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Abstract 
 
One of the tantalising remaining problems in compositional data analysis lies in how 
to deal with data sets in which there are components which are essential zeros. By an 
essential zero we mean a component which is truly zero, not something recorded as 
zero simply because the experimental design or the measuring instrument has not 
been sufficiently sensitive to detect a trace of the part. Such essential zeros occur in 
many compositional situations, such as household budget patterns, time budgets, 
palaeontological zonation studies, ecological abundance studies. Devices such as non-
zero replacement and amalgamation are almost invariably ad hoc and unsuccessful in 
such situations. From consideration of such examples it seems sensible to build up a 
model in two stages, the first determining where the zeros will occur and the second 
how the unit available is distributed among the non-zero parts. In this paper we 
suggest two such models, an independent binomial conditional logistic normal model 
and a hierarchical dependent binomial conditional logistic normal model. The 
compositional data in such modelling consist of an incidence matrix and a conditional 
compositional matrix. Interesting statistical problems arise, such as the question of 
estimability of parameters, the nature of the computational process for the estimation 
of both the incidence and compositional parameters caused by the complexity of the 
subcompositional structure, the formation of meaningful hypotheses, and the devising 
of suitable testing methodology within a lattice of such essential zero-compositional 
hypotheses. The methodology is illustrated by application to both simulated and real 
compositional data.    
 
 
1.  Introduction 
 
One of the tantalising remaining problems in compositional data analysis lies in how 
to deal with data sets in which there are components which are essential or structural 
zeros. By an essential zero we mean a component which is truly zero, not something 
recorded as zero simply because the experimental design or the measuring instrument 
has not been sufficiently sensitive to detect a trace of the part. Such essential zeros 
occur in many compositional situations. 
 

1. In household budget patterns, where some households may spend nothing on 
such commodity groups as tobacco, alcohol, entertainment, over the period of 
observation. 

 
2. In time budgets, where the individual subject may not take part in one or more 

of the assigned activities during the recording period. 
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3. In palaeontology, for example in pollen zonation studies, where at some levels 
a number of different varieties of the pollen fossils may be absent. 

 
4. In ecological abundance studies where the abundances of different species   

are often expressed as percentages, and for some regions some species are 
absent.. 

 
Experience suggests that when faced with such compositional data the analyst, 
realising that the standard logratio transformation methodology cannot be applied 
(You can’t take the logarithm of zero), may consider whether a solution is perhaps to 
replace the zeros by some small proportion. But how, and would such a replacement 
strategy not be rather arbitrary in the case of essential zeros? Another common way 
out may be to amalgamate parts in such a way that all zeros are eliminated. This may 
be a sensible solution if the parts amalgamated are similar in character and where the 
zeros may have arisen because of the definition of an unnecessarily fine division of 
parts. Often such steps to overcome the so-called zero problem are far from 
satisfactory and the analyst is left with a compositional data set that appears to defy 
proper analysis.  
 
This view is not to detract from the use of replacement strategies for rounded or trace 
zeros. For such situations the subcompositionally coherent replacement strategy of 
Martin- Fernández,  Barceló-Vidal and Pawlowsky-Glahn  (2000) and Fry,  Fry and 
McLaren. (2000) is appropriate, especially when these are subjected to a sensitivity 
analysis to detect how stable the inference is with respect to a reasonable range of 
replacement values. 
 
One of the problems with compositional data sets with essential or structural zeros is 
that the owner of the data quite often has no well defined hypothesis to test or indeed 
any obvious inference purpose for the data. It is then the first task of the 
compositional data consultant to try to elicit the precise aim of the study. Sometimes 
when the appropriate question is formulated the zero problem disappears. For 
example. the compositional data set of Aitchison (1986, Data 35, Fig. 11.6) consists 
of three-part compositions (p, q, r) consisting of relative proportions of a predator 
species P and two prey species Q and R at 25 different sites. At 10 of these sites no 
predators are recorded, so there is an essential zero problem. But when we realise that 
the question being asked of the data is whether the presence of predators affect the 
relative abundance of the two types of prey we realise that we can answer this 
question by testing the hypothesis that the (Q, R) subcompositions of the 15 full 
compositions (with predator present) and the 10 two-part (Q, R) compositions with 
predator absent have identical distributions. 
 
In this note we attempt to set a fairly general framework within which problems of 
essential zeros may be addressed. We make no claim that this framework will allow 
the resolution of all such problems for we are well aware of the diversity of the nature 
of essential zeros. But we hope that it may provide a stimulus for further modelling 
along similar lines.  
 
In our view the stumbling block with essential zeros has been the conception that the 
data are compositional vectors and that somehow their analysis must fall within 
existing compositional data methods. If, however, we consider the above four 
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examples we may be directed to a different view and a different approach to 
modelling. In the household budget pattern example a household of non-smoking, 
non-drinking members is aware, even before it embarks on its monthly spending, that 
it will spend nothing on these commodity groups and will allocate its expenditure 
over the remaining commodity groups. In the time budget situation the individual may 
be aware at the start of the recording period that he has no skills in some of the 
activities and so allocate the whole time period over the other activities. In the pollen 
zonation study weather conditions over the period may have annihilated some species 
making way for other species to distribute themselves with less competition. In the 
ecological abundance studies some regions may not contain particular vegetation 
which is necessary to the life of some species. 
 
 
2.  Modelling 
 
From the above argument it seems sensible to build up a model in two stages, the first 
determining where the zeros will occur and the second how the unit available is 
distributed among the non-zero parts. In terms of compositional data sets consisting of 
N  D-part compositions we can visualise the data presented as two matrices. The first 
is an incidence matrix I, for example 
 

I =























1 1 1 1
0 1 0 1
1 1 1 0
0 1 1 1
1 0 0 0

       

 
where the first row with 1 in each position indicates a full 4-part composition, the 0’s 
in the first and third positions in the second row indicate essential zero values for the 
components of the first and third parts of the  second composition, and so on. The 
second matrix is a component matrix in which the component values associated with 
the 1’s in the incidence matrix X are recorded, for example 
 
 

                X =























0 32 015 0 42 021
0 044 0 056

011 0 37 052 0
0 0 26 0 45 029

057 0 0 0 43

. . . .
. .

. . .
.. . .

. .

    

 
 
The independent binary model 
 
As a first stage define a very simple model for the generation of such data in terms of 
a D-variate binary density function 
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which is simply the density function of D independent binomial variables with 
different ‘success’ probabilities.  
 
At the second stage nonzero components are generated by subcompositional density 
functions based on a logistic normal density function ψ ξ( | , )x Τ associated with the 
full composition; in other words x follows a LD ( , )ξ Τ distribution. For ease of 
exposition we have adopted the parametrisation based on the centre ξ  and variation 
matrix Τ . 
 
Let us now show how we combine these two concepts to provide a probabilistic 
mechanism for producing a composition with essential zeros. Suppose that the D-
variate binary density function yields an observational vector u. Let 
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Thus J u( )  is a D1-vector containing the serial numbers of the non-zero parts, K u( )  
is the D0 -vector of serial numbers of the essential-zero parts. Denote by x J u( )  a D1-

part composition with parts labelled by the elements of J u( ). Also denote by ξJ u( )  the 

D1-part subcomposition formed from the J u( )  parts of ξ , and by ΤJ u( )  the D D1 1×  
variation matrix formed from the J u( )  rows and columns of Τ . Then the non-zero 

components arise as a compositional vector from LD
J u J u

1 ( , )( ) ( )ξ Τ . 
 
 
The dependent binary model 
  
An obvious criticism of the above model is the independence of the binomial 
outcomes. This can easily be remedied by imposing a hierarchical prior on the 
binomial parameters. Probably the simplest way of doing this is through a simple 
reparametrisation of the binomial probability parameters, by 
 

θ λ λi i i i D= + =exp( ) / {exp( ) } ( , . . . , )1 1   (2.3) 
 
The hierarchical prior can then be taken to be a D-dimensional normal prior with 
density function φ λ µD ( | , )Σ . 
 
Another criticism of such modelling may be that all the subcompositional 
distributions are based on one full compositional distribution. This might not be the 
case; for example, non-tobacco, non-alcohol spenders may act differently from non-
travel spenders. But if this is thought to be a possibility, even a hypothesis, then the  
groups should be separated and the hypothesis of no difference tested within a lattice 



 5 

with maximum model in which different full compositional distributions are allowed 
for each group. 
 
 
3.  Statistical aspects 
 
Fry, Fry and McLaren (200) came close to considering such modelling but seemed to 
dismiss it as too complex. There are certainly questions of estimability of parameters 
and awkwardness of computation but there are no new statistical principles required.  
 
Let us first consider the model where compositional aspects are based on the 
assumption of a common full LD ( , )ξ Τ  distribution. First we make an intuitive note 
on the estimability of parameters. The possibility of estimating the parameters ξ,Τ  of 
the full compositional distribution clearly depends on the incidence matrix I. A simple 
test is to form I IT . If all the non-diagonal elements are at least 2 then estimation is 
possible. 
 
For most problems in parametric statistical inference a crucial step is the formation of 
the likelihood, given the data. A compositional data set here consists of a N D×  
incidence matrix I  with nth row u n Nn ( , . . ., )= 1  together with the relevant N D×  
compositional data matrix X with nth row effectively the subcomposition x J un( )  in 
the notation of Section 2. For the independent binomial model the likelihood can then 
be written as  
 

L data p u xn J u
n

N

J u J un n n
( , , | ) ( | ) ( | , )( ) ( ) ( )θ ξ θ ψ ξΤ Τ=

=
∏

1
,  (3.1) 

 
where  

p un i
u u

i

D
ni ni( | ) ( )θ θ θ= − −

=
∏ 1 1

1
.   (3.2) 

 
For the dependent binary modelling case the p un( | )θ  of (3.1) is replaced by 
 

. p u
u

dn
i ni

ii

D

R D
( | , )

exp( )
exp( )

( | , )µ
λ

λ
ϕ λ π λΣ Σ=

+=
∏∫ − 11

1
.      (3.3) 

 
It is worth noting that the dependent binomial model reduces to the independent 
binomial model when Σ = 0 . 
 
An important point to note in both forms of likelihood is that the binomial parameters, 
either θ  or ( , )µ Σ , and the compositional parameters ( , )ξ Τ  are separable, so that 
inference questions about these parameters can be treated separately.  
 
With explicit expressions for the likelihood the remaining problems are 
computational, how to compute maximum likelihood estimates and thereby 
generalised likelihood ratio test statistics for any hypothesis under test. Apart from the 
logistic problem of identifying the different subcompositions within the likelihood a 
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main problem is the integrals involved in (3.3). We believe that these are most easily 
tackled by an MCMC approach and are currently working on programs for this 
purpose.  
 
This model-building and its implications for statistical inference for compositional 
data sets with essential zeros will be illustrated by a number of examples at 
CODAWORK03. 
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