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Possible Phases a'nd Some Properties 
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A one-dimensional metal with a half-filled band is studied by the model of Dzyaloshinskii 

and Larkin. The .next-order renormalization group theory is applied. The invariant charges 

become smooth functions over all temperature. The possible phases-the singlet and the 

triplet Cooper pairing states, and SDW and CDW ·states at T ~0 are discussed. The criterion 

for these phases depends on th~ bare coupling constants via their signs and relative magni

tudes. The phase diagram differs from that of the first-order theory. The Green's function, 

the vertex function, and 2pF and uniform response functions are found in the asymptotic power 

form. The exponents are- univ~rsal except for the case of the repulsive couplings. The 

results are compared with the exact theorems abo~t the Hubbard and Tomonaga models. 

§ I. Introduction 

Theory of one-dimensional electron system has been a problem of much 

interest because of its amenability to exact treatment of the many body problem. 

Recently, however, interest has been renewed by experiments on 1-D conductors 

of many kinds. 1l One of the most interesting features is the metal-insulator 

transition which takes place gradually at low temperatures. In addition, there 

have been observed evidences of a) the Peierls distortion in the conducting 

chains (Pt complexes2J,SJ) and b) the continuous growing-up of the magnetic 

susceptibility at k = 0 and '2pF which. is antiferromagnetic in character (TCNQ

NMP4l'6l). 

The property a) has been interpreted on the grounds of the 2pF soft-phonon 

mechanism. 6l' 7l This seems to be qualitatively correct, but it should be re

membered that a direct electron interaction would have also remarkable effect 

on the Peierls state.8l As for the property b), it is more evident that the electron 

interaction is mainly responsible. Indeed, one usually resorts to the Hubbard 

model with a half-filled band*l because the model seems appropriate for the 

n-electron system in the TCNQ salts. 

The subject of the present paper has much bearing on this latter problem; 

the electrons in the 1-D half-filled band interacting via a potential of a finite 

range. We would like to study the problem in somewhat generalized situation, 

i.e., to include the arbitrariness in signs (attra~tive or repulsive) and the relative 

-
*l References cited in Ref. 4). See also Ref. 24). 
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956 M. Kimura 

magnitudes of the couplings. 

This model was first studied by Dzyaloshinskii and Larkin.9l They solved 
the problem involving three singular cha:fl.nels by means of a parquet method. 
They predicted thereby the ground state phases, namely, the normal, antiferro
magnetic and singlet Cooper pairing (the last two could be accompanied with 
2PF charge-density wave, so the Peierls ,state via the electron interaction by 
itself). However, the conclusion is not well reliable because they leave the 
destroying fluctuation effect peculiar in 1-D out of consideration. 

Recently, the author/0l Menyhard and S6lyom11l and Fukuyama et al_12l have 
investigated the similar model of Bychkov, Gor'kov and DzyaloshinskiP8l by the 
method of the renormalization group. M.S. showed· the absence of any phase 
transitions at finite temperature and discussed the ground state phase by the next
order renormalization. Fukuyama et al. derived some physical properties on the 
same grounds, the results of which were comparable with the exact solutions. 

This paper is devoted to a further study of D.L. model by the same method.14l 

The renormalizability of such a model has been demonstrated in the work.10l' 12l' 14l 

Actually, one could have easily anticipated from the very beginning that all the 
divergent graphs involved are exclusively of .a logarithmic type in energy or tem
perature. This fascinating feature 15l characteristic of the model makes the RG 
method greatly advantageous. 

In § 2 the model and the prescription of RG are briefly reviewed. In § 3 
we study the first order renormalization which reproduces D.L.'s results in a 
simple way. 

In the next-order renormalization, which is the subject of § § 4~6, it is 
shown that the fluctuating particle pairs play a crucial role to suppress the 
divergence in the invariant charges (IC) at all temperatures down to the absolute 
zero. This was just the case of M.S. Given the saturation values of IC at the 
Fermi level, it is easy to renormalize the various physical quantities. Thus, the 
asymptotic behavior of the Green's function and the vertex functions are found 
in the form of power. 

In § 6 via the study of the critical fluctuations of the singlet and triplet Cooper 
pairings (SCP and TCP), spin density wave (SDW) and charge density wave 
(CDW) by S6lyom's method we propose the possible phase diagram versus ?11 and 
?f4, which differs from that of D.L. in some regions. The critical exponents are 
universal except for the repulsive region (region I). The findings will have close 
correspondence to those of M.S. However, in what follows, particular emphasis 
will be made on the role played by the U-process which in almost all the cases 
of couplings strongly affects the physical properties of the system. 

In § 7 we examine the static properties of the system. The magnetic 
susceptibility and the density .response in the long wavelength limit are obtained 
in the form of power. In contrast to the critical responses studied in § 5 no 
divergent behavior is found up to the next-order renormalization, as should be 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

3
/4

/9
5
5
/1

9
2
5
4
6
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Possible Phases and Some Properties of the One-Dimensional Metal 957 

the case. 

In § 8 s.ome arguments are given for the interpretation and justification of 

the results. 

§ 2. Hamiltonian and renormalization-group equations 

Let us consider the 1-D model which is described by the Hamiltonian 

where G is 0 or the basic reciprocal lattice vector, :L4PF· 

Since the attention is focused on the "infrared singularity" . at the Fermi 

level it is reasonable to assume as fp = v (IPI-PF) in general (v is the Fermi 

velocity), even for a tight binding electron. The potential Vis assumed to act 

within a cutoff energy DSEF, and depends on the character of the momentum 

transfer as 

V ( + - - +) = V (- + + -) = g1 for the large momentum transfer ,___,2PF, 

V (+ - + -) = V (- + - +) = g2 for the small momentum transfer <-.PF , 

V(++--}=V(--++)=g8 for the U-process, (2·2) 

where the sign + (or -) restricts the range of corresponding argument Pt to 

be near +PF (or -PF). The matrix elements of Yother than (2·2) are assumed 

to be zero. For the following discussion the parameter g4 =g1 -2g2 is also useful. 

It is interesting to note that the model includes in itself the Tomonaga16> 

or the Luttinger17> model (g1 = g8 = 0), the Hubbard model (g1 = g2 = g8 <0) and 

the BG D modeP8> (g8 = 0). 

Associated with the matrix elements (2 · 2), the vertex functions are written 

as 

(2·3) 

for the N-process, and 

(2·4) 

for the U-process. 

The scale-invariant charges (IC) for the problem are defined as 

1J!,(x,u;g)=g,d2 (x,u;g)T,(x,u;g), i=l, 2, 3 or 4, (2·5) 

where x and u are the characteristic energy and the cutoff of the interaction 

which are properly scaled, respectively, and g = (g1, g2 , g8), and d (p) is defined 

through the full Green's function by G(p) =d(p)G0 (p). 

Now, the scale invariance argument for 1J! leads to the Lie equations18> 

x__!__1J!(x, u; g) =_!_'If!(~,.!!:.., 1J!(x, u; g)) I , 
OX 0~ X E=l ' 

(2·6) 
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958 M. Kimura 

with the· boundary conditions 

F(1,u;g)=1, where F=d or Ft, hence ~t(l,u;g)=gt. (2·7) 

In the same way we can derive for any renormalizable quantities A (x, u; g) the 
equation 

x_§_ In A(x, u; g)=___§___ In A(x) !:!;__; ~(x, u; g)) I , ax a~ X E=1 
(2·8) 

which reflects the sca1e-transformation prc;>perty of the function A. 
Our problem is then primarily to solve Eq. (2 · 6). The right-hand side of 

(2 · 6), i.e., the input functions of the t;qUlitions will be determined by means o! 
the perturbation expansion in g. In practice, following the prescription of Eqs. 
(2 · 6) and (2 · 8) we should carry out the calculations only for the terms· in the 
form of g" In x. Once the invariant charges are known it is a matter of simple 
quadrature to obtain the function A. 

§ 3. The first-order renormalization 

Now, Let us begin with a brief study of the first-order renormalization. 
The first logarithmic terms arise from the second order diagrams. They are 
shown in Fig. 1, where the graphs a) and b) contribute to F 1 and Fa, c) to 
Fa and d) and e) to F8• Their perturbational expressions are summarized as 

g F(1J=g2ln _f_ 1 1 1 2D , g r(1J =l:_(g 2_g 2) ln _f_ 
2!2 2 1 s 2D' 

(d) 

~ 
(e) 

Fig. 1. The first-order graphs. The solid (broken) lines 
indicate the particles with the momentum...._.+ (- )PF· _ 
The white (black) circles denote the normal 
(Umklapp) scattering processes. 

(3·1) 

(in the unit 1/;rv = 1) where f 

is the characteristic energy of the 
problem. The electron self
energy diagram does not contri

bute· in this order, hence d = 1 

and g£i=~t· 

If Eqs. (3 ·1) are used to 
obtain the first-order input func

tions we obtain the set of 
equations 

a· 
x-'fJ!1=~/, 

ax 

These ·· equations are exactly 
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Possible Phases and Some Properties of the One-Dimensional Metal 959 

analogous to those obtained by D.L. by the parquet-diagram method. We will 

not enter the detail of their solutions. Here, we only mention that they have 

led to the poles , in '1fT and in the various responses at finite temperature 

characterized oy 

{
D exp ( -1/Jg1 J) for g1<0, 

T~ , 
c D exp ( -1/vr) for r=g/-g/>O · 

(3-3) 

At this point D.L. already emphasized that the singularities of this sort do 

not imply in any sense a finite-temperature phase transition, but it is only 

indicative of the fact that the problem tends to the strong coupling domain via 

Tc. Thus, we are forced to go beyond the first-order theory. 

§ 4. The next-order renormalization of the invariant charges 

The next-order logarithmic terms in the form of g2 ln x in IC arise from 

the "irreducible" diagrams for the vertex functions (Fig. 2) as well as for the 

self-energy function of the electron (Fig. 3). That the latter should be the 

case has been repeatedly stressed from the viewpoint of the consistency in the 

perturbation for many problems.19l The graphs in Figs. 2 and 3 involve the 

fluctuating electron-electron (hole-hole) pairs as well .as electron-hole pairs. The 

former has been brought about by the inclusion of the U-process. 

The perturbational expressions are obtained in a straightforward manner 

and summarized as 

rJ2l = 4~2 {g!8 -2glg2+2glg22-2g28 + (g2-gl)gs2} ln 2~ ' 

n 2) = -l.(gl+2g!g2-2g22) ln _f_ 

4 · 2D 
(4·1) 

, 
I 

Fig. 2. The next-order graphs. 

/,.. .... ;;..-............ ,.. ..... ->-- ..... , 

/ ' "' ' ~.,.. 0:: .. ,. 

' .......... _-<- .... "'/ ............ _4!:"__.,.."' 

(a) (b) 

Fig. 3. The self-energy diagrams. 
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960 M. Kimura 

and 

(4·2) 

where Tf2l and T£2) have come from the graphs (a) and (b) and r£2) from (c). 
Making use of Eqs. ( 4 ·1) and ( 4 · 2) together with (3 ·1) for the second

order input functions we are lead to the set of equations 

(4 · 3a) 

(4·3b) 

(4·3c) 

It is instructive to note in Eq. ( 4 · 3) the following obvious properties of 7J!: 
a) 7J!1 is definite in sign, and is always monotonic if g1> -2. 
b) 7J!3 is also definite but not always monotonic. 
c) 7J!4 is always monotonic provided g3> -2. If lg4l>lgsl, it is definite, but 
if I gal> I g41, it may pass through zero. 

The solution of Eq. ( 4 · 3a) is written in the implicit form 

where 

1 7J!+2 .1 P1(1J!) =-ln----. 
2 7]! 7]! 

Equations (4·3b) and (4·3c) are integrated as follows: 
i) for lgsl='flg41 

lnx=P4(7J!4) -P4(g4), 7Jis2 =7J!/+2C7J!4+4C, 

where 

P4 (7J!) = ! {In (7J! + 2) - ! In (7J!2 + 2C7J! + 4C) +I (7J!)}, 

I(7J!) = v 2 -C ln{(7J! +C- vC(C-4)) (7J! +C+ vC(C-4))-1} 
2 C(C-4) 

(4·4) 

(4·5) 

and 2C= (g32 -g42)/(g4+2) = (7J!l-7J!42)/(7J!4+2) is the first integral of Eq. (4· 
3b, c). 

ii) for lgsl=lg4l, Eq. (4·5) reduces to 

(4·6) 

iii) for g8 = 0, 7J!3=0 and 7J!4=g4 = const, whereby the incommensurate case of 
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Possible Phases and Some Properties of the One-Dimensional Metal 961 

Men~hard and S6lyom is recovered. 

· The behavior of these solutions is illustrated in Fig. 4. *l We see at a 

glance that the solutions are regular over the whole range of the argument 

throughout all the case of the coupling parameters. At the same time it is 

apparent that Eq. ( 4 · 3) have the fixed points at x = 0, where all the IC attain 

the saturation values. These are the outstanding features characteristic of the 

next-order renormalization. The limits of IC at x~O are easily evaluated by 

inspection of Eqs. (4·4) ~ (4·6) and summarized in Table I, where we have 

introduced for convenience the two parameters !lr=grflgsl and !74=g4flgsl. 

(3) 

Table I. The saturation values of IC. The sign on 

1.0 'IJI, coincides with that of ga. a=-C+ VC(4-C). 

lnx -1.0 --/_,-----
,/ 

I / 

/--
/ 

I 

'IJI, (0) 0 

'IJI,(O) -a/2 

'lfla (0) 0 

'lfl. (0) a 

II III IV 

0 -2 -2 

1 0 -1 

±2 ±2 0 

-2 -2 a 

I 
I 

I 
I 

I 
I 

I 
I 

-1.0 
I: g,~o. g.~1, II: g,~O, rl•<l, III: g,<O, r!•<1, 

IV: g,<O, g.~l. See Fig. 6. 
I I 

I I 
I I 

I I 
I 

(~1_./ 
I 

(3) / ___ ..., 
-2.0 

Fig. 4. The numerical plots of the IC. 

The solid (broken) lines indicate 'IJI, 

('lfl.) 0 

§ 5. The next-order renormalization of the Green's function 

and the vertex functions 

Now, we examine the Green's function and the vertex functions. With the 

help of Eqs. (4·1) and (4·2) the scale equations (2·8) for them lead to 

X_§_ ln Tr = 7Jir + _!_ (7J!/ -7J142 - 27JI3
2), 

ax 8 

X_§_ In r4 = 7J!l _ _!_ (37JI / + 7J!l- 27fla2)' 

ax 7JI, 8 
(5·1) 

*> The author appreciates Mr. M. Konishi's help in the numerical plots in Fig. 4. 
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962 M. Kimura 

x_!)_ In Ts= 7J"4 _.l__ (37f!'/-7J!'l), 
8x 8 · 

x_!)_ In d=.l__(37J"/+ 7f!'42 +27f!'82). 

8x 16 
(5·2) 

Here we have taken Tt as functions of a single variable characteristic of the 
problem, because it is in this form that they govern the various physical quantities 
in the logarithmic approximation. 

The solutions of Eqs. (5 ·1) and (5 · 2) behave asymptotically in the form 
of power 

Table II. The exponents p. and Yt. 

I II III 

p. a'/16 3/4 3/2 

liJ, 4 -a'/8 -3/2 -3 

Ya a -3/2 -3 

IV 

3/4 

-3/2 

-3/2 

(5·3) 

where the conventional notations 

f imd D have been restored. The 

exponents fl. and Vt are governed 

exclusively by the saturation values 

of IC, and estimated as shown in 

Table II. The numerical factors 

of the power are of magnitude 

0 [1], and are affected by the full 
functional forms of IC. Here, no attempt was made. to evaluate them precisely. 

The form of d in Eq. (5 · 3) suggests an interesting property of the model: 
The original Fermi discontinuity is weakened drastically in the sense that the 
o (f) term at IPI = PF in the spectral function Im G (f, p) smears out to the 
incoherent background, being replaced by a power form (f/D)"'. The reason is 
that d (f, p) in Eq. (5 · 3) depends on f and p only through an argument f~ {f2 

- (vPYV12.*l For the same reason the distribution function itself becomes continuous 
at the Fermi level with a trace of discontinuity left in the derivatives. Since 
Eq. (5 · 3) implies 

(5·4) 

the first derivative diverges at IPI =PF in the region I, II and IV. In the region 
III the second derivative diverges. Note that the matter has been proved for 
the Tomonaga20l and the Luttinger17l• 22l models and for the neutral Hubbard 
model.21l·**l 

As mentioned in § 1 the divergences in r, taking place orily at f = 0 imply 
that the phase transitions are possible to be manifested only at T= OK~ This 
stands without violation of the theorem about the absence of any long-range 

*> See Ref. 26). 

**> Strictly speaking, the result does not agree with that for the Hubbard model'>·"> where a 
real gap opens up in the excitation spectrum. The situation gives us warning in applying the 
present scheme of renormalization since it would give rise to a power form singularity in general. 
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Possible Phases and Some Properties of the One-Dimensional Metal 963 

order in 1 -oD at finite T. Detailed discussion of the characters of the possible 
phases in the ground state is given, in the next section. 

§ 6. The critical fluctuations and the possible phases 

Let us study the critical fluctuations of the order parameters which would 
specify the various phase transitions. The quantities which should be considered 
are defined by 

IP (k, w) = - i Jdt ei"' I: <T[ap,t (t) aP'+k.: (t) ahk, 1a;,, 1J>, (6 ·la) 
p,p' 

IF(k, w) = -i Jdt ei"'' I: ~ 1 P 1 <T[ap, 1(t) ap+k, 1(t)a;,+k.ta;,, 1]) 
1
P:-I , (6 ·lb) 

~~ p p 

X (k, w) = - i Jdt ei"' I: <T[a;, 1(t) aP+k,! (t) a;'+k,!aP'.tJ>, (6 ·lc) p,p' 

with k=2PF· S6lyom suggested, however, none of these functions are the proper 
quantities satisfying the renormalizability condition. He introduced the auxiliary 
renormalizable functions defined by 

- 8Fi 
F,· = --- where F.= IP, IF, 2X or N, a lnx' . 

(6·2) 

where x is the characteristic energy properly scaled as before. 

To understand why (6 · 2) is the proper function we recall that D .L. started, 
alternatively, with the three-pole external vertices each of which is certainly 
renormalizable. The differentiation in (6 · 2). indicates cutting of any singular 
pair lines in the graphs for the functions F, thus leading to the squared three-pole 

t(l) l(f) 

' ' t t ~(t) t 
x•-().('p)± ~ .. <¢) 

:t - ........... .,;/ ''-.....::-"' .......... -cf"'' ''""<E-""'"' ...... ~., ' ..... -c:--"' 
(N l +{jl I (f) I Cll 'I (t) t ~ (I) 

(¢) , ___ .., 

Fig. 5. The diagram. expansions for the critical fluctuations. 
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964 M. Kimura 

vertices. 

The graphical expansion for each F; is shown in Fig. 5. To be consistent 
with the foregoing approximation we take account of the leading logarithms up 
to the next order. 

Because the U-process is involved directly in the graphs of SDW and CDW 
we have to consider, not only + 2pF to + 2PF but also + 2pF to - 2PF responses 
for each of them. For convenience, we introduce the two modes 

and similarly, N±. 

Simple calculations yield the perturbational expressions 

II8 (w) =In ~[1 + _!_{g1 + g2+ ({)(g) }In~+ ... J, 
2D 2 2D 

IIT (w) =ln~[1+ _!_{g2-g1 +({)(g) }In~+·'·], 
2D 2 2D 

X± (w) =-In- 1+-{ -g2=fga+(f)(g)}ln-+ ... , 1 ()) [ 1 ()) J 
2 2D 2 2D 

()) [ 1 ()) J N± (w) =ln- 1+-{2g1-g2±gs+(f)(g)} In-+ ... , 
2D. 2 2D 

where 

({)( ) 1 ( 2 2 1 2) g = 2 \ g1 + g2 - g1g2 + 2gB • 

By Eq. (6 · 4) the scale equations (2 ·8) for each F lead to 

a In ll8 

X 7]!1 +7Jf2+({)(7Jf), 
ax 

a In JjT 
X 7]!2-7]!1 + ({) (7Jf), 

ax 

X a ln x± -7Jf2=F7f!s+(f)(7J!), 
ax 

a ln.N± 
X = 27]!1 -7]!2 ± 7f!s + ({) (7Jf), 

ax 
from which the asymptotic expressions are obtained as 

(6·3) 

(6·4) 

(6·5) 

(6 · 6a) 

(6·6b) 

(6·6c) 

(6·6d) 

(6·7) 

The critical exponents a; are easily evaluated by the saturation values of IC 
and summarized in Table III, where in order to make the contrast clear the 
S6lyom's case (g 8 = 0) is tabulated together. 
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Possible Phases and Some Properties of the One-Dimensional Metal 965 

Table III. The critical exponents a,. 

I II III IV v 

lis -a/2 5/2 1 -3/2 -g./2 
JIT -a/2 5/2 5 5/2 -g./2 

x" a -3/2* 1* 5/2 g./2 

5/2* 5* 

N" a 5/2* 1* -3/2 g./2 

~3/2* -3* 

V: g,=O, g,:2:0, VI: g,=O, g,<O. 

* · For g,>O, For g,<O the upper and the lower numbers are interchanged. 

By the definition (6 · 3) the divergence in 

X (and in N) may be brought about from 

either of x+ (N+) or x- (N-), therefore it 

depends on g3 only via its absolute value. 

Bearing this in mind we can obtain at once 

the selection rule for the possible phases at 

T~OK. The phase diagram versus f/1 and f/4 

is shown in Fig. 6, where the boundaries 

between the phases belong to the shaded sides, 

respectively. *l 

II 9,~0. 94 < 1 

s.o.w. 
c.o.w. 

9, 

VI 

-3/2 

5/2 

5/2 

-3/2 

9,~0. 94>1 

S.C.P. 

T.C.P. 

In comparing these results with those for 

g3 = 0 (cf. S6lyom) it· becomes clear that the 

U-process makes marked influences on the pro

perties of the system. In particular, we should 

Fig. 6. The phase diagram versus g, 

and fl•· 

note the following points : 

A) In the region III, only CDW diverges for g 3 ~0, 

and SCP do. 

while for g3 =0 both CDW 

B) In the region II, although SDW and CDW diverges for both cases, their 
exponents are greatly enhanced for the case g 3 ~0. Such an instability enhance
ment in the commensurate case should have been anticipated. 

C) The region I is not so altered in quality, but the numerical differences in 
the exponents are found between both cases. 

In view of the situation C) it is possible to expect that all the predictions 
made about the Tomonaga20l or the Luttinger22l model can still apply qualitatively 

in the region I even if g 3 ~0, but no longer stand in the regions II'"'"'IV. 

Finally, it is worth while to comment on SCP and TCP in the region I. Here, the 

*' The situation of the phase diagram being scaled by I gal is a consequence of the result that 
the saturation values of IC are determined through the sign of the first integral C (see § 4 and 
Table I). This feature is already marked in the first order theory where the first integral is given 

by r= IF,'-IF•'· 
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966 M. Kimura 

:first order theory 1s reliable. If the solutions of Eq. (3 · 2) for g1>0 and g4>l 

are substituted into Eq. (6 · 6a, b) we obtain a more detailed expression for Eq. 
(6·7) 

where 

ll8 (w)= (1-g1 ln ;D)-812JI(w), 

ffT(w) = (1-g1ln :n) 112Il(w), 

{ ( 
' } lf2 

II(w) = sh g'ln 2 ~ +0')/shO' , 

(6·8) 

(6·9) 

and g' = (g/- g8
2YI2• We see that TCP is more st~ongly divergent than SCP. 

Equations (6 · 8) and (6 · 9) are a natural extension of the result in Ref. 12). 

§ 7. Uniform snsceptihilities 

In this section we study some static prope!ties, namely, the paramagnetic 

susceptibility, density response and the diamagnetic current response in the long 
wavelength limit by following the work of Fukuyama et al. 

The magnetic susceptibility X and density response N are defined by 
(6 ·lc, d), respectively, but in the neighborhood of k~O and w/k~o (the so-called 
k-limit). The current response is defined by 

(7 ·1) 

The :first logarithmic corrections of these quantities arise in the second 
ord(;!r perturbation. The graphs are shown in Fig. 7 schemati~ally. In order 
to include the U-process the new Umklapp graphs are added to the normal 

graphs as shown in Fig. 8. 

First consider the magnetic susceptibility. The graph (b) is identically zero 

' 
+ > <0, 

/ 
/ 

~ 

Fig. 7. The diagram expansions for the uniform 

susceptibilities. 

~ 
~ 

(a) (b) 

OG ... __ .... 
(c) (d) 

Fig. 8. The Uinklapp graphs for the uni

form susceptibilities. · 
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Possible Phases and Some Properties of the One-Dimensional Metal 967 

because of the cancellation in summing up the spin directions. The graph (a) 

is compensated out to zero by the graph (c)+ (d). Therefore no divergent 

correction arises from the U-graphs. 

Next, in the density and current responses all the N-graphs have been 

cancelled out to zero in accord with the Ward identity requirement.12> As for 

the current response, in particular, the same type of cancellation also occurs on 

the U-graphs, i.e., the sum (a)+ (b) compensates exactly the sum (c)+ (d). 

Turning to the density response we find that such a full cancellation does 

not take place. The perturbational calculations for the graphs (a)~ (d) give 

N<2> (k 0) = l_N g 2 ln ~ . 
' 4 o 3 2D 

(7 ·2) 

The scale equation (2 · 8) for it becomes 

f) ln(N/N0) 
x---'---'----'"--

f)x 
(7 ·3) 

from which the asymptotic solution for N is obtained as 

N(k, 0) /N0 = (vk/D)'l's'(0)/4• (7 ·4) 

Summarizing the arguments we arrive at the conclusion: 

A) The magnetic susceptibility is the same as that for the incommensurate 

case, g3 = 0. Therefore, the result in Ref. 12) is carried over: X reduces to the 

finite X (0, 0) = X0 for g1>0 and tends to zero in such a way as ~ (vk/DY for 

g1 <O. We note that this is in good accord with the exact result for the repulsive 

and attractive Hubbard models:23>• 24l 

B) The current response does not undergo any divergent correction. 

C) The density response is renormalized by the U-graphs alone. It reduces to the 

finite N(O, 0) =No for g4>1. Again, this is in accord with the result for the 

Tomonaga modeP7l where it was proved that any singular change in N(k~O) 

does not occur as long as the coupling is weak (I g21 <I). If ?l.<I, on the other 

hand, N(k~O) is renormalized to zero in such a way as ~vk/D. The non-zero 

value of 1£3 (0) gives rise to this remarkable change. 

§ 8. Conclusion 

There is a fundamenta] difference between 3-D and 1-D systems. In the 

perturbational point of view, this difference manifests itself already in the first

order theory, but in a more profound way in the next-order theory: The 

fluctuations destroy the long-range orders and lower the critical temperature 

down to' OK. This is the physical ground of the well-known theorem about the 

absence of long-range orders at T>OK in 1-D and has been taken into account 

throughout this paper. 

However, one might object to the validity of the next-order renormalization 
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968 M. Kimura 

because the present IC attain the values of 0 [1] except for the region I. In 
this sense, the strong coupling domain characterized by (3 · 3) persists even in 
the next-order theory. 

Another serious question for the present results would arise from consistency 
arguments. Nagaoka26l comments on the possible (co) existence of CDW or 
(and) SCP in the attractive Hubbavd model (in the region IV) which should 

\ 
correspond to only SDW in the repulsive Hubbard model (in the region II). 
From this viewpoint it is difficult to understand the coexistence of CDW 
divergence in the region II. This problem would not be solved within the 
framework of the present approximation. 

Nevertheless, many of the results are qualitatively correct as ~ompared 
with the exact solutions for some particular cases, as mentioned in the preceding 
sections. Thus we expect the theory to be applicable also to the problem of 
the dynamical scaling of the model.26l 

Finally, we note that the speciffic heat which has been suggested to be 
linear in temperature for the Hubbard modeJ24l and the BGD modeJ12l is so 
general that it must be kept for the present model in all the cases of the couplings. 

Acknowledgements 

The author would like to express his thanks to Professr S. Nakajima, Dr. 
Y. Kurihara and Dr. Y. Kuroda for their valuable discussions and supports in 
the work and to Professor A. Yoshimori and Professor Y. Nagaoka for giving 
him valuable comments. He is also grateful to Professor H. Fukuyama for his 
valuable discussions to which the work is much indebted. 

References 

1) I. F. Shchegolev, Phys. Stat. Sol. a) 12 (1972), 9. 
2) B. Renker, H. Rietschel, L. Pintshovius, W. Glaser, B. Renker and D. Kuse and M. ]. Rice, 

Phys. Rev. Letters 30 (1973), 1144. 
3) R. Comes, M. Lambert and H. Launois, Phys. Rev. B8 (1973), 571. 
4) A. ]. Epstein, S. Etemad, A. F. Garito and A.]. Heeger, Phys. Rev. B5 (1972), 952. 
5) E. Ehrenfreund, E. F. Rybaczewskii, A. F. Garito and A. ]. Heeger, Phys. Rev, Letters 28 

(1972), 873. 

6) M. ]. Rice and S. Striissler, Solid State Comm. 13 (1973), 125, 697. 
7) B. R. Patten and L. J. Sham, Phys. Rev. Letters 31 (1973), 631. 
8) A. A. Obchinnikov, I. I. Ukrainskii and G. F. Wentzel, Uspekhi Fiz. Nauk SSSR 108 

(1972), 81. 

9) I. Ye. Dzyaloshinskii and A. I. Larkin, Zhur. Eksp. i Teor. Fiz. 61 (1971), 791. 
10) M. Kimura, Prog. Theor. Phys. 49 (1973), 697. 
11) N. Menyhlird and S6lyom, ]. Low Temp. Phys. 12 (1973), 529. 

]. S6lyom, ]. Low Temp. Phys. 12 (1973), 547. 
12) H. Fukuyama, T. M. Rice, C. M. Varma and B. I. Halperin, Phys. Rev. B5 (1974). 3775. 
13) Yu. A. Bychkov, L. P. Gor'kov and I. Ye. Dzyaloshinskii, Zhur. Eksp. i Teor. Fiz. 50 

(1966), 783. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

3
/4

/9
5
5
/1

9
2
5
4
6
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Possible Phases and Some Properties of the One-Dimensional Metal 969 

14) Preliminary works have been reported by; M. Kimura, Sci. Rep. Kanazawa univ. 18 (1973), 

55; M. Konishi and M. Kimura Prog. Theor. Phys. 52 (1974), 353. Some errors in the 

latter work is corrected in the present paper. 

15) A. A. Abrikosov and A. A. Migdal, J. Low Temp. Phys. 3 (1970), 519. 

16) S. Tomonaga, Prog. Theor. Phys. 5 (1950), 544. 

17) D. C. Mattis and E. H. Lieb, J. Math. Phys. 6 (1965), 304. 

18) N. N. Bogoliubov and D. N. Shirkov, Introduction to the Theory of Quantized Fields 

(Interscience Publishers, INC., New York, 1956). 

19) B. Roulet, J. Gavoret and P. Nozien~s, Phys. Rev. 178 (1969), 1084. 

20) H. Gutfreund and M. Schick, Phys. Rev. 168 (1968), 418. 

21) E. H. Lieb and F. Y. Wu, Phys. Rev. Letters 20 (1968), 1445. 

22) A. Luther and I. Peshel, Phys. Rev. Letters 32 (1974), 992; Phys. Rev. B9 (1974), 2911. 

23) M. Takahashi, Prog, Theor. Phys. 42 (1969), 1098; 43 (1970), 1619. 

24) H. Shiba, Prog. Theor. Phys. 48 (1972), 2171. 

25) Y. Nagaoka, Prog. Theor. Phys. 52 (1974), 1716. 

26) H. Fukuyama and M. Kimura, to be published. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

3
/4

/9
5
5
/1

9
2
5
4
6
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


