\ \beta & 1\end{array}\right]$ where β is as mentioned earlier. Then $f\left(W_{2}\right)=n^{2}-k+4$.
Let

$$
W_{3}=\left[\begin{array}{ccc}
J_{n-k+1} & J_{n-k+1, k-1} & \gamma^{T} \\
J_{k-1, n-k+1} & H_{k-1} & \omega^{T} \\
\gamma & \omega & a_{n-1}
\end{array}\right]
$$

where H_{k-1} is the $0-1$ matrix of order $k-1$ whose only zero entries are the last $k-2$ diagonal entries, $\gamma=\left(a_{1}, \ldots, a_{n-k}, 1\right), \omega=\left(0, a_{n-k+1}, \ldots, a_{n-2}\right)$, and the a_{i} are to be specified. For any d with $n^{2}-k+5 \leq d \leq(n+1)^{2}-(k+1)+1$, if $d=n^{2}-k+$ $4+2 p$, set $a_{1}=\cdots=a_{p}=1, a_{p+1}=\cdots=a_{n-1}=0$; if $d=n^{2}-k+4+2 p+1$, set $a_{1}=\cdots=a_{p}=a_{n-1}=1, \quad a_{p+1}=\cdots=a_{n-2}=0$. Then $f\left(W_{3}\right)=d$. Thus we have proved $P(n+1, k+1)$.

Step $3 P(n, k)$ is true for all $n \geq k \geq 3$.
By Step $1, P(n-k+3,3)$ is true. Using Step 2 we have the following implications:

$$
P(n-k+3,3) \Rightarrow P(n-k+4,4) \Rightarrow \cdots \Rightarrow P(n, k)
$$

This completes the proof.

3. Examples

Example 1 By Theorem 1 (i),

$$
\begin{aligned}
& \{1,2,3,4,6,8,9,12,16\} \\
& =\{d \mid \text { There is a } 4 \times 40-1 \text { matrix of rank } 1 \text { with } d 1 \text { 's }\} \text {. }
\end{aligned}
$$

Note that $5,7,10,11,13,14,15$ are missing. By Theorem 4 (i),

$$
\begin{aligned}
& \{1,4,9,16\} \\
& =\{d \mid \text { There is a } 4 \times 4 \text { symmetric } 0-1 \text { matrix of rank } 1 \text { with } d 1 \text { 's }\} \text {. }
\end{aligned}
$$

Example 2 By Theorem 4 (ii),

$$
\begin{aligned}
& \{2,3,4,5,6,7,8,10,12,15\} \\
& =\{d \mid \text { There is a } 4 \times 4 \text { symmetric } 0-1 \text { matrix of rank } 2 \text { with } d 1 \text { 's }\} \text {. }
\end{aligned}
$$

Note that $9,11,13,14$ are missing.
Example 3 By Theorem 4 (iii),

$$
\begin{aligned}
& \{3,4,5,6,7,8,9,10,11,12,13,14\} \\
& =\{d \mid \text { There is a } 4 \times 4 \text { symmetric } 0-1 \text { matrix of rank } 3 \text { with } d 1 \text { 's }\} \text {. }
\end{aligned}
$$

Acknowledgments

The authors are grateful to the referees for their careful reading of the manuscript and kind comments. Supported by SRF for ROCS, SEM.

References

[1] Halmos, P.R., 1995, Linear Algebra Problem Book, Mathematical Association of America, Washington, D.C.
[2] Valiant, L.G., 1997, Graph-theoretic arguments in low level complexity. In: Mathematical Foundations of Computer Science, Lecture Notes in Comput. Sci., Vol. 53 (Berlin: Springer), pp. 162-176.
[3] Shokrollahi, M.A., Spielman, D.A. and Stemann, V., 1997, A remark on matrix rigidity. Information Processing Letters, 64(6), 283-285.

[^0]: *Corresponding author. Email: zhan@math.ecnu.edu.cn

